中草药  2017, Vol. 48 Issue (3): 582-596
0
  PDF    
人参抗肿瘤作用的有效成分及其机制研究进展
罗林明1, 石雅宁1, 姜懿纳1, 詹济华1, 覃丽1, 陈乃宏1,2     
1. 湖南中医药大学药学院, 湖南 长沙 410208;
2. 中国医学科学院 北京协和医学院药物研究所, 北京 100050
摘要: 人参是中国延用了两千多年珍贵的传统中药材之一,由于其具有诸多药理作用而临床广泛应用于治疗肿瘤等多种疾病。目前肿瘤已经成为威胁人类健康的重要因素,因而人参抗肿瘤作用也越加受到关注。针对人参抗肿瘤作用的有效成分及其分子作用机制、构效关系进行综述。研究表明人参抗肿瘤作用的主要有效成分为人参皂苷及其肠道菌群代谢产物、人参多糖和人参炔醇,这些活性成分发挥药理作用的机制目前已较为明确,其作用机制主要包括诱导肿瘤细胞周期阻滞、凋亡及分化、增强对肿瘤细胞免疫、抑制肿瘤细胞增殖及侵袭与转移等,而其分子机制涉及许多相关基因、蛋白、蛋白酶、免疫细胞、细胞因子及相关信号通路等的调控与表达。此外,人参有效成分的抗肿瘤作用表现出一定的剂量依赖性,且其化学结构的不同导致抗肿瘤活性有所差异。人参中含有丰富的抗肿瘤活性成分,有望为临床治疗各种肿瘤提供安全有效的天然药物及制剂。
关键词: 人参     人参皂苷     抗肿瘤     分子机制     构效关系    
Advance in components with antitumor effect of Panax ginseng and their mechanisms
LUO Lin-ming1, SHI Ya-ning1, JIANG Yi-na1, ZHAN Ji-hua1, QIN Li1, CHEN Nai-hong1,2     
1. College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China;
2. Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
Abstract: Panax ginseng C. A. Mey is one of precious traditional Chinese herbal medicine for two thousand years history, due to its various pharmacological effects and wide utilization in the clinical treatment of tumors and other diseases. Presently tumor has become an important factor threatening human health that the antitumor effect of P. ginseng is attracted great attention. In this paper, the effective components of antitumor action by P. ginseng and its molecular mechanism and structure-activity relationship are summarized. Studies have shown that the main effective components of P. ginseng for antitumor effect are ginsenosides and its metabolic products of intestinal bacteria, ginseng polysaccharides, and ginseng polyacetylenes. The functional mechanism of which are clear relatively now and their main mechanisms including induction of cycle arrest, apoptosis and differentiation of tumor cells, enhancement of immunity to tumor cells, inhibition of tumor cell proliferation, invasion and metastasis, etc. And the molecular mechanism is involved in the regulation of many related genes, proteins, proteases, immune cells, cytokines, and signaling pathways, etc. In addition, the active ingredients of P. ginseng exert antitumor effect in a dose-dependent manner, and the different chemical structures of which lead to different antitumor activity. In conclusion, P. ginseng is abundant with antitumor active ingredients, which is expected to provide safe and effective natural medicine and its preparation for clinical treatment of various tumors in the future.
Key words: Panax ginseng C. A. Mey     ginsenoside     antitumor     molecular mechanism     structure-activity relationship    

人参为五加科植物人参Panax ginseng C. A. Mey.的干燥根或根茎,作为“上品”的补益药使用已有两千多年的历史,是中国最常用的、最重要的、最珍贵的传统中药材之一。现在人参叶也已经被《中国药典》收录作为单独的药用品种使用。人参由于具有很高的药用价值,在临床上广泛用于治疗心血管、胃和肝脏疾病、神经衰弱及肿瘤等[1]。目前,人参药用价值的开发以及发挥药理作用的有效成分及其作用机制研究已经取得了很大的突破。最新的研究进展表明[2-3],人参含有丰富的三萜皂苷类及多糖类等生物活性成分,这些活性成分尤其皂苷类成分具有广泛的药理作用,如抗肿瘤、抗氧化、抗炎、抗过敏、抗疲劳、抗应激、抗辐射、抗衰老、抗骨质疏松、免疫调节、调血脂、降血糖、保肝、保护中枢神经及心脑血管系统等。其中,抗肿瘤作用的机制及其药效物质基础的研究是目前一大热点,人参也已成为肿瘤辅助治疗的热点药物。本文就人参抗肿瘤的分子机制、有效成分及其构效关系的研究进展进行综述,为进一步深入研究以及临床应用提供参考与理论依据。

1 人参抗肿瘤作用的主要有效成分

大量药理实验数据表明人参具有显著的抗肿瘤作用,其中具有抗肿瘤活性的成分有人参皂苷(ginsenosides)及其代谢产物、人参多糖(ginseng polysaccharides)和人参炔醇(ginseng polyacetylenes)。人参皂苷是人参抗肿瘤作用的主要成分,其次为人参多糖。普通人参皂苷进入人体后经过肠道菌群的代谢作用发生逐级脱糖基,最终转化为次皂苷和/或皂苷元[4],如人参皂苷Rb1、Rb2、Rc和Rd可代谢转化为人参皂苷Rg3、F2、CK,人参皂苷Rg1代谢转化为人参皂苷Rh1和F1[5],人参皂苷Rg3又可转化为人参皂苷Rg5,人参皂苷Rg5还可转化为Rh3,CK则转化为原人参二醇(protopanoxadiol,PPD)等[6]。目前据文献报道具有抗肿瘤作用的单体人参皂苷及其代谢产物有人参皂苷Rb1、Rb2、Rb3[7]、Rg1、Rg3及6-乙酰基-Rg3[8]、Rg5、Rg18[8]、Rh1、Rh2、Rh4、Rk1、Rp1、Rd、Re、Re7[8]、Rs11[8]、Rf[9]、F1、F2[10]、CK及苷元PPD、25-OH-PPD、25-OCH3-PPD[11]等。其中人参皂苷Rb1、Rb2、Rb3、Rc、Rd、Rg3、Rg5、Rh2、Rs11、Rk1、F2、CK属于人参二醇型皂苷(panaxadiol saponin,PDS),人参皂苷Re、Re7、Rg1、6-乙酰基-Rg3、Rg18、Rh1、Rh4、Rp1、Rf和F1为人参三醇型皂苷(panaxtrol saponin,PTS)。目前已从人参植物的根或果中分离纯化出多种抗肿瘤多糖,包括人参多糖GFP1 [相对分子质量约为1.4×105,由半乳糖(galactose,Gal)、葡萄糖(glucose,Glu)、鼠李糖(rhamnose,Rha)和阿拉伯糖(arabinose,Ara)组成,摩尔比为6.1:2.0:1.1:3.2[12]]、人参多糖PGP2a [相对分子质量约为3.2×104,由Gal、Ara、Glu和半乳糖醛酸(galacturonic acid,GalA)组成,摩尔比为3.7:1.6:0.5:5.4[13]]、人参多糖PGPW1 [相对分子质量约为3.5×105,由Glu、Gal、甘露糖(mannose,Man)和Ara组成,摩尔比3.3:1.2:0.5:1.1[14]]及酸性人参多糖ginsan(相对分子质量约为1.5×105[15])等。人参中还含有少量聚乙炔醇类成分具有抗肿瘤活性,如人参环氧炔醇(panaxydol,PND)、人参炔三醇(panaxytriol,PNT)和人参炔醇(panaxynol,PNN)等。

2 人参有效成分的抗肿瘤作用

人参有效成分复杂、种类多样,因而其能对抗多种类型肿瘤,目前文献报道人参对肝癌、肺癌、胃癌、肾癌、鳞癌、结肠癌、食管癌、胆囊癌、黑色素瘤、胶质瘤、乳腺癌、乳头瘤、宫颈癌、卵巢癌、子宫内膜癌、膀胱癌、前列腺癌、鼻咽癌、腹水癌、淋巴瘤、骨髓瘤、骨肉瘤、白血病等肿瘤的增殖具有显著的抑制作用,还能明显抑制肝癌、肺癌、胃癌、乳腺癌、子宫内膜癌、卵巢癌、前列腺癌、胰腺癌、膀胱癌、黑色素瘤、胶质瘤、纤维肉瘤等肿瘤的侵袭与转移。人参中单一有效成分也表现出抗多种肿瘤活性,如PPD对肝癌、肺癌、黑色素瘤、乳腺癌和宫颈癌等均有显著抑制作用。人参的有效成分抗肿瘤作用大多表现出一定的剂量依赖性,随着剂量增大抗肿瘤活性增强,有些还具有时间依赖性。人参有效成分与其他药物联合使用可以增强抗肿瘤效果,如人参皂苷CK与顺氯氨铂(DDP)联合[16]、人参皂苷Rg3联合恩度(endostar)[17]对乳腺癌可以产生更好的治疗效果,人参皂苷Rg3联合丝裂霉素(mitomycin C)加呋喃尿嘧啶(tegafur)化疗可改善晚期胃癌患者的生存率[18],20(S)-PPD与骨化三醇(calcitriol)协同抑制前列腺癌细胞生长[19],PPD显著增强5-氟尿嘧啶(fluorouracil)的抗结肠癌作用[20],人参酸性多糖协同紫杉醇(paclitaxel,PTX)可增加巨噬细胞的杀瘤活性[21],同时ginsan可增强重组白细胞介素(recombinant interleukin,rIL)-2对黑色素瘤细胞肺转移的抑制作用[22]等。另外,有报道通过对人参进行加热[23]、蒸制成红参[24]或将红参进一步发酵[25]均可提高人参抗肿瘤的效果,原因可能是这些处理会改变人参皂苷等有效成分的量或种类,如鲜人参或生晒参中其实是不存在PNT和人参皂苷Rh2的,而红参中含有,PNT是在人参加工过程中由PND的环氧环经水解作用生成[26],人参皂苷Rh2是在蒸制过程中可由人参皂苷Rb2经脱糖基作用形成[27]

3 人参有效成分抗肿瘤作用机制 3.1 抑制肿瘤细胞增殖

肿瘤细胞具有无限增殖的特性,主要以有丝分裂的方式进行增殖。人参有效成分人参皂苷、人参多糖及人参炔醇在肿瘤细胞增殖过程中可显著抑制细胞增殖活力与细胞分裂。研究表明20(S)-人参皂苷Rg3[28-29]、人参皂苷Rd[30]、PNT[31]、PNN[32]等能够抑制肿瘤细胞的有丝分裂及在分裂间期DNA的合成,如在结肠癌细胞中抑制细胞内增殖相关蛋白增殖细胞核抗原(proliferation cell nuclear antigen,PNCA)的表达,导致DNA复制和修复的减少,从而抑制细胞分裂增殖。人参皂苷Rd还能降低微管相关蛋白RP/EB家族成员stathmin1(STMN1)的表达,抑制微管聚合形成纺锤体,也能提高stratifin(SFN)的表达干扰有丝分裂进程[30]。在癌细胞中组蛋白去乙酰化酶(histone deacetylases,HDACs)的过表达与组蛋白乙酰转移酶(histone acetyltransferase,HAT)的低表达导致组蛋白低乙酰化,而组蛋白低乙酰化常使染色质失去转录活性,不利于肿瘤抑制基因的表达。目前研究表明人参皂苷Rg3能降低HDAC3表达,从而增加p53乙酰化使其转录活性提高[33],同时20(S)-人参皂苷Rh2[34]可降低白血病细胞中HDAC1、HDAC2及HDAC6的活性及表达,并增加HAT的活性,使组蛋白(histone)H3的乙酰化水平增加,从而对肿瘤细胞发挥抗增殖作用。

近来研究表明人参皂苷还能抑制“Warburg效应”,即癌细胞在有氧条件下通过糖酵解代谢葡萄糖[35],Warburg效应有利于肿瘤生长。20(S)-人参皂苷Rg3在卵巢癌细胞中通过抑制信号转导及转录激活因子(signal transducers and activators of transcription,STAT)3通路抑制关键酶己糖激酶(hexokinase,HK)2和丙酮酸激酶(pyruvate kinase,PK)M2的活性[36],同时在白血病细胞中人参皂苷Rh2可通过降低蛋白激酶B(protein kinase B,PKB/Akt)/哺乳动物类雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)信号下调磷酸葡萄糖异构酶(phosphoglucose isomerase,PGI)表达[37],从而抑制有氧糖酵解。人参皂苷也能调控一些与肿瘤细胞增殖密切相关的生长因子,如胰岛素样生长因子(insulin-like growth factors,IGFs)等。研究发现人参皂苷Rg3、Rp1可通过减少分泌IGF-1并抑制其受体(IGF-1R)表达,且使Akt/mTOR通路失活对多发性骨髓瘤、乳腺癌细胞增殖产生抑制作用[38-39]。因此,Akt/mTOR通路是人参调控肿瘤细胞增殖关键的相关信号通路之一。此外,研究发现人参皂苷还能调控一些microRNAs(miRNAs)表达来抑制肿瘤细胞增殖。人参皂苷Rh2可能通过上调miR-491抑制与细胞增殖和信号传导密切相关的表皮生长因子受体(epidermal growth factor receptor,EGFR)信号通路[40],以及上调miRNA-128的表达抑制胶质瘤细胞增殖[41]。另外,人参多糖PGPW1还能够抑制膀胱癌细胞表面的莨菪碱受体3(muscarinic receptor 3,M3R)表达,从而抑制细胞增殖和迁移[14]

3.2 诱导肿瘤细胞周期阻滞

细胞周期阻滞是抑制肿瘤细胞增殖的重要环节。细胞分裂周期可分为DNA合成前期(G1期)、DNA合成期(S期)、DNA合成后期(G2期)、细胞分裂期(M期),另外还有一个处于休眠状态不增殖分裂的静止期(G0期)。人参有效成分中大多数人参皂苷可诱导肿瘤细胞周期阻滞在G0/G1期,少数人参皂苷阻滞在G2/M期,如人参皂苷Rf诱导人成骨肉瘤细胞周期阻滞于G2/M期[9];人参多糖及人参炔醇类成分可阻滞肿瘤细胞周期于G2/M期[13, 31]

人参的有效成分可通过多种途径诱导肿瘤细胞周期阻滞。人参皂苷Rg3[42]、Rg5[43]、Rh2[44-46]、CK[47]及25-OH-PPD[48]等在多种肿瘤如乳腺癌、胃癌、肺癌、前列腺癌等细胞周期相关蛋白调控阶段,通过上调细胞周期调控因子毛细血管扩张性共济失调突变蛋白(ataxia telangiectasia mutated,ATM)、p53、p27、p21、p15、pRb2/p130的表达,下调鼠双微体基因(murine double minute,MDM)2表达、Rb磷酸化、E2F1转录活性等,进而使细胞分裂周期蛋白(cell division cycle protein,CDC)-2、25A,细胞周期蛋白(cyclin,Cyc)-B、D1、D2、D3、E2,周期蛋白依赖性蛋白激酶(cyclin dependent kinase,CDK)-4、6等的表达下调,最终使肿瘤细胞周期阻滞在G0/G1期。p27、p21、p15及p16等为CDK抑制剂(CDKIs),研究表明人参皂苷CK[47]、Rh2[44, 46]等在结肠癌、白血病细胞中是通过上调磷脂酰肌醇-3-羟激酶(phosphatidyl inositol 3-kinase,PI3K)/Akt和转化生长因子(transforming growth factor,TGF)-β信号转导通路,促进这些CDKIs对cyclin-CDKs复合物(如cyclin D1-CDK4、cyclin D1-CDK6)、CDKs激酶(如CDK-2、4、6)活性的抑制作用,从而使肿瘤细胞停滞于G1期。

3.3 诱导肿瘤细胞凋亡

大量的实验数据表明人参及其人参皂苷等有效成分能够显著诱导多种肿瘤细胞凋亡,这是人参发挥抗肿瘤作用的一个非常重要的机制。细胞凋亡主要有三大途径:线粒体介导凋亡(内源性途径)、死亡受体介导凋亡(外源性途径)、内质网应激介导凋亡途径。研究发现20(S)-人参皂苷Rg3,人参皂苷Rg5、Rh2、Rk1、CK、PPD等能诱导内源性凋亡即上调Bcl-2家族成员Bad、Bid、Bim、Bax及Bak等促凋亡蛋白的表达,同时下调Bcl-2、Bcl-xL等抗凋亡蛋白表达,促使线粒体跨膜电位降低并释放细胞色素(cytochrome,Cyto)C,随后半胱天冬酶(caspase,Casp)-9被激活;且20(S)-人参皂苷Rg3、人参皂苷Rh2、Rk1、CK、PPD也能诱导肿瘤细胞外源性凋亡即上调p53,死亡受体TRAIL-R1(DR4)、TRAIL-R2(DR5),Fas及其配体(FasL)的表达,然后Casp-8被激活。这2条途径都可以激活下游效应分子Casp-3、7,并使聚ADP-核糖聚合酶(poly-ADP-ribose polymerase,PARP)裂解,从而导致肿瘤细胞凋亡[42-43, 45, 49-52]。人参皂苷Rb1、Rb2和Rg1虽然在肺癌细胞中能使Casp-3、8的表达水平明显升高,但Casp-9和抗凋亡蛋白Bax的水平并没有改变,说明这3种人参皂苷通过外源性凋亡途径而不是内在的线粒体途径诱导肿瘤细胞凋亡[53]。在内源性凋亡途径中,Bcl-2蛋白家族是控制线粒体释放致凋亡因子的主要调节因子,而Casps不管在外源性还是内源性凋亡途径中都是必不可少的,但在肿瘤细胞中凋亡抑制因子(inhibitor of apoptosis proteins,IAPs)的表达可直接或间接抑制Casps的活性而抑制细胞凋亡。研究发现20(S)-人参皂苷Rg3[54]及人参皂苷Rh2[55]可下调IAPs家族蛋白XIAP、survivin的表达从而阻止Casps被抑制。

人参有效成分可以通过多种途径调控多种凋亡相关蛋白的表达,从而诱导或加速肿瘤细胞发生凋亡。研究表明人参皂苷CK在多发性骨髓瘤细胞中可能是通过增加蛋白酪氨酸磷酸酶(protein tyrosine phosphatase,PTP)SHP-1的表达抑制Janus kinas1(JAK1)及STAT3的磷酸化,并下调STAT3靶基因Bcl-2、Bcl-xL、survivin的表达,表明其可通过抑制JAK1/STAT3信号通路介导肿瘤细胞凋亡[56];人参皂苷Rg3能下调胰腺癌细胞中可磷酸化许多特异性底物的原癌基因Pim-3蛋白的表达,进而促进下游因子Bad磷酸化[57],且在乳腺癌细胞中通过灭活细胞外信号调节激酶(extracellular signal-regulated kinase,ERK)/Akt信号以及突变p53失稳阻断核转录因子-κB(NF-κB)信号,进而抑制Bcl-2的表达[58];人参皂苷Rh2在白血病细胞可通过下调miR-21表达,使靶Bcl-2 mRNA与3′-UTR结合而抑制其翻译[59];人参皂苷Rk1能够通过降低端粒逆转录酶(telomerase reverse transcriptase,TERT)mRNA及c-MYC表达抑制端粒酶活性,从而抑制肿瘤细胞增殖并促进凋亡[60];人参皂苷Rd在胃癌、乳腺癌细胞可抑制M型瞬时受体电位(melastatin type transient receptor potential,TRPM)7通道活性,从而诱导肿瘤细胞凋亡[61];人参皂苷CK还能增加神经鞘氨醇(sphingosine,Sph)、神经酰胺(ceramide,Cer)的表达,参与肿瘤细胞凋亡[62];人参多糖PGP2a在胃癌细胞中可通过下调Twist、AKR1C2蛋白表达,上调NF1表达而诱导肿瘤细胞凋亡等[13]

人参有效成分也可通过多条信号转导通路诱导肿瘤细胞凋亡。人参皂苷CK在结肠癌细胞中通过钙离子/钙调蛋白激活的蛋白激酶(Ca2+/calmodulin-activated protein kinase,CAMK)-Ⅳ使腺苷酸活化蛋白激酶(AMP-activated protein kinase,AMPK)磷酸化,使其被激活,而AMPK的活化可诱发肿瘤细胞凋亡,表明人参皂苷CK可激活CAMK-Ⅳ/ AMPK信号通路[63];20(S)-PPD可抑制PI3K/Akt信号通路[64];人参皂苷Rg1通过抑制红细胞生成素受体(erythropoietin receptor,EpoR)在白血病细胞膜表面的表达,并抑制其介导的JAK2/STAT5信号通路[65];人参皂苷Rg3在胶质瘤细胞中抑制MEK信号通路[66];人参皂苷Rh2在白血病细胞中上调肿瘤坏死因子-α(TNF-α)信号通路[67]、在鳞状细胞癌使PI3K/Akt通路灭活[68];人参皂苷F2可激活凋亡信号调节激酶(apoptosis signal-regulating kinase,ASK)-1/c-Jun氨基末端激酶(c-Jun N-terminal kinase,JNK)信号通路[69];人参皂苷Rg3、CK和Rh2在恶性胶质瘤、膀胱癌细胞中可促进活性氧(reactive oxygen,ROS)的形成与积累,且ROS能促进激活p38 MAPK信号通路等[66, 70-71];人参多糖可阻断Wnt/β-catenin信号通路等[72]。人参有效成分可以调控以上这些信号通路在肿瘤细胞中引发或促进Casps依赖性细胞凋亡。除了Casps依赖性凋亡途径,人参皂苷也可通过Casps非依赖性途径诱导肿瘤细胞凋亡。研究表明人参皂苷CK在结肠癌、鼻咽癌细胞中也能通过诱导线粒体释放凋亡诱导因子(apoptosis inducing factor,AIF),并从胞质向胞核转移,从而引起DNA损伤、降解及染色质凝聚,导致肿瘤细胞凋亡,这是一种Casps非依赖性凋亡途径[63, 73]

最近研究还表明人参皂苷Rg3、人参环氧炔醇可通过内质网应激(endoplasmic reticulum stress,ERS)介导肿瘤细胞凋亡。内质网凋亡途径主要有2种方式:一是内质网对Ca2+的调控,二是内质网上Casp-12的激活。PND在乳腺癌细胞中能够使EGFR通路激活,随后磷脂酶(phospholipase,PL)Cγ被激活,然后通过三磷酸肌醇和兰尼碱受体从内质网释放Ca2+,胞浆内Ca2+浓度升高导致CaMK-Ⅱ和TGF-β活化激酶(TGF-β-activated kinase,TAK)1激活p38 MAPK和JNK,继而使还原性辅酶Ⅱ(NADPH)激活,进而发生氧化应激,接着引发内质网应激。在ERS的未折叠蛋白反应中,蛋白激酶R样内质网激酶(protein kinase R-like ER kinase,PERK)起到传递凋亡信号的作用,其可诱导ERS特异性转录因子CHOP表达,进而提高促凋亡蛋白Bim的表达,线粒体摄取Ca2+导致线粒体Ca2+([Ca2+] m)浓度升高,最终启动Casps依赖性线粒体凋亡途径[74]。此外,人参皂苷Rg3在胆囊癌细胞会激活内质网上的Casp-12[75],而Casp-12可直接使Casp-9裂解,进而激活Casp-3,最终导致细胞凋亡[76]

3.4 诱导肿瘤细胞分化

目前对人参诱导肿瘤细胞分化的研究主要针对于白血病,人参皂苷可以促进血红蛋白的生成、白血病细胞衰老,并使白血病细胞向较成熟细胞分化。研究表明人参总皂苷通过促进促红细胞生成素受体(erythropoietin receptor,EpoR)的内化诱导白血病细胞向红系分化[77]。人参皂苷Rh2能通过上调TGF-β表达诱导白血病细胞分化[44],同时人参皂苷Rh4能够诱导白血病细胞向粒系、单核系及巨核系分化[78],其作用可能与蛋白激酶C(protein kinase C,PKC)/ERK通路有关[79]。人参皂苷Rh2还能通过抑制TLMA活性诱导肝癌细胞趋向于正常细胞分化[80]。人参聚炔醇、人参多糖类成分也可以诱导肿瘤细胞分化。PNN通过活化细胞内腺苷酸环化酶(cAMP)、PKC诱导白血病细胞向单核细胞分化[81],PND也能使细胞内cAMP浓度升高而诱导胶质瘤细胞分化[82],PND还能通过上调抑癌基因p21和pRb蛋白水平、下调细胞分化抑制因子(inhibitor of differentiation,Id)-1、2基因的表达,显著降低甲胎蛋白(α-fetoprotein,αFP)、白蛋白(albumin,Alb)的分泌,提高γ-谷氨酰转移酶(γ-glutamyl transferase,γ-GT)、碱性磷酸酶(alkaline phosphatase,ALP)活性,从而引起肝癌细胞向类似于更成熟形式的肝细胞形态和超微结构变化[83]。同时人参多糖在白血病细胞中也能使Id3基因的表达下调进而促进细胞分化[84]。逆转肿瘤细胞向正常细胞分化是肿瘤治疗的一种重要策略,人参有效成分能够明显诱导肿瘤细胞的分化,但其分子机制还不是很确切,有待进一步深入探索以加深对诱导分化过程的认识。

3.5 增强对肿瘤细胞免疫

研究表明人参皂苷、人参多糖类成分具有显著的免疫调节作用,可增强机体对肿瘤细胞的免疫能力。人参皂苷可通过磷酸化ERK1/2和JNK提高TNF-α、白细胞介素(interleukin,IL)-6和IL-10水平,促进CD14+单核细胞分化形成树突状细胞(dendritic cells,DCs)[85],而人参皂苷Rg1、Rh1等又能促进DCs刺激T淋巴细胞增殖,增加IL-12的生成,从而增强DC-淋巴因子及PHA激活的杀伤细胞(LPAK)对人乳头瘤细胞的杀伤能力[86],人参皂苷Rg1还能通过上调PI3K/Akt/mTOR通路在脂多糖激活的巨噬细胞(macrophage,MΦ)中调节先天免疫反应,显著增加TNF-α蛋白翻译水平[87]。人参皂苷Rg3则能刺激刀豆蛋白(concanavalin,Con)A诱导淋巴细胞增殖和Th1型细胞因子IL-2和γ干扰素(interferon,IFN-γ)水平增强,从而显著提高荷瘤小鼠细胞免疫[88]。此外人参皂苷Rg3不管是在免疫原性肿瘤如黑色素瘤或非免疫原性肿瘤如肺癌,都可诱导免疫原性肿瘤细胞死亡,同时增加钙网蛋白(calreticulin,CRT)表达从而促进DC识别、吞噬死亡肿瘤细胞,且人参皂苷Rg3诱导的细胞死亡会导致非免疫原性向免疫原性肿瘤细胞的转化[89]。人参多糖对肿瘤细胞无直接杀伤作用,但研究发现人参中的酸性多糖可通过激活转录因子如NF-κB和AP-1及其上游信号酶如ERK和JNK而激活MΦ功能,从而产生细胞毒作用[90],且其吞噬细胞的吞噬活性增强,同时通过激活T、CTL、B淋巴细胞、NK细胞以及增加外周血T淋巴细胞CD4+/CD8+值,诱导IL-1、2、6、12和TNF-α、IFN-γ、GM-CSF及NO水平升高[91-93],且ginsan通过释放这些内源性细胞因子由NK细胞和T细胞产生LAK细胞,并提高NK、CTL细胞杀伤活性[15, 22]。此外,人参多糖(RG-I-4)抑制半乳凝集素-3(galectin-3,Gal-3)蛋白表达,从而抑制Gal-3与T细胞结合而避免其破坏T细胞免疫活性[94]

3.6 抑制肿瘤的侵袭与转移

大量的实验研究表明,人参有效成分对多种肿瘤的侵袭与转移具有明显的抑制作用。在肿瘤的侵袭与转移过程中存在几个重要环节:破坏细胞外基质(extracellular matrix,ECM)屏障、上皮细胞-间充质转化(epithelial-mesenchymal transition,EMT)及肿瘤新生血管生成。人参有效成分可以作用于肿瘤细胞侵袭与转移的这些关键过程,从而达到抗肿瘤侵袭与转移的目的。

ECM由基底膜和细胞间基质组成,基质金属蛋白酶(matrix metalloproteinases,MMPs)能够降解ECM中各种蛋白成分,破坏防御肿瘤细胞侵袭的重要组织屏障,从而导致肿瘤细胞侵袭与转移。研究表明,人参皂苷Rb2[95]、Rg1[96]、Rg3[97-98]、Rh1[99]、Rh2[100]、Rd[101]、CK[102]等可通过抑制MMP-1、2、3、7、9、13、14等基质金属蛋白酶在癌细胞中表达以避免其破坏ECM屏障,从而抑制癌细胞侵袭和转移。而且人参皂苷Rh1、Rh2等能通过抑制MAPKs(包括ERK、JNK、p38 MAPK)和PI3K/Akt信号通路及其下游的转录因子NF-κB和AP-1的表达,也能通过募集HDAC4进而抑制AP-1[103],这对于抑制MMPs基因的表达及其转录因子活性发挥重要作用[99-100, 104],如人参皂苷Rg3可通过抑制p38 MAPK通路的激活抑制MMP-2的表达[105]。此外,研究也表明人参皂苷Rb2、Rg1不会影响MMPs特异性抑制因子TIMP1/2的表达[95-96]

恶性肿瘤特别是上皮性肿瘤常发生EMT促进肿瘤的侵袭和转移。研究表明人参有效成分可以通过多种方式很好地阻止EMT。在许多肿瘤中岩藻糖基转移酶Ⅳ(fucosyltransferase Ⅳ,FUT4)及其合成的肿瘤糖抗原Lewis Y(LeY)往往异常升高,这与EMT密切相关。研究发现人参皂苷Rg3等能够下调肺癌细胞中FUT4的表达使LeY合成减少,进而介导EGFR失活,从而阻断MAPK和NF-κB信号通路,使E-钙粘蛋白(cadherin,Cad)水平升高,而Snail蛋白、波形蛋白(vimentin,Vim)、N-Cad和纤连蛋白(fibronectin,FN)[16]水平下降即EMT被抑制[106]。转化生长因子在多种肿瘤中高表达,研究表明TGF-β1可以通过激活Smad2/3或p38 MAPK信号通路发生EMT,且Smad通路与肿瘤细胞抗失巢凋亡有关。研究显示20(R)-人参皂苷Rg3能抑制TGF-β1在肺癌细胞的表达,进而抑制Smad2和p38 MAPK通路的激活,从而抑制EMT并促进肿瘤失巢凋亡[105]。此外缺氧的微环境易造成EMT而促进肿瘤的侵袭、转移。研究发现在许多恶性肿瘤细胞中缺氧诱导因子(hypoxia inducible factor,HIF)-1α高表达,而20(S)-人参皂苷Rg3在卵巢癌细胞可通过激活泛素-蛋白酶体途径(ubiquitin proteasome pathway,UPP)使HIF-1α发生降解,进而降低HIF-1α表达,从而抑制HIF-1α引起缺氧以避免发生EMT[107]。除了人参皂苷,人参多糖和人参炔醇类成分也对EMT具有抑制作用。研究发现人参多糖PGPW1对人膀胱癌细胞具有较强抗转移活性[14],其可通过下调Twist及AKR1C2、上调NF1表达阻断EMT[108],从而抑制肿瘤细胞迁移和侵袭。PNN也能上调E-Cad、下调Vim表达从而抑制胰腺癌细胞迁移[32]。此外,MMP-9的过表达可直接诱导EMT,但需要联合转录因子Snail的表达[109],而研究表明人参皂苷Rg3[98, 106]、PNN[32]对MMP-9、Snail的表达均有抑制作用,从而可阻断EMT。

抑制肿瘤新生血管生成在抗肿瘤侵袭、转移中起到关键性作用。新生血管的生成涉及一些血管活性生长因子如血管内皮生长因子(vascular endothelial growth factors,VEGFs)、碱性成纤维细胞生长因子(basic fibroblast growth factor,bFGF)、ephrin(Eph)B2等。研究表明人参皂苷等成分能够通过多种途径调控这些新生血管形成因子。VEGF是一个关键的促新生血管生成因子,人参皂苷Rg3可通过抑制p38/ERK信号下调VEGF(如VEGF-A、B、C等[17])的表达[104],还通过抑制缺氧诱导的多种信号包括HIF-1α、COX-2、NF-κB、STAT3、ERK1/2和JNK下调癌细胞中VEGF的表达[110];同时人参皂苷Rh2通过增加多形性胶质母细胞瘤中miR-497水平进而抑制VEGF-A mRNA翻译[111]。人参皂苷CK在人脐静脉内皮细胞能够抑制鞘氨醇激酶(sphingosine kinase,SphK)1的活性及表达,进而抑制SphK1催化Sph生成鞘氨醇-1-磷酸(sphingosine 1-phosphate,S1P),S1P生成的减少导致p38 MAPK信号受抑制,从而减少内皮细胞VEGF表达而抑制新生血管生成[62, 112]。此外MMPs也与VEGF表达有一定联系,如MMP-2的表达受抑制可通过抑制PI3K/Akt信号抑制转录因子HIF-1α的表达,进而抑制VEGF的表达[113]。除了VEGF,人参皂苷也能抑制bFGF、EphB2等其他促新生血管生成因子的表达。20(R)-人参皂苷Rg3能显著抑制bFGF诱导的新生血管的形成[114],能通过下调血管内皮钙黏蛋白(VE-cadherin,VE-Cad)、上皮细胞激酶(eithelial cell kinaspe,EphA2)的表达有效抑制胰腺癌血管生成拟态的形成[98],20(R)-人参皂苷Rg3也能通过miRNA-520h的过表达抑制新型促血管生成因子EphB2及其受体EphB4表达[115],还可能通过降低血清IGF-1水平[38, 116],从而抑制肿瘤血管生成。人参皂苷还能促进抗血管新生因子色素上皮衍生因子(pigment epithelium derived factor,PEDF)的表达。研究显示人参皂苷Rb1能增加PEDF的蛋白表达、转录和分泌,并通过雌激素受体(estrogen receptor,ER)-β激活PEDF,介导抑制内皮细胞管状结构的形成[117]。内皮祖细胞(endothelial progenitor cells,EPCs)在体内能够分化成有功能的内皮细胞,参与缺血组织的血管新生及损伤血管的再内皮化。研究发现人参Rg3能够抑制EPCs从骨髓微环境动员到外周循环[104],且通过抑制VEGF依赖性Akt/eNOS信号抑制EPCs的分化[118],从而抑制损伤血管的修复与新生血管的形成。在血管生成过程中细胞黏附分子整合素(integrin,Int)也起重要作用,其可通过调节内皮细胞的黏附和迁移能力参与血管的形成。研究发现人参皂苷Rp1、Rg3等能抑制黑色素瘤细胞的转移性肺转移,可能的机制是其抑制Intβ1的表达显著抑制内皮细胞黏附与迁移,从而抑制血管生成[119]。人参皂苷Rh2还能通过下调细胞间连接黏附分子(junctional adhesion molecule,JAM)1、2在肿瘤细胞的表达,抑制肿瘤组织血管生成[120]

肿瘤细胞的侵袭、迁移还与趋化因子密切相关,趋化因子CXCL12及其受体CXCR4在癌症的侵袭和迁移中发挥重要作用。研究表明人参皂苷CK对CXCL12诱导胶质瘤细胞的迁移可通过抑制PKCα、ERK1/2的激活而抑制其受体CXCR4的表达,从而抑制胶质瘤细胞的迁移[102],同时人参皂苷Rg3也能抑制乳腺癌细胞中CXCR4表达[121]。此外,多种人肿瘤细胞中表达水通道蛋白(aquaporins,AQPs),其可参与肿瘤细胞的迁移。研究发现人参皂苷Rg3在前列腺癌细胞中通过激活p38 MAPK信号可使AQP1表达下调,从而抑制肿瘤细胞迁移[122]。人参多糖(RG-I-4)还能抑制Gal-3蛋白介导的肿瘤细胞黏附聚集,进而抑制细胞迁移[94]

4 人参有效成分抗肿瘤作用的构效关系 4.1 人参皂苷抗肿瘤的构效关系

人参皂苷及其代谢产物的化学结构与其抗肿瘤功能相关,研究表明PDS一般比PTS抗肿瘤活性强[24, 27];人参皂苷的糖分子数目会影响其抗肿瘤效果,糖分子越少其抗肿瘤活性可能越好[24],如人参皂苷Rh1抗癌活性强于其前体Rg1,PPD抗肿瘤效果优于人参皂苷Rg3、Rh2等,原因可能是一方面糖分子越少其细胞毒性作用越大[24],另一方面人参皂苷和多糖因其亲水性不易通过肠道被人体吸收,而极性小或非极性则易被人体吸收[123];人参皂苷的立体选择性也会影响抗癌活性,反式人参皂苷或皂苷元的抗肿瘤活性优于其对应的顺式异构体[24, 27],如20(S)-PPD和20(S)-人参皂苷Rg3、Rh2的抗癌活性分别高于20(R)-PPD和20(R)-人参皂苷Rg3、Rh2[27, 124]。当然上述的构效关系并不是绝对的,如由人参三醇型人参皂苷代谢生成的原人参三醇虽然不含糖分子易被人体吸收,但是从目前的研究结果来看其并没有明显的抗癌活性;也有研究显示20 (R)-人参皂苷Rg3比20(S)-Rg3对提高荷瘤宿主的细胞免疫功能更强[88]

4.2 人参多糖抗肿瘤的构效关系

人参多糖也具有一定的构效关系。人参多糖结构多样,主要含有中性的淀粉样葡聚糖和酸性的果胶。对人参多糖进行系统分级,可将其分为4种结构类型的多糖:淀粉样葡聚糖(WGPN、WGPA-N)、同型半乳糖醛酸聚糖(HG型果胶:WGPA-1-HG~4-HG)、阿拉伯半乳聚糖(AG型果胶:WGPA-1-RG、2-RG)和I型鼠李糖半乳糖醛酸聚糖(RG-I型果胶:WGPA-3-RG、4-RG)[125]。研究表明富含HG结构域的人参果胶对结肠癌细胞具有明显抗增殖和诱导细胞周期阻滞于G2/M期作用,同时富含HG、RG-I及只富含HG型果胶对肝癌细胞增殖具有显著抑制作用,而淀粉样葡聚糖和AG型果胶对这2种肿瘤细胞均未表现出抑制增殖作用[125-126]。富含HG结构域的人参果胶也能够抑制成纤维细胞迁移,富含HG、RG-I果胶其抑制迁移作用稍强于只富含HG的果胶,而淀粉样葡聚糖和AG型果胶对细胞迁移的抑制作用较小,且人参果胶多糖的这种抑制作用与GalA量(HG结构域)和Rha量(RG-I结构域)有关[127]。因此,酸性人参多糖的抗肿瘤活性要明显高于中性多糖。此外,人参果胶(RG-I-4)与Gal-3相互作用的构效关系研究表明多糖骨架上高Gal量、高Gal/Ara比例、AG-I型侧链和侧链总数多对发挥抗肿瘤作用起关键作用[94],且RG-I型果胶的AG-I型侧链中半乳聚糖侧链对发挥抗肿瘤作用是必不可少的[94],而AG-Ⅱ型侧链中阿拉伯半乳聚糖侧链是必不可少的[128]。因此构成多糖分子骨架主链、侧链的单糖组成、含量和连接方式以及侧链数目是影响人参多糖抗肿瘤活性的重要因素。

4.3 人参炔醇抗肿瘤的构效关系

人参中聚乙炔醇类成分虽然量较低,但PND、PNN、PNT等已被证明具有抗肿瘤活性,其中PND具有较强的细胞毒作用,对肿瘤细胞抑制作用最强。研究表明低质量浓度(≤12.5 μg/mL)的人参总炔醇具有非细胞毒介导的生长抑制效应,而高质量浓度(≥25 μg/mL)则主要表现为直接细胞毒作用,其细胞毒性大小可能与其结构式中C-9和C-10的化学结构有关[129],但目前确切的结构与功效关系还不清楚。研究发现在绞股蓝总皂苷中具有环氧结构的绞股蓝皂苷对肝癌细胞增殖的抑制作用是最强的[130],提示环氧结构可能是一个重要的毒性活性中心。因此,可以推测PND抗肿瘤活性高于PNN、PNT的可能原因是PND结构中有环氧基团的存在。

5 结语与展望

现有研究结果表明人参具有显著的抗肿瘤作用,其药效物质基础为人参皂苷及其肠道菌群代谢产物、人参多糖和人参炔醇,这3类有效成分对多种类型肿瘤的发生、发展及侵袭转移均有抑制作用,并都具有一定的构效关系及作用特点,具体情况见表 1

表 1 人参抗肿瘤作用的有效成分及其抗肿瘤类型、构效关系、特点 Table 1 Effective components with antitumor effect of P. ginseng and their antitumor types, structure activity relationship, and characteristics

表 1中可看出人参的有效成分非常复杂,其主要成分人参皂苷及其在人体肠道菌群的代谢产物可以对抗大部分常见肿瘤。目前已经从人参中提取分离出至少40种以上的单体人参皂苷,而目前研究结果显示接近1/2的单体皂苷具有明确抗肿瘤作用,其他单体人参皂苷虽然没有数据表明具有抗肿瘤活性,但可能也具有潜在的抗肿瘤活性,这需要进一步扩展研究才能确定。

目前研究已证明人参中3类有效成分都能诱导肿瘤细胞周期阻滞、凋亡及分化,抑制肿瘤细胞增殖及侵袭与转移,人参皂苷和人参多糖特别是人参多糖还能通过增强对肿瘤细胞免疫力发挥抗肿瘤作用,而人参炔醇类成分不具有免疫调节功能,但是PND等可以通过直接细胞毒作用杀死肿瘤细胞。除了这六大作用外,人参皂苷等化学成分还能够诱导肿瘤细胞程序性坏死[131]、降低肿瘤细胞的多药耐药性、促进肿瘤细胞或肿瘤干细胞自噬[132-133],同时又能抑制抗肿瘤药(如阿霉素)治疗引起的自噬,从而增强其诱导肿瘤细胞死亡的敏感性[134]。但是需要特别指出的是,也有研究表明人参皂苷Rg3、Rh2[124]、Rk1[135]在诱导肝癌细胞凋亡的时候也会引起细胞自噬而抑制细胞凋亡,这是不利于抗肿瘤作用发挥的。总之,目前对人参有效成分尤其是单体人参皂苷抗肿瘤的作用机制研究已经取得了较大进展,其分子机制主要涉及对诸多相关基因、蛋白、蛋白酶、免疫细胞、细胞因子及相关信号通路等的调控与表达,具体见表 2

表 2 人参抗肿瘤作用分子机制 Table 2 Molecular mechanisms of antitumor effect of P. ginseng

表 2可知,人参有效成分可以调控很多相关信号通路,主要包括PI3K/Akt/mTOR、MAPKs(ERK、JNK、p38 MAPK)、JAK/STAT、Wnt/β-catenin、AMPK、MEK、EGFR、NF-κB、TGF-β等。人参皂苷等成分能够直接或间接地使这些通路大多数被抑制,而少数被激活,从而作用于信号靶点发挥抗肿瘤作用。人参皂苷等成分也能双向调节某些信号通路,如人参皂苷Rg3既可通过抑制p38 MAPK通路激活而抑制MMP-2的表达,又可激活p38 MAPK信号而使AQP1表达下调,其目的都是抑制肿瘤细胞的侵袭和转移。

大量的实验数据已经证明人参具有确切的抗肿瘤作用,其药效物质基础、分子作用机制也已基本明确,但也存在一些缺陷与不足。目前的研究结果大多是基于体外细胞实验也有少数是通过基因芯片技术手段得出的结论,而体内动物实验数据相对较少。以人参中性淀粉样葡聚糖来说,其由于具有较强的免疫调节作用而在体内发挥较好的抗肿瘤活性,但在体外实验发现其活性很弱。同样,在体外活性好但在体内不一定好,所以对于药效物质基础甚至是分子机制的研究要注重体内外结合进行实验研究。

近年来利用基因芯片技术探讨药物的分子作用机制是一个新的手段,如An等[136]采用miRNA微阵列分析发现人参皂苷Rh2在非小细胞肺癌使44个miRNAs表达上调和24个miRNAs表达下调,这些miRNAs表达的变化涉及血管生成、细胞凋亡和细胞增殖。但人参皂苷对这些miRNAs及其基因靶点表达的调控需结合体内外实验数据才能反映出真实的体内变化过程。目前人参多糖、人参炔醇的抗肿瘤活性及其分子机制研究也比较少,如Jiao等[137]从人参中分离得到RG-I型果胶GPR-1、GPS-1及HG型果胶GPW-2、GPR-2和GPS-2,但目前尚未有相关抗肿瘤活性的报道。

此外,也存在一些问题,如人参皂苷对细胞自噬的多重影响问题等。因此在今后的深入研究和开发中,亟需完善以下几个方面:(1)利用现代分子生物学技术如基因芯片技术、分子标记技术等对人参有效成分的抗肿瘤作用的分子作用机制深入探讨,并进一步通过体内实验方法进行验证;(2)进一步研究人参多糖与人参炔醇类成分的抗肿瘤作用及其分子机制和构效关系;(3)研究人参抗肿瘤作用涉及的相关信号转导通路之间的联系;(4)扩展基于单体化合物的人参抗肿瘤活性物质的筛选;(5)进行各种有效成分的抗肿瘤效果的对比研究以优选出最佳的抗某些/种肿瘤的活性成分,并对不同有效成分进行组合优化研究;(6)研究人参皂苷等单体成分的体内代谢过程和变化以及如何调控这些有效成分在人体内的定向转化,以提高抗肿瘤效果。人参中富含抗肿瘤活性成分,目前已经有单体人参皂苷Rg3开发成为中药1类新药用于多种癌症的辅助治疗,将来有望更多的人参活性成分为临床治疗各种肿瘤提供安全有效的天然药物及制剂。

参考文献
[1] 冯彦. 人参药理作用及临床应用研究进展[J]. 中医临床研究, 2013, 5(6):121–122.
[2] 黎阳, 张铁军, 刘素香, 等. 人参化学成分和药理研究进展[J]. 中草药, 2009, 40(1):164–166.
[3] 杨秀伟. 人参中三萜类化学成分的研究[J]. 中国现代中药, 2016, 18(1):7–15.
[4] 杨秀伟. 人参化学成分的药物代谢动力学研究[J]. 中国现代中药, 2016, 18(1):16–35.
[5] Fu Y, Yin Z, Wu L, et al. Fermentation of ginseng extracts by Penicillium simplicissimum GS33 and anti-ovarian cancer activity of fermented products[J]. World J Microbiol Biotechnol, 2014, 30(3): 1019–1025. DOI:10.1007/s11274-013-1520-0
[6] Jin Y, Jung S Y, Kim Y J, et al. Microbial deglycosylation and ketonization of ginsenoside by Cladosporium cladosporioide and their anticancer activity[J]. Antonie Van Leeuwenhoek, 2016, 109(2): 179–185. DOI:10.1007/s10482-015-0619-8
[7] Xie J T, Du G J, McEntee E, et al. Effects of triterpenoid glycosides from fresh ginseng berry on SW480 human colorectal cancer cell line[J]. Cancer Res Treat, 2011, 43(1): 49–55. DOI:10.4143/crt.2011.43.1.49
[8] Lee D G, Lee A Y, Kim K T, et al. Novel dammarane-type triterpene saponins from Panax ginseng root[J]. Chem Pharm Bull, 2015, 63(11): 927–934. DOI:10.1248/cpb.c15-00302
[9] Shangguan W J, Li H, Zhang Y H. Induction of G2/M phase cell cycle arrest and apoptosis by ginsenoside Rf in human osteosarcoma MG63 cells through the mitochondrial pathway[J]. Oncol Rep, 2014, 31(1): 305–313.
[10] Shin J Y, Lee J M, Shin H S, et al. Anti-cancer effect of ginsenoside F2 against glioblastoma multiforme in xenograft model in SD rats[J]. J Ginseng Res, 2012, 36(1): 86–92. DOI:10.5142/jgr.2012.36.1.86
[11] Zhao C, Su G, Wang X, et al. Antitumor activity of ginseng sapogenins, 25-OH-PPD and 25-OCH3-PPD, on gastric cancer cells[J]. Biotechnol Lett, 2016, 38(1): 43–50. DOI:10.1007/s10529-015-1964-4
[12] Wang Y, Huang M, Sun R, et al. Extraction, characterization of a ginseng fruits polysaccharide and its immune modulating activities in rats with Lewis lung carcinoma[J]. Carbohydr Polym, 2015, 127: 215–221. DOI:10.1016/j.carbpol.2015.03.070
[13] Li C, Tian Z N, Cai J P, et al. Panax ginseng polysaccharide induces apoptosis by targeting Twist/AKR1C2/NF-1 pathway in human gastric cancer[J]. Carbohydr Polym, 2014, 102(1): 103–109.
[14] Li C, Cai J, Geng J, et al. Purification, characterization and anticancer activity of a polysaccharide from Panax ginseng[J]. Int J Biol Macromol, 2012, 51(5): 968–973. DOI:10.1016/j.ijbiomac.2012.06.031
[15] Kim B, Choi S, Suh H, et al. Bitterness reduction and enzymatic transformation of ginsenosides from korean red ginseng (Panax ginseng) extract[J]. J Food Biochem, 2011, 35(4): 1267–1282. DOI:10.1111/jfbc.2011.35.issue-4
[16] Zhang K, Li Y. Effects of ginsenoside compound K combined with cisplatin on the proliferation, apoptosis and epithelial mesenchymal transition in MCF-7 cells of human breast cancer[J]. Pharm Biol, 2016, 54(4): 561–568. DOI:10.3109/13880209.2015.1101142
[17] Zhang Y, Liu Q Z, Xing S P, et al. Inhibiting effect of Endostar combined with ginsenoside Rg3 on breast cancer tumor growth in tumor-bearing mice[J]. Asian Pac J Trop Med, 2016, 9(2): 180–183. DOI:10.1016/j.apjtm.2016.01.010
[18] 陈哲京, 程骏, 黄颖鹏, 等. 术后采用人参皂甙Rg3联合丝裂霉素加呋喃尿嘧啶方案对进展期胃癌的疗效[J]. 中华胃肠外科杂志, 2007, 10(1):64–66.
[19] Ben-Eltriki M, Deb S, Adomat H, et al. Calcitriol and 20(S)-protopanaxadiol synergistically inhibit growth and induce apoptosis in human prostate cancer cells[J]. J Steroid Biochem Mol Biol, 2016, 158: 207–219. DOI:10.1016/j.jsbmb.2015.12.002
[20] Wang C Z, Zhang Z, Wan J Y, et al. Protopanaxadiol, an active ginseng metabolite, significantly enhances the effects of fluorouracil on colon cancer[J]. Nutrients, 2015, 7(2): 799–814. DOI:10.3390/nu7020799
[21] Shin H J, Kim Y S, Kwak Y S, et al. Enhancement of antitumor effects of paclitaxel (taxol) in combination with red ginseng acidic polysaccharide (RGAP)[J]. Planta Med, 2004, 70(11): 1033–1038. DOI:10.1055/s-2004-832643
[22] Kim K H, Lee Y S, Jung I S, et al. Acidic polysaccharide from Panax ginseng, ginsan, induces Th1 cell and macrophage cytokines and generates LAK cells in synergy with rIL-2[J]. Planta Med, 1998, 64(2): 110–115. DOI:10.1055/s-2006-957385
[23] Park J Y, Choi P, Kim H K, et al. Increase in apoptotic effect of Panax ginseng by microwave processing in human prostate cancer cells:in vitro and in vivo studies[J]. J Ginseng Res, 2016, 40(1): 62–67. DOI:10.1016/j.jgr.2015.04.007
[24] Quan K, Liu Q, Wan J Y, et al. Rapid preparation of rare ginsenosides by acid transformation and their structure-activity relationships against cancer cells[J]. Sci Rep, 2015. DOI:10.1038/srep08598
[25] Oh J, Jeon S B, Lee Y, et al. Fermented red ginseng extract inhibits cancer cell proliferation and viability[J]. J Med Food, 2015, 18(4): 421–428. DOI:10.1089/jmf.2014.3248
[26] 孙娜, 徐钢, 徐珊, 等. 人参炮制对其化学成分和药理作用的影响[J]. 中国药房, 2016, 27(6):857–859.
[27] Wang C Z, Anderson S, Du W, et al. Red ginseng and cancer treatment[J]. Chin J Nat Med, 2016, 14(1): 7–16.
[28] He B C, Gao J L, Luo X, et al. Ginsenoside Rg3 inhibits colorectal tumor growth through the down-regulation of Wnt/ss-catenin signaling[J]. Int J Oncol, 2011, 38(2): 437–445.
[29] Lee S Y, Kim G T, Roh S H, et al. Proteomic analysis of the anti-cancer effect of 20S-ginsenoside Rg3 in human colon cancer cell lines[J]. Biosci Biotechnol Biochem, 2009, 73(4): 811–816. DOI:10.1271/bbb.80637
[30] Lee S Y, Kim G T, Roh S H, et al. Proteome changes related to the anti-cancer activity of HT29 cells by the treatment of ginsenoside Rd[J]. Pharmazie, 2009, 64(4): 242–247.
[31] Kim J Y, Lee K W, Kim S H, et al. Inhibitory effect of tumor cell proliferation and induction of G2/M cell cycle arrest by panaxytriol[J]. Planta Med, 2002, 68(2): 119–122. DOI:10.1055/s-2002-20240
[32] 王颖, 朱海涛, 黄文斯, 等. 人参炔醇体外抑制人胰腺癌SW1990细胞迁移作用研究[J]. 中华肿瘤防治杂志, 2015, 22(21):1662–1666.
[33] Shan X, Fu Y S, Aziz F, et al. Ginsenoside Rg3 inhibits melanoma cell proliferation through down-regulation of histone deacetylase 3(HDAC3) and increase of p53 acetylation[J]. PLoS One, 2014. DOI:10.1371/journal.pone.0115401
[34] Liu Z H, Li J, Xia J, et al. Ginsenoside 20(S)-Rh2 as potent natural histone deacetylase inhibitors suppressing the growth of human leukemia cells[J]. Chem Biol Interact, 2015, 242: 227–234. DOI:10.1016/j.cbi.2015.10.014
[35] Aziz F, Wang X, Liu J, et al. Ginsenoside Rg3 induces FUT4-mediated apoptosis in H. pylori CagA-treated gastric cancer cells by regulating SP1 and HSF1 expressions[J]. Toxicol In Vitro, 2016, 31: 158–166. DOI:10.1016/j.tiv.2015.09.025
[36] Li J, Liu T, Zhao L, et al. Ginsenoside 20(S)-Rg3 inhibits the Warburg effect through STAT3 pathways in ovarian cancer cells[J]. Int J Oncol, 2015, 46(2): 775–781.
[37] You Z M, Zhao L, Xia J, et al. Down-regulation of phosphoglucose isomerase/autocrine motility factor enhances gensenoside Rh2 pharmacological action on leukemia KG1alpha cells[J]. Asian Pac J Cancer Prev, 2014, 15(3): 1099–1104. DOI:10.7314/APJCP.2014.15.3.1099
[38] Li Y, Yang T, Li J, et al. Inhibition of multiple myeloma cell proliferation by ginsenoside Rg3 via reduction in the secretion of IGF-1[J]. Mol Med Rep, 2016, 14(3): 2222–2230.
[39] Kang J H, Song K H, Woo J K, et al. Ginsenoside Rp1 from Panax ginseng exhibits anti-cancer activity by down-regulation of the IGF-1R/Akt pathway in breast cancer cells[J]. Plant Foods Hum Nutr, 2011, 66(3): 298–305. DOI:10.1007/s11130-011-0242-4
[40] Chen W, Qiu Y. Ginsenoside Rh2 targets EGFR by up-regulation of miR-491 to enhance anti-tumor activity in hepatitis B virus-related hepatocellular carcinoma[J]. Cell Biochem Biophys, 2015, 72(2): 325–331. DOI:10.1007/s12013-014-0456-9
[41] Wu N, Wu G C, Hu R, et al. Ginsenoside Rh2 inhibits glioma cell proliferation by targeting microRNA-128[J]. Acta Pharmacol Sin, 2011, 32(3): 345–353. DOI:10.1038/aps.2010.220
[42] Park E H, Kim Y J, Yamabe N, et al. Stereospecific anticancer effects of ginsenoside Rg3 epimers isolated from heat-processed American ginseng on human gastric cancer cell[J]. J Ginseng Res, 2014, 38(1): 22–27. DOI:10.1016/j.jgr.2013.11.007
[43] Kim S J, Kim A K. Anti-breast cancer activity of fine black ginseng (Panax ginseng Meyer.) and ginsenoside Rg5[J]. J Ginseng Res, 2015, 39(2): 125–134. DOI:10.1016/j.jgr.2014.09.003
[44] Chung K S, Cho S H, Shin J S, et al. Ginsenoside Rh2 induces cell cycle arrest and differentiation in human leukemia cells by upregulating TGF-beta expression[J]. Carcinogenesis, 2013, 34(2): 331–340. DOI:10.1093/carcin/bgs341
[45] Cheng C C, Yang S M, Huang C Y, et al. Molecular mechanisms of ginsenoside Rh2-mediated G1 growth arrest and apoptosis in human lung adenocarcinoma A549 cells[J]. Cancer Chemother Pharmacol, 2005, 55(6): 531–540. DOI:10.1007/s00280-004-0919-6
[46] Choi S, Kim T W, Singh S V. Ginsenoside Rh2-mediated G1 phase cell cycle arrest in human breast cancer cells is caused by p15 Ink4B and p27 Kip1-dependent inhibition of cyclin-dependent kinases[J]. Pharm Res, 2009, 26(10): 2280–2288. DOI:10.1007/s11095-009-9944-9
[47] Zhang Z, Du G J, Wang C Z, et al. Compound K, a ginsenoside metabolite, inhibits colon cancer growth via multiple pathways including p53-p21 interactions[J]. Int J Mol Sci, 2013, 14(2): 2980–2995. DOI:10.3390/ijms14022980
[48] Wang W, Rayburn E R, Hao M, et al. Experimental therapy of prostate cancer with novel natural product anti-cancer ginsenosides[J]. Prostate, 2008, 68(8): 809–819. DOI:10.1002/pros.v68:8
[49] Guo X X, Li Y, Sun C, et al. p53-dependent Fas expression is critical for ginsenoside Rh2 triggered caspase-8 activation in HeLa cells[J]. Protein Cell, 2014, 5(3): 224–234. DOI:10.1007/s13238-014-0027-2
[50] Zhang Z, Li Z, Wu X, et al. TRAIL pathway is associated with inhibition of colon cancer by protopanaxadiol[J]. J Pharmacol Sci, 2015, 127(1): 83–91. DOI:10.1016/j.jphs.2014.11.003
[51] Lee J Y, Jung K H, Morgan M J, et al. Sensitization of TRAIL-induced cell death by 20(S)-ginsenoside Rg3 via CHOP-mediated DR5 upregulation in human hepatocellular carcinoma cells[J]. Mol Cancer Ther, 2013, 12(3): 274–285. DOI:10.1158/1535-7163.MCT-12-0054
[52] Kim J S, Joo E J, Chun J, et al. Induction of apoptosis by ginsenoside Rk1 in SK-MEL-2-human melanoma[J]. Arch Pharm Res, 2012, 35(4): 717–722. DOI:10.1007/s12272-012-0416-0
[53] Lee D G, Jang S I, Kim Y R, et al. Anti-proliferative effects of ginsenosides extracted from mountain ginseng on lung cancer[J]. Chin J Integr Med, 2016, 22(5): 344–352. DOI:10.1007/s11655-014-1789-8
[54] Wang J H, Nao J F, Zhang M, et al. 20(S)-ginsenoside Rg3 promotes apoptosis in human ovarian cancer HO-8910 cells through PI3K/Akt and XIAP pathways[J]. Tumour Biol, 2014, 35(12): 11985–11994. DOI:10.1007/s13277-014-2497-5
[55] Tang X P, Tang G D, Fang C Y, et al. Effects of ginsenoside Rh2 on growth and migration of pancreatic cancer cells[J]. World J Gastroenterol, 2013, 19(10): 1582–1592. DOI:10.3748/wjg.v19.i10.1582
[56] Park S, Lee H J, Jeong S J, et al. Inhibition of JAK1/STAT3 signaling mediates compound K-induced apoptosis in human multiple myeloma U266 cells[J]. Food Chem Toxicol, 2011, 49(6): 1367–1372. DOI:10.1016/j.fct.2011.03.021
[57] Jian J, Hu Z F, Huang Y. Effect of ginsenoside Rg3 on Pim-3 and Bad proteins in human pancreatic cancer cell line PANC-1[J]. Chin J Cancer, 2009, 28(5): 461–465.
[58] Kim B M, Kim D H, Park J H, et al. Ginsenoside Rg3 inhibits constitutive activation of NF-kappaB signaling in human breast cancer (MDA-MB-231) cells:ERK and Akt as potential upstream targets[J]. J Cancer Prev, 2014, 19(1): 23–30. DOI:10.15430/JCP.2014.19.1.23
[59] Wang X, Wang Y. Ginsenoside Rh2 mitigates pediatric leukemia through suppression of Bcl-2 in leukemia cells[J]. Cell Physiol Biochem, 2015, 37(2): 641–650. DOI:10.1159/000430383
[60] Kim Y J, Kwon H C, Ko H, et al. Anti-tumor activity of the ginsenoside Rk1 in human hepatocellular carcinoma cells through inhibition of telomerase activity and induction of apoptosis[J]. Biol Pharm Bull, 2008, 31(5): 826–830. DOI:10.1248/bpb.31.826
[61] Kim B J. Involvement of melastatin type transient receptor potential 7 channels in ginsenoside Rd-induced apoptosis in gastric and breast cancer cells[J]. J Ginseng Res, 2013, 37(2): 201–209. DOI:10.5142/jgr.2013.37.201
[62] Shin K O, Seo C H, Cho H H, et al. Ginsenoside compound K inhibits angiogenesis via regulation of sphingosine kinase-1 in human umbilical vein endothelial cells[J]. Arch Pharm Res, 2014, 37(9): 1183–1192. DOI:10.1007/s12272-014-0340-6
[63] Kim D Y, Park M W, Yuan H D, et al. Compound K induces apoptosis via CAMK-Ⅳ/AMPK pathways in HT-29 colon cancer cells[J]. J Agric Food Chem, 2009, 57(22): 10573–10578. DOI:10.1021/jf902700h
[64] Zhang Y L, Zhang R, Xu H L, et al. 20(S)-protopanaxadiol triggers mitochondrial-mediated apoptosis in human lung adenocarcinoma A549 cells via inhibiting the PI3K/Akt signaling pathway[J]. Am J Chin Med, 2013, 41(5): 1137–1152. DOI:10.1142/S0192415X13500778
[65] Li J, Wei Q, Zuo G W, et al. Ginsenoside Rg1 induces apoptosis through inhibition of the EpoR-mediated JAK2/STAT5 signalling pathway in the TF-1/Epo human leukemia cell line[J]. Asian Pac J Cancer Prev, 2014, 15(6): 2453–2459. DOI:10.7314/APJCP.2014.15.6.2453
[66] Choi Y J, Lee H J, Kang D W, et al. Ginsenoside Rg3 induces apoptosis in the U87MG human glioblastoma cell line through the MEK signaling pathway and reactive oxygen species[J]. Oncol Rep, 2013, 30(3): 1362–1370.
[67] Huang J, Peng K, Wang L, et al. Ginsenoside Rh2 inhibits proliferation and induces apoptosis in human leukemia cells via TNF-alpha signaling pathway[J]. Acta Biochim Biophys Sin, 2016, 48(8): 750–755. DOI:10.1093/abbs/gmw049
[68] Park E K, Lee E J, Lee S H, et al. Induction of apoptosis by the ginsenoside Rh2 by internalization of lipid rafts and caveolae and inactivation of Akt[J]. Br J Pharmacol, 2010, 160(5): 1212–1223. DOI:10.1111/j.1476-5381.2010.00768.x
[69] Mao Q, Zhang P H, Wang Q, et al. Ginsenoside F2 induces apoptosis in humor gastric carcinoma cells through reactive oxygen species-mitochondria pathway and modulation of ASK-1/JNK signaling cascade in vitro and in vivo[J]. Phytomedicine, 2014, 21(4): 515–522. DOI:10.1016/j.phymed.2013.10.013
[70] Choi K, Choi C. Proapoptotic ginsenosides compound K and Rh2 enhance Fas-induced cell death of human astrocytoma cells through distinct apoptotic signaling pathways[J]. Cancer Res Treat, 2009, 41(1): 36–44. DOI:10.4143/crt.2009.41.1.36
[71] Wang H, Jiang D, Liu J, et al. Compound K induces apoptosis of bladder cancer T24 cells via reactive oxygen species-mediated p38 MAPK pathway[J]. Cancer Biother Radiopharm, 2013, 28(8): 607–614. DOI:10.1089/cbr.2012.1468
[72] 范家铭, 刘泽洪, 李静, 等. 人参多糖介导Wnt/β-catenin信号转导诱导人鼻咽癌细胞CNE-2的凋亡[J]. 中国中药杂志, 2013, 38(19):3332–3337.
[73] Law C K, Kwok H H, Poon P Y, et al. Ginsenoside compound K induces apoptosis in nasopharyngeal carcinoma cells via activation of apoptosis-inducing factor[J]. Chin Med, 2014, 9(1): 1–11. DOI:10.1186/1749-8546-9-1
[74] Kim H S, Lim J M, Kim J Y, et al. Panaxydol, a component of Panax ginseng, induces apoptosis in cancer cells through EGFR activation and ER stress and inhibits tumor growth in mouse models[J]. Int J Cancer, 2016, 138(6): 1432–1441. DOI:10.1002/ijc.29879
[75] Wu K, Li N, Sun H, et al. Endoplasmic reticulum stress activation mediates Ginseng Rg3-induced anti-gallbladder cancer cell activity[J]. Biochem Biophys Res Commun, 2015, 466(3): 369–375. DOI:10.1016/j.bbrc.2015.09.030
[76] Breckenridge D G, Germain M, Mathai J P, et al. Regulation of apoptosis by endoplasmic reticulum pathways[J]. Oncogene, 2003, 22(53): 8608–8618. DOI:10.1038/sj.onc.1207108
[77] Zuo G, Guan T, Chen D, et al. Total saponins of Panax ginseng induces K562 cell differentiation by promoting internalization of the erythropoietin receptor[J]. Am J Chin Med, 2009, 37(4): 747–757. DOI:10.1142/S0192415X09007211
[78] 余潇苓, 高瑞兰, 尹利明, 等. 低极性人参皂苷Rh4对白血病细胞系K562细胞增殖抑制及诱导分化作用的研究[J]. 中华血液学杂志, 2015, 36(4):347–349.
[79] Kim S H, Cho S S, Simkhada J R, et al. Enhancement of 1, 25-dihydroxyvitamin D3-and all-trans retinoic acid-induced HL-60 leukemia cell differentiation by Panax ginseng[J]. Biosci Biotechnol Biochem, 2009, 73(5): 1048–1053. DOI:10.1271/bbb.80823
[80] Zeng X L, Tu Z G. In vitro induction of differentiation by ginsenoside Rh2 in SMMC-7721 hepatocarcinoma cell line[J]. Pharmacol Toxicol, 2003, 93(6): 275–283. DOI:10.1111/pto.2003.93.issue-6
[81] 王泽剑, 吴英理, 林琦, 等. 人参炔醇对HL-60细胞体外诱导分化作用的研究[J]. 中草药, 2003, 34(8):736–738.
[82] Hai J, Lin Q, Zhang H, et al. Cyclic AMP-dependent regulation of differentiation of rat C6 glioma cells by panaxydol[J]. Neurol Res, 2009, 31(3): 274–279. DOI:10.1179/174313209X380919
[83] Guo L, Song L, Wang Z, et al. Panaxydol inhibits the proliferation and induces the differentiation of human hepatocarcinoma cell line HepG2[J]. Chem Biol Interact, 2009, 181(1): 138–143. DOI:10.1016/j.cbi.2009.04.015
[84] 李建平, 何轩, 姜蓉, 等. 人参多糖对K562细胞基因表达谱的影响[J]. 中草药, 2011, 42(5):940–943.
[85] Lee Y J, Son Y M, Gu M J, et al. Ginsenoside fractions regulate the action of monocytes and their differentiation into dendritic cells[J]. J Ginseng Res, 2015, 39(1): 29–37. DOI:10.1016/j.jgr.2014.07.003
[86] Wang Y, Hao Y, Lou J L, et al. Effect of ginsenoside Rg1 and Rh1 on the anti-tumor activity of dendritic cell[J]. Chin J Pathophys, 2004, 20(10): 18–23.
[87] Wang Y, Liu Y, Zhang X Y, et al. Ginsenoside Rg1 regulates innate immune responses in macrophages through differentially modulating the NF-kappaB and PI3K/Akt/mTOR pathways[J]. Int Immunopharmacol, 2014, 23(1): 77–84. DOI:10.1016/j.intimp.2014.07.028
[88] Wu R, Ru Q, Chen L, et al. Stereospecificity of ginsenoside Rg3 in the promotion of cellular immunity in hepatoma H22-bearing mice[J]. J Food Sci, 2014, 79(7): H1430–H1435. DOI:10.1111/jfds.2014.79.issue-7
[89] Son K J, Choi K R, Lee S J, et al. Immunogenic cell death induced by ginsenoside Rg3:significance in dendritic cell-based anti-tumor immunotherapy[J]. Immune Netw, 2016, 16(1): 75–84. DOI:10.4110/in.2016.16.1.75
[90] Byeon S E, Lee J, Kim J H, et al. Molecular mechanism of macrophage activation by red ginseng acidic polysaccharide from Korean red ginseng[J]. Mediators Inflamm, 2012. DOI:10.1155/2012/732860
[91] Song J Y, Han S K, Son E H, et al. Induction of secretory and tumoricidal activities in peritoneal macrophages by ginsan[J]. Int Immunopharmacol, 2002, 2(7): 857–865. DOI:10.1016/S1567-5769(01)00211-9
[92] Wang J, Zuo G, Li J, et al. Induction of tumoricidal activity in mouse peritoneal macrophages by ginseng polysaccharide[J]. Int J Biol Macromol, 2010, 46(4): 389–395. DOI:10.1016/j.ijbiomac.2010.02.007
[93] Zhou X, Shi H, Jiang G, et al. Antitumor activities of ginseng polysaccharide in C57BL/6 mice with Lewis lung carcinoma[J]. Tumour Biol, 2014, 35(12): 12561–12566. DOI:10.1007/s13277-014-2576-7
[94] Gao X G, Zhi Y, Sun L, et al. The inhibitory effects of a rhamnogalacturonan I (RG-I) domain from ginseng pectin on galectin-3 and its structure-activity relationship[J]. J Biol Chem, 2013, 288(47): 33953–33965. DOI:10.1074/jbc.M113.482315
[95] Fujimoto J, Sakaguchi H, Aoki I, et al. Inhibitory effect of ginsenoside-Rb2 on invasiveness of uterine endometrial cancer cells to the basement membrane[J]. Eur J Gynaecol Oncol, 2001, 22(5): 339–341.
[96] Li L, Wang Y, Qi B, et al. Suppression of PMA-induced tumor cell invasion and migration by ginsenoside Rg1 via the inhibition of NF-kappaB-dependent MMP-9 expression[J]. Oncol Rep, 2014, 32(5): 1779–1786.
[97] Lee S G, Kang Y J, Nam J O. Anti-metastasis effects of ginsenoside Rg3 in B16F10 cells[J]. J Microbiol Biotechnol, 2015, 25(12): 1997–2006. DOI:10.4014/jmb.1506.06002
[98] Guo J Q, Zheng Q H, Chen H, et al. Ginsenoside Rg3 inhibition of vasculogenic mimicry in pancreatic cancer through downregulation of VEcadherin/EphA2/MMP9/MMP2 expression[J]. Int J Oncol, 2014, 45(3): 1065–1072.
[99] Jung J S, Ahn J H, Le T K, et al. Protopanaxatriol ginsenoside Rh1 inhibits the expression of matrix metalloproteinases and the in vitro invasion/migration of human astroglioma cells[J]. Neurochem Int, 2013, 63(2): 80–86. DOI:10.1016/j.neuint.2013.05.002
[100] Kim S Y, Kim D H, Han S J, et al. Repression of matrix metalloproteinase gene expression by ginsenoside Rh2 in human astroglioma cells[J]. Biochem Pharmacol, 2007, 74(11): 1642–1651. DOI:10.1016/j.bcp.2007.08.015
[101] Yoon J H, Choi Y J, Cha S W, et al. Anti-metastatic effects of ginsenoside Rd via inactivation of MAPK signaling and induction of focal adhesion formation[J]. Phytomedicine, 2012, 19(3/4): 284–292.
[102] Kim H, Roh H S, Kim J E, et al. Compound K attenuates stromal cell-derived growth factor 1(SDF-1)-induced migration of C6 glioma cells[J]. Nutr Res Pract, 2016, 10(3): 259–264. DOI:10.4162/nrp.2016.10.3.259
[103] Shi Q, Li J, Feng Z, et al. Effect of ginsenoside Rh2 on the migratory ability of HepG2 liver carcinoma cells:recruiting histone deacetylase and inhibiting activator protein 1 transcription factors[J]. Mol Med Rep, 2014, 10(4): 1779–1785.
[104] Kim J W, Jung S Y, Kwon Y H, et al. Ginsenoside Rg3 attenuates tumor angiogenesis via inhibiting bioactivities of endothelial progenitor cells[J]. Cancer Biol Ther, 2012, 13(7): 504–515. DOI:10.4161/cbt.19599
[105] Kim Y J, Choi W I, Jeon B N, et al. Stereospecific effects of ginsenoside 20-Rg3 inhibits TGF-beta1-induced epithelial-mesenchymal transition and suppresses lung cancer migration, invasion and anoikis resistance[J]. Toxicology, 2014, 322: 23–33. DOI:10.1016/j.tox.2014.04.002
[106] Tian L, Shen D, Li X, et al. Ginsenoside Rg3 inhibits epithelial-mesenchymal transition (EMT) and invasion of lung cancer by down-regulating FUT4[J]. Oncotarget, 2016, 7(2): 1619–1632.
[107] Liu T, Zhao L, Zhang Y, et al. Ginsenoside 20(S)-Rg3 targets HIF-1alpha to block hypoxia-induced epithelial-mesenchymal transition in ovarian cancer cells[J]. PLoS One, 2014. DOI:10.1371/journal.pone.0103887
[108] Cai J P, Wu Y J, Li C, et al. Panax ginseng polysaccharide suppresses metastasis via modulating Twist expression in gastric cancer[J]. Int J Biol Macromol, 2013, 57(6): 22–25.
[109] Lin C Y, Tsai P H, Kandaswami C C, et al. Matrix metalloproteinase-9 cooperates with transcription factor Snail to induce epithelial-mesenchymal transition[J]. Cancer Sci, 2011, 102(4): 815–827. DOI:10.1111/cas.2011.102.issue-4
[110] Chen Q J, Zhang M Z, Wang L X. Gensenoside Rg3 inhibits hypoxia-induced VEGF expression in human cancer cells[J]. Cell Physiol Biochem, 2010, 26(6): 849–858. DOI:10.1159/000323994
[111] Li S, Gao Y, Ma W, et al. Ginsenoside Rh2 inhibits invasiveness of glioblastoma through modulation of VEGF-A[J]. Tumour Biol, 2015. DOI:10.1007/s13277-015-3759-6
[112] Sun H Y, Wei S P, Xu R C, et al. Sphingosine-1-phosphate induces human endothelial VEGF and MMP-2 production via transcription factor ZNF580:novel insights into angiogenesis[J]. Biochem Biophys Res Commun, 2010, 395(3): 361–366. DOI:10.1016/j.bbrc.2010.04.019
[113] Chetty C, Lakka S S, Bhoopathi P, et al. MMP-2 alters VEGF expression via alphaVbeta3 integrin-mediated PI3K/AKT signaling in A549 lung cancer cells[J]. Int J Cancer, 2010, 127(5): 1081–1095.
[114] Yue P Y, Wong D Y, Wu P K, et al. The angiosuppressive effects of 20(R)-ginsenoside Rg3[J]. Biochem Pharmacol, 2006, 72(4): 437–445. DOI:10.1016/j.bcp.2006.04.034
[115] Keung M H, Chan L S, Kwok H H, et al. Role of microRNA-520h in 20(R)-ginsenoside-Rg3-mediated angiosuppression[J]. J Ginseng Res, 2016, 40(2): 151–159. DOI:10.1016/j.jgr.2015.07.002
[116] 唐泓波, 任玉萍, 张军, 等. 应用IGF-1基因缺失小鼠研究IGF-1与乳腺肿瘤血管生成的关系[J]. 癌症, 2007, 26(11):1215–1220.
[117] Leung K W, Cheung L W, Pon Y L, et al. Ginsenoside Rb1 inhibits tube-like structure formation of endothelial cells by regulating pigment epithelium-derived factor through the oestrogen beta receptor[J]. Br J Pharmacol, 2007, 152(2): 207–215. DOI:10.1038/sj.bjp.0707359
[118] Kim J W, Jung S Y, Kwon Y H, et al. Ginsenoside Rg3 inhibits endothelial progenitor cell differentiation through attenuation of VEGF-dependent Akt/eNOS signaling[J]. Phytother Res, 2012, 26(9): 1286–1293. DOI:10.1002/ptr.v26.9
[119] Park T Y, Park M H, Shin W C, et al. Anti-metastatic potential of ginsenoside Rp1, a novel ginsenoside derivative[J]. Biol Pharm Bull, 2008, 31(9): 1802–1805. DOI:10.1248/bpb.31.1802
[120] 王强, 吴美清, 赵玲辉, 等. 人参皂苷Rh2对小鼠移植瘤生长及对细胞间连接黏附分子表达的影响[J]. 中国中药杂志, 2008, 33(18):2116–2119.
[121] Chen X P, Qian L L, Jiang H, et al. Ginsenoside Rg3 inhibits CXCR4 expression and related migrations in a breast cancer cell line[J]. Int J Clin Oncol, 2011, 16(5): 519–523. DOI:10.1007/s10147-011-0222-6
[122] Pan X Y, Guo H, Han J, et al. Ginsenoside Rg3 attenuates cell migration via inhibition of aquaporin 1 expression in PC-3M prostate cancer cells[J]. Eur J Pharmacol, 2012, 683(1/3): 27–34.
[123] Ha Y W, Ahn K S, Lee J C, et al. Validated quantification for selective cellular uptake of ginsenosides on MCF-7 human breast cancer cells by liquid chromatography-mass spectrometry[J]. Anal Bioanal Chem, 2010, 396(8): 3017–3025. DOI:10.1007/s00216-010-3515-0
[124] Cheong J H, Kim H, Hong M J, et al. Stereoisomer-specific anticancer activities of ginsenoside Rg3 and Rh2 in HepG2 cells:disparity in cytotoxicity and autophagy-inducing effects due to 20(S)-epimers[J]. Biol Pharm Bull, 2015, 38(1): 102–108. DOI:10.1248/bpb.b14-00603
[125] 周义发, 台桂花, 范玉莹, 等.人参多糖结构与其抗肿瘤活性的关系[A]//中国吉林国际人参大会论文集[C].长春:长春中医药大学, 2012.
[126] Cheng H, Li S, Fan Y, et al. Comparative studies of the antiproliferative effects of ginseng polysaccharides on HT-29 human colon cancer cells[J]. Med Oncol, 2011, 28(1): 175–181. DOI:10.1007/s12032-010-9449-8
[127] Fan Y, Cheng H, Li S, et al. Relationship of the inhibition of cell migration with the structure of ginseng pectic polysaccharides[J]. Carbohydr Polym, 2010, 81(2): 340–347. DOI:10.1016/j.carbpol.2010.02.028
[128] Zhang X, Li S, Sun L, et al. Further analysis of the structure and immunological activity of an RG-I type pectin from Panax ginseng[J]. Carbohydr Polym, 2012, 89(2): 519–525. DOI:10.1016/j.carbpol.2012.03.039
[129] 李杰.人参须根中人参炔醇的结构确证及对肺癌细胞株A549的诱导分化作用研究[D].重庆:重庆理工大学, 2011.
[130] Shi L, Pi Y, Luo C, et al. In vitro inhibitory activities of six gypenosides on human liver cancer cell line HepG2 and possible role of HIF-1alpha pathway in them[J]. Chem Biol Interact, 2015, 238: 48–54. DOI:10.1016/j.cbi.2015.06.004
[131] Kwak C W, Son Y M, Gu M J, et al. A bacterial metabolite, compound K, induces programmed necrosis in MCF-7 cells via GSK3beta[J]. J Microbiol Biotechnol, 2015, 25(7): 1170–1176. DOI:10.4014/jmb.1505.05057
[132] Yang Z, Zhao T, Liu H, et al. Ginsenoside Rh2 inhibits hepatocellular carcinoma through beta-catenin and autophagy[J]. Sci Rep, 2016. DOI:10.1038/srep19383
[133] Mai T T, Moon J, Song Y, et al. Ginsenoside F2 induces apoptosis accompanied by protective autophagy in breast cancer stem cells[J]. Cancer Lett, 2012, 321(2): 144–153. DOI:10.1016/j.canlet.2012.01.045
[134] Kim D G, Jung K H, Lee D G, et al. 20(S)-Ginsenoside Rg3 is a novel inhibitor of autophagy and sensitizes hepatocellular carcinoma to doxorubicin[J]. Oncotarget, 2014, 5(12): 4438–4451. DOI:10.18632/oncotarget
[135] Ko H, Kim Y J, Park J S, et al. Autophagy inhibition enhances apoptosis induced by ginsenoside Rk1 in hepatocellular carcinoma cells[J]. Biosci Biotechnol Biochem, 2009, 73(10): 2183–2189. DOI:10.1271/bbb.90250
[136] An I S, An S, Kwon K J, et al. Ginsenoside Rh2 mediates changes in the microRNA expression profile of human non-small cell lung cancer A549 cells[J]. Oncol Rep, 2013, 29(2): 523–528.
[137] Jiao L, Zhang X, Wang M, et al. Chemical and antihyperglycemic activity changes of ginseng pectin induced by heat processing[J]. Carbohydr Polym, 2014, 114: 567–573. DOI:10.1016/j.carbpol.2014.08.018