中草药  2017, Vol. 48 Issue (1): 62-66
0
  PDF    
狗牙根的化学成分研究
李碧君1,2,3, 刘瑶1,2,3, 顾爱彤1,2,3, 王峰1,2,3     
1. 广东药科大学中药学院, 广东 广州 510006;
2. 国家中医药管理局中药数字化质量评价技术重点研究室, 广东 广州 510006;
3. 广东高校中药质量工程技术研究中心, 广东 广州 510006
摘要: 目的 研究狗牙根Cynodon dactylon全草的化学成分。 方法 采用各种柱色谱方法对狗牙根化学成分进行分离纯化,根据理化性质和波谱数据进行结构鉴定。 结果 从狗牙根95%乙醇提取物的醋酸乙酯萃取部位中分离得到12个茋类二聚体,分别鉴定为leachianol G(1)、leachianol F(2)、parthenostilbenin B(3)、parthenostilbenin A(4)、restrytisol B(5)、caraphenol C(6)、pallidol(7)、laetevirenol A(8)、quadrangularin B(9)、quadrangularin C(10)、quadrangularin A(11)、parthenocissine A(12)。 结论 化合物1~12为首次从狗牙根属植物中分离得到。
关键词: 狗牙根     芪类二聚体     leachianol G     parthenostilbenin B     restrytisol B     caraphenol     pallidol    
Chemical constituents of Cynodon dactylon
LI Bi-jun1,2,3, LIU Yao1,2,3, GU Ai-tong1,2,3, WANG Feng1,2,3     
1. School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China;
2. Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou 510006, China;
3. Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangzhou 510006, China
Abstract: Objective To separate and identify chemical constituents from Cynodon dactylon. Methods The chemical constituents of the alcohol extract of C. dactylon were isolated and purified by various chromatography methods, and their structures were identified by physical and chemical properties and spectral data. Results Twelve compounds were separated from C. dactylon and their structures were examined by physicochemical characters and spectral data and identified as leachianol G (1), leachianol F (2), parthenostilbenin B (3), parthenostilbenin A (4), restrytisol B (5), caraphenol C (6), pallidol (7), laetevirenol A (8), quadrangularin B (9), quadrangularin C (10), quadrangularin A (11), and parthenocissine A (12). Conclusion Compounds 1-12 are isolated from C. dactylon for the first time.
Key words: Cynodon dactylon (L.) Pars.     Stilbene dipolymer     leachianol G     parthenostilbenin B     restrytisol B     caraphenol     pallidol    

狗牙根Cynodon dactylon (L.) Pars.为禾本科(Gramineae)狗牙根属Cynodon Rich.植物的全草,别名百慕大草,广泛分布于热带、亚热带地区,我国黄河流域以南的广大地区也有种植。目前收载于《中华本草》,其味苦、微甘,性凉,入肝经,有祛风活络、凉血止血、解毒的功效,用于风湿痹痛、半身不遂、劳伤吐血、鼻衄、便血、跌打损伤、疮疡肿毒等症[1]。据已有文献报道,狗牙根属植物中主要含有黄酮类、萜类、生物碱类、酚酸类化学成分[2],具有降糖、利尿、抗肿瘤、抗菌等药理作用[3-4]。为进一步研究狗牙根的化学成分,探寻其药效物质基础,本实验对狗牙根的醋酸乙酯部位进行研究,从中分离纯化得到12个茋类二聚体,分别鉴定为leachianol G(1)、leachianol F(2)、parthenostilbenin B(3)、parthenostilbenin A(4)、restrytisol B(5)、caraphenol C(6)、pallidol(7)、laetevirenol A(8)、quadrangularin B(9)、quadrangularin C(10)、quadrangularin A(11)、parthenocissine A(12)。化合物1~12均为首次从狗牙根属植物中分离得到。

1 仪器和材料

AVANCE-500型核磁共振仪(德国Bruker公司),LC-20A型高效液相色谱仪、CBM-20A型半制备液相色谱仪(日本岛津公司);ZWF-6型紫外灯(上海金达生化仪器有限公司);MP200型中压快速纯化制备色谱仪(天津博纳艾杰尔科技有限公司)。GF254预制薄层色谱硅胶板(10~40 μm)为安徽良臣硅源材料有限公司产品,柱色谱硅胶(200~300目)为青岛海洋化工厂生产,RP18反相硅胶(40~60 μm)为德国Merck公司产品,MCI CHP-20P gel购自日本三菱化学公司,Sephadex LH-20凝胶(25~100 μm)为GE Healthcare公司产品。色谱甲醇、乙腈购自广州华鑫试剂公司;其他试剂均为分析纯。

狗牙根药材于2015年6月购买于安徽亳州中药材市场,经广东药学院中药学院陈磊副教授鉴定为禾本科植物狗牙根Cynodon dactylon (L.) Pars.的干燥全草,标本(CD20150601)保存于广东药科大学中药学院。

2 提取与分离

狗牙根的干燥全草(20 kg),用95%乙醇加热回流提取3次,合并提取液减压浓缩成浸膏。浸膏用水溶解分散,依次用石油醚、醋酸乙酯、正丁醇进行萃取,减压回收溶剂,得石油醚、醋酸乙酯、正丁醇、水4种不同极性的部分。醋酸乙酯部位浸膏约150 g,经硅胶柱色谱,二氯甲烷-丙酮(100:0→0:100)梯度洗脱,得到5个部分A、B、C、D、E。E浸膏16.82 g,经反相MCI柱色谱,甲醇-水(20:80→100:0)梯度洗脱,得到5个亚组分E1~E5。其中,E3经Sephadex LH-20柱色谱(纯甲醇等度洗脱)纯化得6个组分E3.1~3.6,其中E3.3经半制备HPLC(甲醇-水40:60)得到化合物1(5.9 mg)、2(5 mg)、3(31 mg),E3.4经半制备HPLC(乙腈-甲酸水25:75)得到化合物4(3.2 mg)、5(27.3 mg)、6(10 mg)、7(4.4 mg),E3.5经半制备HPLC(甲醇-水38:62)得到化合物8(19.2 mg);E3.6经半制备HPLC(甲醇-水40:60)分离得2个组分E3.6.1~3.6.2,其中E3.6.1经Sephadex LH-20柱色谱(纯甲醇等度洗脱)纯化得到化合物9(4 mg)、10(2.1 mg),E3.6.2经半制备HPLC(乙腈-甲酸水溶液29:71)得到化合物11(31.9 mg)、12(8.6 mg)。

3 结构鉴定

化合物1:棕色无定形粉末(甲醇)。ESI-MS m/z: 473 [M+H]+1H-NMR (500 MHz, CD3OD) δ: 7.03 (2H, d, J=8.5 Hz, H-2a, 6a), 6.69 (2H, d, J=8.5 Hz, H-3a, 5a), 4.41 (1H, d, J=8.0 Hz, H-7a), 3.40 (1H, dd, J=8.0, 4.0 Hz, H-8a), 6.13 (1H, d, J=2.0 Hz, H-12a), 5.73 (1H, d, J=2.0 Hz, H-14a), 6.81 (2H, d, J=8.5 Hz, H-2b, 6b), 6.67 (2H, d, J=8.5 Hz, H-3b, 5b), 4.20 (1H, d, J=4.0 Hz, H-7b), 3.34 (1H, t, J=4.0 Hz, H-8b), 6.11 (2H, d, J=2.0 Hz, H-10b, 14b), 6.07 (1H, t, J=2.0 Hz, H-12b);13C-NMR (125 MHz, CD3OD) δ: 135.5 (C-1a), 130.1 (C-2a, 6a), 115.8 (C-3a, 5a), 157.9 (C-4a), 78.3 (C-7a), 62.6 (C-8a), 147.6 (C-9a), 124.0 (C-10a), 155.4 (C-11a), 102.7 (C-12a), 158.7 (C-13a), 106.6 (C-14a), 138.7 (C-1b), 129.7 (C-2b, 6b), 115.9 (C-3b, 5b), 157.7 (C-4b), 56.8 (C-7b), 60.1 (C-8b), 151.8 (C-9b), 106.4 (C-10b, 14b), 159.5 (C-11b, 13b), 101.4 (C-12b)。以上波谱数据与文献报道基本一致[5],故鉴定化合物1为leachianol G。

化合物2:棕色无定形粉末(甲醇)。ESI-MS m/z: 473 [M+H]+1H-NMR (500 MHz, CD3OD) δ: 6.80 (2H, d, J=8.5 Hz, H-2a, 6a), 6.64 (2H, d, J=8.5 Hz, H-3a, 5a), 4.35 (1H, d, J=8.0 Hz, H-7a), 3.38 (1H, dd, J=8.0, 4.0 Hz, H-8a), 6.24 (1H, d, J=2.0 Hz, H-12a), 6.59 (1H, d, J=2.0 Hz, H-14a), 6.77 (2H, d, J=8.5 Hz, H-2b, 6b), 6.70 (2H, d, J=8.5 Hz, H-3b, 5b), 4.19 (1H, d, J=4.0 Hz, H-7b), 2.79 (1H, t, J=4.0 Hz, H-8b), 5.81 (2H, d, J=2.5 Hz, H-10b, 14b), 6.02 (1H, t, J=2.5 Hz, H-12b);13C-NMR (125 MHz, CD3OD) δ: 136.0 (C-1a), 129.5 (C-2a, 6a), 115.9 (C-3a, 5a), 156.5 (C-4a), 78.2 (C-7a), 62.3 (C-8a), 149.5 (C-9a), 123.4 (C-10a), 155.6 (C-11a), 102.8 (C-12a), 159.2 (C-13a), 106.2 (C-14a), 138.2 (C-1b), 129.7 (C-2b, 6b), 115.9 (C-3b, 5b), 156.4 (C-4b), 56.1 (C-7b), 60.3 (C-8b), 151.4 (C-9b), 106.8 (C-10b, 14b), 159.3 (C-11b, 13b), 101.4 (C-12b)。以上波谱数据与文献报道基本一致[5],故鉴定化合物2为leachianol F。

化合物3:棕色无定形粉末(甲醇)。ESI-MS m/z: 486 [M+H]+1H-NMR (500 MHz, CD3OD) δ: 6.96 (2H, d, J=8.5 Hz, H-2a, 6a), 6.72 (2H, d, J=8.5 Hz, H-3a, 5a), 3.85 (1H, d, J=8.0 Hz, H-7a), 3.31 (2H, m, H-8a), 6.13 (1H, d, J=2.0 Hz, H-12a), 5.66 (1H, d, J=2.0 Hz, H-14a), 6.79 (2H, d, J=8.5 Hz, H-2b, 6b), 6.66 (2H, d, J=8.5 Hz, H-3b, 5b), 4.20 (1H, d, J=3.0 Hz, H-7b), 3.31~3.37 (2H, m, H-8b), 6.07~6.09 (3H, m, H-10b, 14b), 6.07~6.09 (3H, m, H-12b), 2.95 (3H, s, OCH3);13C-NMR (125MHz, CD3OD) δ: 132.1 (C-1a), 130.8 (C-2a, 6a), 116.0 (C-3a, 5a), 158.3 (C-4a), 88.2 (C-7a), 61.6 (C-8a), 147.3 (C-9a), 124.0 (C-10a), 155.5 (C-11a), 102.7 (C-12a), 158.7 (C-13a), 106.3 (C-14a), 138.6 (C-1b), 129.7 (C-2b, 6b), 115.9 (C-3b, 5b), 156.5 (C-4b), 56.7 (C-7b), 60.1 (C-8b), 151.5 (C-9b), 106.8 (C-10b, 14b), 159.5 (C-11b, 13b), 101.4 (C-12b), 56.3 (OCH3)。以上波谱数据与文献报道基本一致[6],故鉴定化合物3为2-(3, 5-二羟基苯基)-2, 3-二氢-3-(4-羟基苯基)-1-[(4-羟基苯基)甲氧基甲基-一氢-茚-4, 6-二醇(parthenostilbenin B)。

化合物4:棕色无定形粉末(甲醇)。ESI-MS m/z: 486 [M+H]+1H-NMR (500 MHz, CD3OD) δ: 6.69 (2H, d, J=8.5 Hz, H-2a, 6a), 6.62 (2H, d, J=8.5 Hz, H-3a, 5a), 3.86 (1H, d, J=9.0 Hz, H-7a), 3.28 (1H, dd, J=9.0, 3.0 Hz, H-8a), 6.24 (1H, d, J=1.5 Hz, H-12a), 6.63 (1H, d, J=1.5 Hz, H-14a), 6.79 (2H, d, J=8.0 Hz, H-2b, 6b), 6.66 (2H, J=9.0 Hz, H-3b, 5b), 4.17 (1H, d, J=3.0 Hz, H-7b), 2.70 (1H, t, J=3.0 Hz, H-8b), 5.73 (2H, d, J=2.0 Hz, H-10b, 14b), 5.99 (1H, t, J=2.0 Hz, H-12b), 2.96 (3H, s, OCH3);13C-NMR (125 MHz, CD3OD) δ: 132.5 (C-1a), 130.3 (C-2a, 6a), 116.0 (C-3a, 5a), 158.1 (C-4a), 89.0 (C-7a), 60.2 (C-8a), 149.8 (C-9a), 123.3 (C-10a), 155.5 (C-11a), 102.8 (C-12a), 159.2 (C-13a), 106.5 (C-14a), 138.2 (C-1b), 129.7 (C-2b, 6b), 115.9 (C-3b, 5b), 156.6 (C-4b), 50.1 (C-7b), 56.9 (C-8b), 151.4 (C-9b), 106.4 (C-10b, 14b), 159.3 (C-11b, 13b), 101.3 (C-12b), 56.3 (OCH3)。以上波谱数据与文献报道基本一致[6],故鉴定化合物4为2-(3, 5-二羟基苯基)-2, 3-二氢-3-(4-羟基苯基)-1-[(4-羟基苯基)甲氧基甲基-一氢-茚-4, 6-二醇(parthenostilbenin A)。

化合物5:棕色无定形粉末(甲醇)。ESI-MS m/z: 473 [M+H]+1H-NMR (500 MHz, CD3OD) δ: 7.03 (2H, d, J=8.5 Hz, H-2a, 6a), 6.58 (2H, d, J=8.5 Hz, H-3a, 5a), 5.48 (1H, d, J=9.0 Hz, H-7a), 3.93 (1H, t, H-8a), 5.96 (1H, d, J=2.0 Hz, H-10a), 5.88 (1H, t, J=2.0 Hz, H-12a), 5.96 (1H, d, J=2.0 Hz, H-14a), 7.27 (2H, d, J=8.5 Hz, H-2b, 6b), 6.77 (2H, d, J=8.5 Hz, H-3b, 5b), 4.98 (1H, d, J=9.5 Hz, H-7b), 3.39 (1H, t, H-8b), 6.17 (2H, d, J=2.5 Hz, H-10b, 14b), 6.08 (1H, t, J=2.5 Hz, H-12b);13C-NMR (125MHz, CD3OD) δ: 132.7 (C-1a), 129.2 (C-2a, 6a), 115.4 (C-3a, 5a), 157.3 (C-4a), 85.3 (C-7a), 60.5 (C-8a), 143.3 (C-9a), 109.3 (C-10a), 157.8 (C-11a), 101.6 (C-12a), 157.8 (C-13a), 109.3 (C-14a), 132.2 (C-1b), 129.3 (C-2b, 6b), 116.2 (C-3b, 5b), 158.4 (C-4b), 88.5 (C-7b), 60.4 (C-8b), 143.2 (C-9b), 106.8 (C-10b, 14b), 159.6 (C-11b, 13b), 102.3 (C-12b)。以上波谱数据与文献报道基本一致[7],故鉴定化合物5为restrytisol B。

化合物6:黄色无定形粉末(甲醇)。ESI-MS m/z: 456 [M+H]+1H-NMR (500 MHz, CD3OD) δ: 7.82 (1H, d, J=9.0 Hz, H-2a), 6.90 (2H, d, J=8.5 Hz, H-3a, 5a), 7.82 (1H, d, J=9.0 Hz, H-6a), 5.09 (1H, d, J=8.0 Hz, H-8a), 6.16 (1H, d, J=1.2 Hz, H-12a), 5.98 (1H, d, J=1.2 Hz, H-14a), 6.81 (2H, d, J=9.0 Hz, H-2b, 6b), 6.63 (2H, d, J=8.5 Hz, H-3b, 5b), 4.31 (1H, d, J=8.0 Hz, H-7b), 3.56 (1H, t, J=8.0 Hz, H-8b), 6.13 (2H, d, J=2.0 Hz, H-10b, 14b), 6.10 (1H, t, J=2.0 Hz, H-12b);13C-NMR (125 MHz, CD3OD) δ: 130.6 (C-1a), 132.9 (C-2a, 6a), 116.6 (C-3a, 5a), 164.6 (C-4a), 201.3 (C-7a), 61.0 (C-8a), 146.3 (C-9a), 123.9 (C-10a), 155.8 (C-11a), 103.3 (C-12a), 159.7 (C-13a), 104.1 (C-14a), 137.0 (C-1b), 130.0 (C-2b, 6b), 115.9 (C-3b, 5b), 156.7 (C-4b), 57.4 (C-7b), 62.5 (C-8b), 147.2 (C-9b), 107.4 (C-10b, 14b), 159.6 (C-11b), 102.1 (C-12b), 159.7 (C-13b)。以上波谱数据与文献报道基本一致[8],故鉴定化合物6为caraphenol C。

化合物7:白色无定形粉末(甲醇)。ESI-MS m/z: 455 [M+H]+1H-NMR (500 MHz, CD3OD) δ: 6.92 (4H, d, J=8.5 Hz, H-2a, 2b, 6a, 6b), 6.66 (4H, d, J=8.5 Hz, H-3a, 3b, 5a, 5b), 6.53 (2H, d, J=1.8 Hz, H-10a, 10b), 6.11 (2H, d, H-12a, 12b), 4.47 (2H, s, H-7a, 7b), 3.73 (2H, s, H-8a, 8b);13C-NMR (125 MHz, CD3OD) δ: 159.5 (C-11a, 11b), 156.4 (C-4a, 4b), 155.7 (C-13a, 13b), 151.0 (C-9a, 9b), 138.6 (C-1a, 1b), 129.3 (C-2a, 6a, 2b, 6b), 124.0 (C-14a, 14b), 116.1 (C-3a, 5a, 3b, 5b), 103.5 (C-10a, 10b), 102.7 (C-12a, 12b), 61.1 (C-8a, 8b), 54.9 (C-7a, 7b)。以上波谱数据与文献报道基本一致[9],故鉴定化合物7为pallidol。

化合物8:白色无定形粉末(甲醇)。ESI-MS m/z: 453 [M+H]+1H-NMR (500 MHz, CD3OD) δ: 6.78 (2H, d, J=8.5 Hz, H-2a, 6a), 6.55 (2H, d, J=8.5 Hz, H-3a, 5a), 4.46 (1H, d, J=3.5 Hz, H-7a), 4.12 (1H, d, J=3.5 Hz, H-8a), 5.96 (2H, d, J=2.5 Hz, H-10a, 14a), 6.02 (1H, t, J=2.5 Hz, H-12a), 7.45 (1H, d, J=8.5 Hz, H-2b), 6.84 (1H, dd, J=8.5, 2.5 Hz, H-3b), 8.78 (1H, d, J=2.5 Hz, H-5b), 7.00 (1H, brs, H-7b), 6.57 (1H, brs, H-12b);13C-NMR (125MHz, CD3OD) δ: 138.4 (C-1a), 129.4 (C-2a, 6a), 116.2 (C-3a, 5a), 156.8 (C-4a), 58.7 (C-7a), 63.0 (C-8a), 150.2 (C-9a), 107.3 (C-10a, 14a), 159.7 (C-11a, 13a), 101.8 (C-12a), 128.9 (C-1b), 130.3 (C-2b), 115.4 (C-3b), 156.2 (C-4b), 112.9 (C-5b), 132.7 (C-6b), 122.4 (C-7b), 143.3 (C-8b), 143.0 (C-9b), 120.3 (C-10b), 152.8 (C-11b), 105.0 (C-12b), 157.8 (C-13b), 112.4 (C-14b)。以上波谱数据与文献报道基本一致[10],故鉴定化合物8为letevirenol A。

化合物9:棕色无定形粉末(甲醇)。ESI-MS m/z: 501 [M+H]+1H-NMR (500 MHz, CD3OD) δ: 6.96 (2H, d, J=8.5 Hz, H-2a, 6a), 6.72 (2H, d, J=8.5 Hz, H-3a, 5a), 3.97 (1H, d, J=8.5 Hz, H-7a), 3.32 (1H, m, H-8a), 6.13 (1H, d, J=2.0 Hz, H-12a), 5.63 (1H, d, J=2.0 Hz, H-14a), 6.82 (2H, d, J=8.5 Hz, H-2b, 6b), 6.66 (2H, d, J=8.5 Hz, H-3b, 5b), 4.22 (1H, d, J=3.0 Hz, H-7b), 3.40 (1H, m, H-8b), 6.10 (2H, d, J=2.0 Hz, H-10b, 14b), 6.08 (1H, t, J=2.0 Hz, H-12b), 2.97 (1H, dq, J=9.7 Hz, H-15a), 3.21 (1H, dq, J=9.7 Hz, H-15b), 0.96 (1H, t, J=7.0 Hz, H-16);13C-NMR (125 MHz, CD3OD) δ: 132.9 (C-1a), 130.7 (C-2a, 6a), 115.9 (C-3a, 5a), 158.2 (C-4a), 85.9 (C-7a), 61.8 (C-8a), 147.4 (C-9a), 124.0 (C-10a), 155.5 (C-11a), 102.7 (C-12a), 158.6 (C-13a), 106.4 (C-14a), 138.7 (C-1b), 129.7 (C-2b, 6b), 115.9 (C-3b, 5b), 56.2 (C-7b), 60.2 (C-8b), 151.8 (C-9b), 106.8 (C-10b, 14b), 159.5 (C-11b, 13b), 101.4 (C-12b), 64.7 (C-15), 15.4 (C-16)。以上波谱数据与文献报道基本一致[11],故鉴定化合物9为quadrangularin B。。

化合物10:棕色无定形粉末(甲醇)。ESI-MS m/z: 501 [M+H]+1H-NMR (500 MHz, CD3OD) δ: 6.66 (2H, d, J=8.5 Hz, H-2a, 6a), 6.60 (2H, d, J=8.5 Hz, H-3a, 5a), 3.94 (1H, d, J=9.0 Hz, H-7a), 3.25 (1H, m, H-8a), 6.24 (1H, d, J=2.0 Hz, H-12a), 6.67 (1H, d, J=2.0 Hz, H-14a), 6.79 (2H, d, J=8.5 Hz, H-2b, 6b), 6.69 (2H, d, J=8.5 Hz, H-3b, 5b), 4.17 (1H, d, J=2.5 Hz, H-7b), 2.71 (1H, m, H-8b), 5.72 (2H, d, J=2.0 Hz, H-10b, 14b), 5.99 (1H, t, J=2.0 Hz, H-12b), 3.14 (1H, dq, J=9.5 Hz, H-15a), 3.27 (1H, dq, J=9.5 Hz, H-15b), 1.09 (1H, t, J=7.0, H-16);13C-NMR (125 MHz, CD3OD) δ: 133.3 (C-1a), 130.2 (C-2a, 6a), 115.9 (C-3a, 5a), 158.0 (C-4a), 87.0 (C-7a), 61.2 (C-8a), 150.0 (C-9a), 123.3(C-10a), 155.4 (C-11a), 102.8 (C-12a), 159.1 (C-13a), 106.7 (C-14a), 138.3 (C-1b), 129.7 (C-2b, 6b), 115.9 (C-3b, 5b), 56.1 (C-7b), 60.0 (C-8b), 151.6 (C-9b), 106.3 (C-10b, 14b), 159.3 (C-11b, 13b), 101.3 (C-12b), 65.1 (C-15), 15.6 (C-16)。以上波谱数据与文献报道基本一致[11],故鉴定化合物10为quadrangularin C。

化合物11:棕色无定形粉末(甲醇)。ESI-MS m/z: 479 [M+H]+1H-NMR (500 MHz, CD3OD) δ: 7.12 (2H, d, J=8.5 Hz, H-2a, 6a), 6.63 (2H, d, J=8.5 Hz, H-3a, 5a), 6.98 (1H, s, H-7a), 6.18 (1H, d, J=2.0 Hz, H-12a), 6.70 (1H, d, J=2.0 Hz, H-13a), 6.88 (2H, d, J=8.5 Hz, H-2b, 6b), 6.59 (2H, d, J=8.5 Hz, H-3b, 5b), 4.17 (1H, brs, H-7b), 4.02 (1H, brs, H-8b), 6.22 (1H, d, J=2.5 Hz, H-10b), 6.10 (1H, t, J=2.5 Hz, H-12b), 6.22 (1H, d, J=2.5 Hz, H-14b);13C-NMR (125 MHz, CD3OD) δ: 130.4 (C-1a), 131.4 (C-2a, 6a), 116.2 (C-3a, 5a), 157.6 (C-4a), 123.3 (C-7a), 142.5 (C-8a), 147.9 (C-9a), 125.6 (C-10a), 156.3 (C-11a), 103.9 (C-12a), 159.8 (C-1, 3a), 98.6 (C-14a), 138.7 (C-1b), 129.1 (C-2b, 6b), 116.2 (C-3b, 5b), 156.6 (C-4b), 58.3 (C-7b), 61.3 (C-8b), 149.9 (C-9b), 106.8 (C-10b), 159.8 (C-11b), 101.7 (C-12b), 159.8 (C-13b), 106.8 (C-14b)。以上波谱数据与文献报道基本一致[12],故鉴定化合物11为quadrangularin A。

化合物12:棕色无定形粉末(甲醇)。ESI-MS m/z: 479 [M+H]+1H-NMR (500 MHz, CD3OD) δ: 7.19 (2H, d, J=8.5 Hz, H-2a, 6a), 6.87 (2H, d, J=8.5 Hz, H-3a, 5a), 6.26 (1H, s, H-7a), 6.15 (1H, d, J=2.5 Hz, H-12a), 6.44 (1H, d, J=2.5 Hz, H-13a), 6.94 (2H, d, J=8.5 Hz, H-2b, 6b), 6.77 (2H, d, J=8.5 Hz, H-3b, 5b), 4.19 (1H, brs, H-7b), 3.67 (1H, brs, H-8b), 6.09 (1H, d, J=2.0 Hz, H-10b), 6.11 (1H, t, J=2.0 Hz, H-12b), 6.09 (1H, d, J=2.0 Hz, H-14b);13C-NMR (125 MHz, CD3OD) δ: 127.8 (C-1a), 130.2 (C-2a, 6a), 116.2 (C-3a, 5a), 157.5 (C-4a), 124.4 (C-7a), 149.5 (C-8a), 142.3 (C-9a), 126.5 (C-10a), 155.3 (C-11a), 104.0 (C-12a), 158.3 (C-1, 3a), 102.4 (C-14a), 137.5 (C-1b), 128.1 (C-2b, 6b), 115.6 (C-3b, 5b), 156.7 (C-4b), 54.6 (C-7b), 63.3 (C-8b), 145.8 (C-9b), 105.3 (C-10b), 159.3 (C-11b), 101.8 (C-12b), 159.8 (C-13b), 105.9 (C-14b)。以上波谱数据与文献报道基本一致[12],故鉴定化合物12为parthenocissine A。

参考文献
[1] 唐欣, 向佐湘, 苏鹏. 狗牙根研究进展[J]. 作物研究, 2009, 23(5):383–386.
[2] Shabi M M, Gayathri K, Venkatalakshmi R, et al. Chemical constituents of hydro alcoholic extract and phenolic fraction of Cynodon dactylon[J]. Int J Chem Tech Res, 2010, 2(1): 149–154.
[3] Karthik D, Ravikumar S. A study on the protective effect of Cynodon dactylon leaves extract in diabetic rats[J]. Biomed Environ Sci, 2011, 24(2): 190–199.
[4] Chen G H, Zong J, Gao Y, et al. Genetic variation of salinity tolerance in Chinese natural bermudagrass (Cynodon dactylon (L.) Pers.) germplasm resources[J]. Acta Agr Scand B-S P, 2014, 64(5): 416–424.
[5] Xie J S, Wen J, Wang X F, et al. Potassium hexacyanoferrate (Ⅲ)-catalyzed dimerization of hydroxystilbene:Biomimetic synthesis of indane stilbene dimers[J]. Molecules, 2015, 20(12): 22662–22673. DOI:10.3390/molecules201219872
[6] 张元, 王先分, 侯琦, 等. AgOAc为氧化剂制备活性白藜芦醇二聚体衍生物[J]. 有机化学, 2014, 34(5):886–892.
[7] Cichewicz R H, Kouzi S A, Hamann M T, et al. Dimerization of resveratrol by the grapevine pathogen Botrytis cinerea[J]. J Nat Prod, 2000, 63(1): 29–33. DOI:10.1021/np990266n
[8] Luo H, Zhang L, Hu C, et al. Five novel oligostilbenes from the roots of Caragana sinica[J]. Tetrahedron, 2001, 57(23): 4849–4854. DOI:10.1016/S0040-4020(01)00427-6
[9] Liu W, Hu L, Hu Q, et al. New resveratrol oligomer derivatives from the roots of Rheum lhasaense[J]. Molecules, 2013, 18(6): 7093–7102. DOI:10.3390/molecules18067093
[10] He S, Wu B, Pan Y J, et al. Stilbene oligomers from parthenocissus laetevirens:Isolation, biomimetic synthesis, absolute configuration, and implication of antioxidative defense system in the plant[J]. J Org Chem, 2008, 73(14): 5233–5241. DOI:10.1021/jo8001112
[11] Adesanya S A, Nia R, Martin M, et al. Stilbene derivatives from Cissus quadrangularis[J]. J Nat Prod, 1999, 62(12): 1694–1695. DOI:10.1021/np9902744
[12] He S, Lu Y, Wu B, et al. Isolation and purification of antioxidative isomeric polyphenols from the roots of Parthenocissus laetevirens by counter-current chromatography[J]. J Chromatogr A, 2007, 1151(1/2): 175–179.
狗牙根的化学成分研究
李碧君, 刘瑶, 顾爱彤, 王峰