中草药  2016, Vol. 47 Issue (6): 891-896
0
  PDF    
枸骨茎的化学成分研究
毛晨梅1 , 李杉杉1,2, 许琼明2 , 杨世林2    
1. 苏州大学附属儿童医院, 江苏 苏州 215000;
2. 苏州大学医学部药学院, 江苏 苏州 215123
摘要: 目的 对冬青科冬青属植物枸骨Ilex cornuta 茎进行化学成分研究,并考察分得化合物的自由基清除能力。方法 利用硅胶、中压柱色谱及半制备高效液相色谱等方法,对枸骨茎的化学成分进行系统分离;通过质谱、核磁共振谱等光谱数据鉴定化合物结构;利用DPPH 清除自由基实验测定化合物1~9的抗氧化活性。结果 从枸骨茎50%乙醇提取物中分离并鉴定了15 个化合物,分别为3,4-二咖啡酰奎宁酸(1)、3,4,5-三咖啡酰奎宁酸(2)、4,5-二咖啡酰奎宁酸甲酯(3)、3,4-二咖啡酰奎宁酸甲酯(4)、3,5-二咖啡酰奎宁酸甲酯(5)、3,4,5-三咖啡酰奎宁酸甲酯(6)、丁香醛(7)、没食子酸乙酯(8)、二氢芥子醇(9)、2,6-二甲氧基-1,4-苯醌(10)、牛蒡苷元(11)、1-O-香草酸-6-(3",5"-二甲氧基没食子酰)-β-D-吡喃葡萄糖苷(12)、木质素苷(13)、(+)-(7S,8S)-3,5-二甲氧基-4-羟基苯基丙三醇-8-O-β-D-吡喃葡萄糖苷(14)、夏佛托苷(15)。结论 化合物68~101415为首次从该属植物中分离得到,化合物271112为首次从该植物中分离得到;化合物1~6具有显著的清除自由基作用。
关键词: 枸骨;抗氧化活性;3,4-二咖啡酰奎宁酸;3,4,5-三咖啡酰奎宁酸;4,5-二咖啡酰奎宁酸甲酯;3,4-二咖啡酰奎宁酸甲酯;3,5-二咖啡酰奎宁酸甲酯;3,4,5-三咖啡酰奎宁酸甲酯;丁香醛    
Chemical constituents in stems of Ilex cornuta
MAO Chen-mei1, LI Shan-shan1,2, XU Qiong-ming2, YANG Shi-lin2    
1. Children's Hospital of Soochow University, Suzhou 215000, China;
2. College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
Abstract: Objective To investigate the chemical constituents in the stems of Ilex cornuta and the ability of scavenging free radicals of compounds 1-9. Methods The compounds were isolated and purified by silica gel, medium pressure column chromatography, and semi-preparative liquid chromatography, and their structures were elucidated by chemical properties and spectroscopic analyses. The antifreeradical efficiency of compounds 1-9 was evaluated by DPPH radical scavenging assay. Results Fifteen compounds were isolated and their structures were identified as isochlorogenic acid B (1), 3,4,5-tricaffeoylquinic acid (2), 4,5-di-O-caffeoyl quinic acid methyl ester (3), 3,4-di-O-caffeoyl quinicacid methyl ester (4), 3,5-di-O-caffeoyl quinicacid methyl ester (5), 3,4,5-tri-O-caffeoyl quinic acid methyl ester (6), 3,5-dimethoxy-4-hydroxybenzaldehyde (7), ethyl gallate (8), dihydrosyringenin (9), 2,6-dimethoxy-1,4-benzoquinone (10), arctigenin (11), 1-O-(vanillic acid)-6-O-(3",5"-dimethoxy-galloyl)-β-D-glycoside (12), (+)-1-hydroxypinoresinol-1-O-β-D-glucopyranoside (13), (+)-(7S,8S)-syringylglycerol 8-O-β-D-glucopyranoside (14), and schaftoside (15). Compounds 1-7 had good antifreeradical efficiency. Conclusion Compounds 6, 8-10, 14, and 15 are obtained from the plants of Ilex L. the first time, and compounds 2, 7, 11, and 12 are obtained from this plant for the first time. Compounds 1-6 have good antifreeradical efficiency.
Key words: Ilex cornuta Lindl. et Paxt.;anti-oxidant activity;isochlorogenic acid B;3,4,5-tricaffeoylquinic acid;4,5-di-O-caffeoyl quinic acid methyl ester;3,4-di-O-caffeoyl quinicacid methyl ester;3,5-di-O-caffeoyl quinicacid methyl ester;3,4,5-tri-O-caffeoyl quinic acid methyl ester;3,5-dimethoxy-4-hydroxybenzaldehyde    

枸骨Ilex cornuta Lindl. et Paxt. 系冬青科(Aquifoliaceae)冬青属Ilex L. 植物,常绿灌木或乔木,主要分布于我国长江中下游地区,其根、树皮、叶和果实均可入药,是中药功劳叶的基原植物,其叶既为常用中药,也为苦丁茶的主要来源之一[1]。枸骨叶始载于《本草拾遗》,具有清热养阴、补肝益肾、祛风湿等功效,用于肺痨咳嗽、劳伤失血等[1]。枸骨叶味苦、微涩、性寒,有清热解毒、止渴生津、抗菌消炎和防治高血压等多种功效,有散风热、清头目、解烦闷、活血脉的功能[2]。现代药理学研究表明枸骨有调血脂、抗菌、抗生育等功效[3]。目前,国内外学者已从枸骨中分离得到三萜及其皂苷类、黄酮及其苷类、多酚类及其衍生物、脂肪酸类等化合物,其中三萜及其皂苷类是枸骨中存在的主要类型化合物[4]

本实验通过对枸骨茎的乙醇提取物进行化学成分研究,分离鉴定了15个苯丙素类及其他类化合物,分别为3,4-二咖啡酰奎宁酸(isochlorogenic acid B,1)、3,4,5-三咖啡酰奎宁酸(3,4,5-tricaffeoylquinic acid,2)、4,5-二咖啡酰奎宁酸甲酯(4,5-di-O-caffeoyl quinic acid methyl ester,3)、3,4-二咖啡酰奎宁酸甲酯(3,4-di-O-caffeoyl quinicacid methyl ester,4)、3,5-二咖啡酰奎宁酸甲酯(3,5-di-O-caffeoyl quinicacid methyl ester,5)、3,4,5-三咖啡酰奎宁酸甲酯(3,4,5-tri-O-caffeoyl quinic acid methyl ester,6)、丁香醛(3,5-dimethoxy-4-hydroxybenzaldehyde,7)、没食子酸乙酯(ethyl gallate,8)、二氢芥子醇(dihydrosyringenin,9)、2,6-二氧甲基-1,4-苯醌(2,6-dimethoxy-1,4-benzoquinone,10)、牛蒡苷元(arctigenin,11)、1-O-香草酸-6-(3″,5″-二甲氧基没食子酰)-β-D-吡喃葡萄糖苷 [1-O-(vanillic acid)-6-O- (3″,5″-dimethoxy-galloyl)-β-D-glycoside,12]、1-羟基松脂醇-1-O-β-D-葡萄糖苷 [(+)-1-hydroxylpino- resinol-1-O-β-D-glucopyranoside,13]、(+)-(7S,8S)- 3,5-二甲氧基-4-羟基苯基丙三醇-8-O-β-D-吡喃葡萄糖苷 [(+)-(7S,8S)-syringyl-glycerol 8-O-β-D-glucopy- ranoside,14]、夏佛托苷(schaftoside,15)。并对化合物19进行了抗氧化活性实验,结果表明,化合物16具有显著的清除自由基作用。

1 仪器与材料

大孔吸附树脂(D101,安徽辽源新材料有限公司);旋转蒸发仪(东京理化器械独资工厂);Autopol Ⅳ型旋光仪(美国鲁道夫公司);XT5显微熔点测定仪(北京科仪电光仪器厂);ODS(粒径50 μm,孔径12 nm,北京绿百草科技发展有限公司);Sephadex LH-20凝胶(美国GE公司);半制备高效液相色谱仪(LC-20AT,SPD-20A,日本岛津公司);半制备色谱柱(250 mm×10 mm,5 μm,美国Kromsil公司);中压液相色谱仪(Buchi公司);UNITY INOVA 500核磁共振仪(美国瓦里安公司,TMS内标);TOF-MS(英国Micromass公司);化学试剂(分析纯,国药集团化学试剂有限公司);薄层色谱硅胶板(HSGF254,烟台市芝罘黄务硅胶开发试验厂出品);各种柱色谱用硅胶均为青岛海洋化工厂出品;WD-9405B型水平摇床(沃德生物医学仪器公司);Melab-U/4C501H型生物信号采集系统(南京美易科技有限公司);Vitamin E、甲醇、二甲基亚砜等化学试剂(国药集团化学试剂有限公司)。

枸骨茎药材于2011年4月采自安徽省刘安县,经苏州大学药学院生药教研室李笑然教授鉴定为冬青科冬青属植物枸骨Ilex cornuta Lindl. et Paxt.的干燥茎。

2 提取与分离

干燥的枸骨茎10 kg,用粉碎机粉碎成木屑,经10倍量50%乙醇冷浸过夜后,80 ℃加热回流2 h,滤过;药渣经10倍量50%乙醇提取2.0 h;合并两次提取液,所得滤液经减压浓缩,回收乙醇得浸膏0.325 kg。将浸膏加水稀释至30 L,加样于D101型大孔树脂柱,分别用水及30%、60%和90%乙醇洗脱,分别浓缩,干燥,得90%乙醇洗脱部位30 g。90%乙醇提取物反复经硅胶柱色谱(氯仿-甲醇系统),中压ODS柱色谱(甲醇-水系统),并结合Sephadex LH-20柱色谱、半制备高效液相色谱制备,从90%乙醇提取物中分离得到化合物1(25.2 mg)、2(10.3 mg)、3(7.1 mg)、4(6.5 mg)、5(33.0 mg)、6(17.4 mg)、7(8.6 mg)、8(36.2 mg)、9(4.3 mg)、10(17.8 mg)、11(10.9 mg)、12(21.3 mg)、13(12.6 mg)、14(9.5 mg)、15(25.0 mg)。

3 结构鉴定

化合物1:淡黄色粉末。1H-NMR (500 MHz,DMSO-d6) δ: 7.01 (1H,s,H-2′),7.01 (1H,s,H-2″),6.95 (1H,d,J = 6.8 Hz,H-6′),6.94 (1H,d,J = 7.2 Hz,H-6″),6.74 (1H,s,H-5′),6.72 (1H,s,H-5″),7.46 (1H,d,J = 16.4 Hz,H-7′),7.42 (1H,d,J = 18.0 Hz,H-7″),6.21 (1H,d,J = 16.0 Hz,H-8′),6.14 (1H,d,J = 15.6 Hz,H-8″),5.41 (1H,m,H-3),4.94 (1H,d,J = 7.2 Hz,H-4),4.16 (1H,s,H-5),2.10 (1H,m,H-6);13C-NMR (125 MHz,DMSO-d6) δ: 175.3 (C-7),166.0 (C-9′),165.7 (C-9″),148.5 (C-4′,4″),145.6 (C-7′,7″),145.5 (C-3′,3″),125.4 (C-1′,1″),121.4 (C-6′),121.3 (C-6″),115.8 (C-5′),115.7 (C-5″),114.9 (C-2′,C-2″),113.8 (C-8′),113.7 (C-8″),74.2 (C-1),67.8 (C-5),67.2 (C-3),38.1 (C-2),37.6 (C-6)。以上数据与文献报道一致[5],故鉴定化合物1为3,4-二咖啡酰奎宁酸。

化合物2:浅黄色无定型粉末。1H-NMR (400 MHz,DMSO-d6) δ: 1.91 (1H,d,J = 9.8 Hz,H-2a),2.01 (1H,d,J = 9.2 Hz,H-6a),2.16 (1H,m,H-2b),2.31 (1H,d,J = 8.0 Hz,H-6b),5.18 (1H,d,J = 7.6 Hz,H-4),5.45 (1H,m,H-3),5.59 (1H,m,H-5),6.15,6.19,6.25 (各1H,d,J = 12.8 Hz,caffeoyl-H-8′′′,8″,8′),6.69,6.74,6.78 (各1H,d,J = 7.2 Hz,caffeoyl-H-5′′′,5″,5′),6.90,6.93,6.98 (各1H,dd,J = 2.0,7.2 Hz,caffeoyl-H-6′′′,6″,6′),7.00,7.03,7.07 (各1H,s,caffeoyl-H-2′′′,2″,2′),7.40,7.45,7.52 (各1H,d,J = 12.4 Hz,caffeoyl-H-7′′′,7″,7′);13C-NMR (100 MHz,DMSO-d6) 数据见表 1。以上数据与文献报道基本一致[6],故鉴定化合物2为3,4,5-三咖啡酰奎宁酸。

表 1 化合物2613C-NMR数据 Table 113C-NMR data of compounds 2 and 6

化合物3:微黄色粉末。1H-NMR (500 MHz,DMSO-d6) δ: 7.05 (1H,brs,H-2′),7.03 (1H,brs,H-2″),7.01 (1H,d,J = 10.5 Hz,H-6′),6.97 (1H,d,J = 9Hz,H-6″),6.76 (2H,d,J = 8.0 Hz,H-5′,5″),7.50 (1H,d,J = 15.5 Hz,H-7′),7.42 (1H,d,J = 16.0 Hz,H-7″),6.26 (1H,d,J = 16.0 Hz,H-8′),6.16 (1H,d,J = 16.0 Hz,H-8″),5.28 (1H,m,H-5),4.15 (1H,m,H-3),4.97 (1H,m,H-4),3.60 (3H,s,7-OCH3),2.25 (1H,m,H-2a),2.23 (1H,m,H-6a),2.01 (1H,m,H-6b),1.90 (1H,m,H-2b);13C-NMR (125 MHz,DMSO-d6) δ: 173.4 (C-7),166.0 (C-9′),165.2 (C-9″),148.7 (C-4′),148.6 (C-4″),145.7 (C-7′,7″),145.6 (C-3′,3″),125.5 (C-1′),125.3 (C-1″),121.5 (C-6′),121.4 (C-6″),115.9 (C-8′,5″),114.9 (C-5′),114.8 (C-8″),113.9 (C-2′),113.3 (C-2″),73.2 (C-4),72.1 (C-1),67.8 (C-5),65.3 (C-3),52.0 (7-OCH3),37.7 (C-6),36.2 (C-2)。以上数据与文献报道一致[7],故鉴定化合物3为4,5-二咖啡酰奎宁酸甲酯。

化合物4:微黄色粉末。1H-NMR (500 MHz,C5D5N) δ: 7.08 (1H,d,J = 2.0 Hz,H-2′),6.96 (1H,d,J = 2.0 Hz,H-2″),6.69 (1H,s,H-5′),6.67 (1H,s,H-5″),6.62 (1H,s,H-6′),6.53 (1H,d,J = 8.0 Hz,H-6″),7.49 (1H,d,J = 12.0 Hz,H-7′),7.41 (1H,d,J = 11.5 Hz,H-7″),6.08 (1H,d,J = 2.5 Hz,H-8′),6.04 (1H,d,J = 2.5 Hz,H-8″),5.75 (1H,m,H-3),5.24 (1H,dd,J = 3.0,8.0 Hz,H-4),3.20 (3H,s,7-OCH3),2.19 (1H,m,H-2);13C-NMR (125 MHz,C5D5N) δ: 174.4 (C-7),167.0 (C-9′),166.5 (C-9″),150.4 (C-4′),150.3 (C-4″),147.4 (C-3′),147.3 (C-3″),146.4 (C-7′),146.3 (C-7″),126.5 (C-1′),126.4 (C-1″),122.0 (C-6′,C-6″),116.5 (C-5′),116.4 (C-5″),115.6 (C-2′,C-2″),114.4 (C-8′),114.2 (C-8″),74.3 (C-1),72.7 (C-4),68.5 (C-3),64.6 (C-5),52.0 (7-OCH3),46.0 (C-2),40.7 (C-6)。以上数据与文献报道一致[5],故鉴定化合物4为3,4-二咖啡酰奎宁酸甲酯。

化合物5:微黄色粉末。1H-NMR (500 MHz,DMSO-d6) δ: 7.04 (1H,s,H-2′),7.01 (1H,s,H-2″),6.97 (1H,dd,J = 1.5,8.0 Hz,H-6′),6.93 (1H,dd,J = 1.0,8.5 Hz,H-6″),6.75 (1H,d,J = 4.5 Hz,H-5′),6.73 (1H,d,J = 4.5 Hz,H-5″),7.47 (1H,d,J = 16.0 Hz,H-7′),7.43 (1H,d,J = 15.5 Hz,H-7″),6.25 (1H,d,J = 16.0 Hz,H-8′),6.17 (1H,d,J = 16.0 Hz,H-8″),4.98 (1H,m,H-3),4.05 (1H,m,H-4),5.40 (1H,m,H-5),3.63 (3H,s,7-OCH3),2.24 (1H,m,H-2a),2.08 (1H,m,H-2b);13C-NMR (125 MHz,DMSO-d6) δ: 174.0 (C-7),165.8 (C-9′),165.7 (C-9″),148.5 (C-4′),148.4 (C-4″),145.6 (C-7′,C-7″),145.4 (C-3′),145.2 (C-3″),125.4 (C-1′,C-1″),121.4 (C-6′),121.3 (C-6″),115.7 (C-5′,C-5″),114.8 (C-2′),114.7 (C-2″),114.0 (C-8′),113.8 (C-8″),72.6 (C-1,4),67.8 (C-5),64.6 (C-3),51.7 (7-OCH3),35.5 (C-6)。以上数据与文献报道一致[5],故鉴定化合物5为3,5-二咖啡酰奎宁酸甲酯的数据。

化合物6:浅黄色无定型粉末。1H-NMR (400 MHz,DMSO-d6) δ: 2.08 (1H,m,H-6a),2.13 (1H,m,H-2a),2.28 (1H,m,H-2b),2.35 (1H,m,H-6b),3.63 (3H,s,7-OCH3),5.24 (1H,m,H-4),5.37 (1H,m,H-3),5.42 (1H,m,H-5),6.15,6.20,6.23 (各1H,d,J = 12.8 Hz,caffeoyl-H-8′′′,8″,8′),6.74,6.74,6.76 (各1H,m,caffeoyl-H-5′′′,5″,5′),6.94,6.96,6.98 (各1H,m,caffeoyl-H-6′′′,6″,6′),7.05,7.05,7.05 (各1H,s,caffeoyl-H-2′′′,2″,2′),7.42,7.45,7.48 (各1H,d,J = 16.0 Hz,caffeoyl-H-7′′′,7″,7′);13C-NMR (100 MHz,DMSO-d6) 数据见表 1。以上数据与文献报道基本一致[8],故鉴定化合物6为3,4,5-三咖啡酰奎宁酸甲酯。

化合物7:淡黄色针状结晶(丙酮)。1H-NMR (500 MHz,DMSO-d6) δ: 9.77 (1H,s,CHO),8.33 (1H,brs,Ar-OH),7.21 (2H,s,H-2,6),3.85 (6H,s,2×OCH3),13C-NMR (125 MHz,DMSO-d6) δ: 191.6 (Ar-CHO),128.9 (C-1),107.8 (C-2,6),148.8 (C-3,5),142.9 (C-4),56.7 (Ar-OCH3)。以上数据与文献报道基本一致[9],故鉴定化合物7为丁香醛。

化合物8:白色无定型粉末,三氯化铁试剂显蓝色。1H-NMR (500 MHz,DMSO-d6) δ: 6.94 (2H,s,H-2,6),4.20 (2H,q,J = 6.8 Hz,-OCH2),1.27 (3H,t,J = 6.8 Hz,CH3);13C-NMR (125 MHz,DMSO-d6) δ: 165.8 (C=O),145.6 (C-3,5),138.6 (C-4),119.3 (C-1),108.4 (C-2,6),59.9 (CH2),14.2 (CH3)。以上数据与文献报道一致[10],故鉴定化合物8为没食子酸乙酯。

化合物9:无色油状物。1H-NMR (500 MHz,DMSO-d6) δ: 6.41 (1H,s,H-2,6),2.48 (2H,t,J = 10 Hz,H-7),1.67 (2H,m,H-8),3.39 (2H,t,J = 8.5 Hz,H-9),3.71 (6H,s,2,6-OCH3);13C-NMR (125 MHz,DMSO-d6) δ: 134.0 (C-1),106.3 (C-2,6),148.5 (C-3,5),132.8 (C-4),32.3 (C-7),35.2 (C-8),60.8 (C-9),56.5 (OCH3)。以上数据与文献报道一致[11],故鉴定化合物9为二氢芥子醇。

化合物10:黄色晶体(丙酮),mp 250~252 ℃。1H-NMR (500 MHz,DMSO-d6) δ: 5.97 (2H,s,H-3,5),3.76 (6H,s,-OCH3);13C-NMR (125 MHz,DMSO-d6) δ: 176.6 (C-1),157.7 (C-2,6),107.5 (C-3,5),187.6 (C-4),56.9 (-OCH3)。以上数据与文献报道一致[12],故鉴定化合物10为2,6-二甲氧基-1,4-苯醌。

化合物11:白色块状结晶(氯仿)。1H-NMR (500 MHz,CDCl3) δ: 6.80 (1H,d,J = 8.0 Hz,H-5),6.70 (1H,d,J = 8.4 Hz,H-5′),6.61 (1H,d,J = 1.8 Hz,H-2),6.60 (1H,dd,J = 7.8,1.8 Hz,H-6),6.49 (1H,dd,J = 8.0,2.0 Hz,H-6′),3.90 (3H,s,H-12),3.80 (3H,s,H-10),3.75 (3H,s,H-11);13C-NMR (125 MHz,CDCl3) δ: 178.7 (C-9),149.0 (C-3),147.8 (C-3′),146.7 (C-4),144.5 (C-4′),130.5 (C-1),129.5 (C-1′),122.1 (C-6),120.6 (C-6′),114.1 (C-5),111.8 (C-5′),111.5 (C-2),111.3 (C-2′),71.3 (C-9′),55.8 (C-12),55.7 (C-10),55.7 (C-11),46.6 (C-8),40.9 (C-8′),38.1 (C-7′),34.5 (C-7)。以上数据与文献报道一致[13],故鉴定化合物11为牛蒡子苷元。

化合物12:白色粉末,紫外254 nm下黑色暗斑。1H-NMR (400 MHz,C5D5N) δ: 6.79 (1H,d,J = 2.0 Hz,H-2′),6.87 (1H,dd,J = 6.8,1.6 Hz,H-6′),6.49 (1H,H-5′),6.51 (2H,s,H-2″,6″),4.58 (1H,d,J = 6.0 Hz,H-1),4.24 (1H,dd,J = 9.6,1.6 Hz,H-6α),3.72 (1H,dd,J = 9.6,6.0 Hz H-6β),2.47 (3H,s,3′-OCH3),2.57 (6H,s,3″-OCH3);13C-NMR (100 MHz,C5D5N) δ: 100.3 (C-1),73.2 (C-2),77.0 (C-3),70.3 (C-4),74.4 (C-5),63.8 (C-6),122.4 (C-1′),113.7 (C-2′),149.9 (C-3′),148.8 (C-4′),113.7 (C-5′),122.5 (C-6′),167.4 (C-7′),54.3 (3′-OCH3),118.8 (C-1″),107.1 (C-2″,6″),147.4 (C-3″,5″),141.8 (C-4″),165.3 (C-7″),55.0 (3″,5″-OCH3)。以上数据与文献报道一致[14],故鉴定化合物12为1-O-香草酸-6-(3″,5″-二甲氧基没食子酰)-β-D-吡喃葡萄糖苷。

化合物13:白色无定形粉末。1H-NMR (400 MHz,DMSO-d6) δ: 7.06 (1H,s,H-2′),6.89 (1H,s,H-2″),6.82 (1H,d,J = 6.0 Hz,H-6′),6.77 (2H,s,H-5″,6″),6.68 (1H,d,J = 6.4 Hz,H-5′),5.16 (1H,d,J = 4.8 Hz,H-6),4.59 (1H,d,J = 5.6 Hz,Glc-H-1),4.23 (1H,s,H-2),3.97 (2H,s,H-8),3.76 (3H,s,3″-CH3),3.75 (3H,s,3′-CH3);13C-NMR (100 MHz,DMSO-d6) δ: 96.1 (C-1),90.3 (C-2),68.2 (C-4),52.8 (C-5),81.5 (C-6),71.8 (C-8),127.5 (C-1′),114.2 (C-2′),147.2 (C-3′),146.6 (C-4′),114.6 (C-5′),121.9 (C-6′),129.8 (C-1″),110.1 (C-2″),147.8 (C-3″),145.8 (C-4″),115.6 (C-5″),118.3 (C-6″),56.0 (-OCH3),98.8 (Glc-C-1),74.2 (Glc-C-2),77.5 (Glc-C-3),70.6 (Glc- C-4),77.3 (Glc-C-5),61.5 (Glc-C-6)。以上数据与文献报道一致[15],故鉴定化合物13为1-羟基松脂醇- 1-O-β-D-葡萄糖苷。

化合物14:白色无定型粉末。1H-NMR (400 MHz,DMSO-d6) δ: 6.63 (2H,s,H-2,6),4.37 (1H,d,J = 6.4 Hz,H-7),3.92 (1H,m,H-8),2.65 (1H,H-9),4.13 (1H,d,J = 6.0 Hz,H-1′),2.97 (1H,dd,J = 13.6,6.8 Hz,H-2′),3.12 (1H,dd,J = 8.4,8.0 Hz,H-3′),3.02 (1H,dd,J = 8.4,8.0 Hz,H-4′),3.05 (1H,m,H-5′),3.63 (1H,brd,J = 12.0 Hz,H-6′a),3.42 (1H,dd,J = 12.0,5.6 Hz,H-6′b),3.74 (3H,s,3-OCH3),3.82 (3H,s,5-OCH3);13C-NMR (100 MHz,DMSO-d6) δ: 132.0 (C-1),104.4 (C-2,6),148.3 (C-3,5),135.3 (C-4),73.6 (C-7),86.2 (C-8),61.5 (C-9),103.7 (C-1′),73.9 (C-2′),77.4 (C-3′),70.5 (C-4′),77.1 (C-5′),61.5 (C-6′),56.4 (3-OCH3),56.6 (5-OCH3)。以上数据与文献报道一致[16],故鉴定化合物14为(+)-(7S,8S)-3,5-二甲氧基-4-羟基苯基丙三醇-8-O-β-D-吡喃葡萄糖苷。

化合物15:淡黄色粉末,三氯化铝试剂显黄色斑点,盐酸-镁粉反应阳性,提示为黄酮类化合物。1H-NMR (400 MHz,DMSO-d6) δ: 13.78 (1H,s,5-OH),8.30 (1H,s,4′-OH),8.01 (2H,d,J = 9.5 Hz,H-2′,6′),6.90 (2H,d,J = 10.5 Hz,H-3′,5′),6.74 (1H,s,H-3),4.81 (1H,d,J = 11.5 Hz,Ara-H-1),4.56 (1H,d,J = 12.0 Hz,Glc-H-1);13C-NMR (100 MHz,DMSO-d6) δ: 163.6 (C-2),102.3 (C-3),182.1 (C-4),161.2 (C-5),109.0 (C-6),161.2 (C-7),103.9 (C-8),154.0 (C-9),102.9 (C-10),121.3 (C-l′),128.9 (C-2′,6′),115.9 (3′,5′),l59.8 (C-4′),74.1 (Glc-C-1),70.5 (Glc-C-2),79.2 (Glc-C-3,5),70.5 (Glc-C-4),68.6 (Glc-C-6),75.3 (Ara-C-1),69.9 (Ara-C-2),74.1 (Ara- C-3),70.3 (Ara-C-4),70.5 (Ara-C-5)。以上数据与文献报道一致[17],故鉴定化合物15为夏佛托苷。

4 DPPH自由基清除实验

将化合物1~9分别配制浓度为200、100、50、25、12.5、6.25 μmol/L甲醇溶液,作为实验组。同时配制200 μmol/L的Vitamin E作为对照组。将不同浓度的样品溶液100 μL和DPPH(1 mmol/L)溶液100 μL于96孔酶标板中,样品加入后震荡30 s,在37 ℃和517 nm波长下测定其吸光值(Ap);同时测定不加DPPH的样品空白吸收光值(Ac)和加DPPH但不加样品(以100 μL甲醇代替样品)的吸光值(Amax[18],实验重复3次,实验结果见表 2。并按下述公式计算自由基清除率。

自由基清除率=1-(ApAc)/Amax

表 2 化合物1~9DPPH自由基清除率 Table 2DPPH free radicalclearance of compounds 1—9

DPPH自由基清除实验结果显示,化合物19均有不同程度的自由基清除能力。其中化合物16为苯丙素类化合物,在浓度为200 μmol/L时,自由基清除率均大于80%,且化合物26与阳性对照Vitamin E相当(表 2),这主要由于结构中富含酚羟基而起到显著的DPPH清除作用,具有较强的抗氧化活性。

参考文献
[1] 中药辞海编审组. 中药辞海(第2卷)[M]. 北京:中国医药科技出版社, 1996.
[2] 中国科学院上海药物研究所. 中草药化学有效成分提取与分离[M]. 第2版. 上海:科学技术出版社, 1983.
[3] 中国药典[S]. 一部. 2010.
[4] 左文健, 梅文莉, 曾艳波, 等. 枸骨的化学成分和药理活性研究进展[J]. 安徽农业科学, 2011, 39(27):16560-16562.
[5] 周渊, 周思祥, 姜勇, 等. 毛冬青叶的化学成分研究[J]. 中草药, 2012, 43(8):1479-1483.
[6] Kim S M, Jeon J S, Kang S W, et al. Content of antioxidative caffeoylquinic acid derivatives in field-grown Ligularia fischeri (Ledeb.) Turcz and responses to sunlight[J]. J Agric Food Chem, 2012, 60(22):5597-5603.
[7] Nishizawa M, Izuhara R, Kaneko K, et al. 5-Lipoxygenase inhibitors isolated from Gardeniae fructus[J]. Chem Pharm Bull, 1988, 36(1):87-95.
[8] Irmgard M. Caffeylquinic acids from flowers of Arnica Montana and Arnica Chamissonis[J]. Phytochemistry, 1992, 31(6):2111-2113.
[9] 黄艳, 郑金燕, 杨刚劲, 等. 苦丁茶冬青根的化学成分研究[J]. 中草药, 2015, 46(16):2371-2376.
[10] Zhao Y Y, Cui C B, Cai B, et al. Chemical constituents from Bauhiniava riegata L[J]. Chin J Med Chem, 2005, 15:302-305.
[11] Rustaiyan A, Saberi M, Habibi Z, et al. Melampolides and other constituents from Jurinea leptoloba[J]. Phytochemistry, 1991, 30(6):1929-1932.
[12] Naomass O, Atsutoshi S, Itsuru N. Immunosuppressive activity of a monoterpene from Eucommia ulmoides[J]. Phytochemistry, 1981, 20(5):1097.
[13] 高慧敏, 付雪涛, 王智民. 络石藤化学成分研究[J]. 中国实验方剂学杂志, 2011, 17(11):41-44.
[14] 袁贤达, 高慧敏, 陈两绵, 等. 大血藤中1个新的木脂素类化合物[J]. 中国中药杂志, 2013, 38(13):2118-2124.
[15] 杨辉, 谢金伦, 孙汉董. 云木香的化学成分研究II[J]. 云南植物研究, 1997, 1(1):92-96.
[16] Huang H C, Chiou C T, Hsiao P C, et al. Cytotoxic phenylpropanoids and a new triterpene, turformosinic acid, from Turpinia formosana Nakai[J]. Molecules, 2012, 17(2):1837-1851.
[17] 杜树山, 雷宁, 徐艳春, 等. 天南星黄酮成分的研究[J]. 中国药学杂志, 2005, 40(19):1457-1459.
[18] Rodriguez M, Cai W J, Kostin S et al. Ischemia depletes dystrophin and inhibits protein synthesis in the canine heart:Mechanisms of myocardial ischemic injury[J]. J Mol Cell Cardiol, 2005, 38(5):723-733.