中草药  2017, Vol. 48 Issue (1): 47-51
0
  PDF    
苍耳子的化学成分研究
姜海1, 杨柳1, 邢绪东1, 张妍妍1, 颜美玲1, 杨炳友1, 王秋红1,2, 匡海学1     
1. 黑龙江中医药大学 北药基础与应用研究省部共建教育部重点实验室 黑龙江省中药及天然药物药效物质基础研究重点实验室, 黑龙江 哈尔滨 150040;
2. 广东药科大学, 广东 广州 510006
摘要: 目的 研究菊科植物苍耳Xanthium sibiricum的干燥成熟带总苞果实(苍耳子)的化学成分。 方法 采用硅胶柱色谱、ODS反相柱色谱、Sephadex LH-20、MCI gel CHP 20P和HPLC等色谱方法进行分离纯化,并结合HR-ESI-MS与现代波谱学技术鉴定化合物结构。 结果 从苍耳子70%乙醇提取物中分离得到14个化合物,分别鉴定为xanthiazone(1)、羟基苍耳子噻嗪双酮苷(2)、尿苷(3)、3-吲哚甲醛(4)、naphthisoxazol A(5)、氨基苯丙酰胺(6)、N-benzoyl-2-aminoethyl-β-D-glucopyranoside(7)、ω-hydroxypropioguaiacone(8)、arbutin(9)、icariside D1(10)、lcariside F2(11)、(+)-erythro-guaiacylglycerol-8-O-4'-(coniferyl alcohol)ether(12)、(-)-threo-guaiacylglycerol-8-O-4'-(coniferyl alcohol)ether(13)和coniferine(14)。 结论 化合物3~14为首次从苍耳属植物中分离得到。
关键词: 苍耳子     菊科     尿苷     3-吲哚甲醛     氨基苯丙酰胺     icariside D1     lcariside F2     coniferine    
Chemical constituents from fruits of Xanthium sibiricum
JIANG Hai1, YANG Liu1, XING Xu-dong1, ZHANG Yan-yan1, YAN Mei-ling1, YANG Bing-you1, WANG Qiu-hong1,2, KUANG Hai-xue1     
1. Key Laboratory of Chinese Materia Medica Ministry of Education, Heilongjiang Key Laboratory of Traditional Chinese Medicine and Natural Medicine Pharmacodynamics Material Bases, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
2. Guangdong Pharmaceutical University, Guangzhou 510006, China
Abstract: Objective To study the chemical constituents from the fruits of Xanthium sibiricum. Methods The constituents were isolated and purified by silica gel column chromatography, ODS reverse phase column chromatography, Sephadex LH-20, MCI gel CHP 20P, and HPLC methods. The structures were identified by HR-ESI-MS and spectral analysis methods. Results Fourteen compounds were isolated from the fruits of X. sibiricum and the structures were identified as xanthiazone (1), 2-hydroxy-xanthiside (2), uridine (3), indole-3-carbaldehyde (4), naphthisoxazol A (5), aminobenzene propanamide (6), N-benzoyl-2-aminoethyl β-D-glucopyranoside (7), ω-hydroxypropioguaiacone (8), arbutin (9), icariside D1 (10), lcariside F2 (11), (+)-erythro-uaiacylglycerol-8-O-4'-(coniferyl alcohol) ether (12), (-)-threo-guaiacylglycerol-8-O-4'-(coniferyl alcohol) ether (13), and coniferine (14). Conclusion Compounds 3-14 are obtained from the fruits of X. sibiricum for the first time.
Key words: fruits of Xanthium sibiricum     Compositae     uridine     indole-3-carbaldehyde     amino benzenepropanamide     icariside D1     lcariside F2     coniferine    

苍耳子为菊科植物苍耳Xanthium sibiricum Patr.的干燥成熟带总苞的果实,性温,味辛、苦,有毒,归肺经,具有散风寒、通鼻窍、祛风湿的功效,临床常用于治疗风寒头痛、鼻塞流涕、湿痹拘挛、风疹瘙痒[1]。现代药理学研究发现其具有抗微生物作用[2],对心血管系统[3]、血液系统[4]以及免疫系统功能[5]也有一定的影响,而且具有抗氧化、抗炎和镇痛作用[6-7]。苍耳子所含化学成分复杂多样,主要包括甾醇类、噻嗪类、倍半萜类、水溶性苷类、酚酸及其衍生物、黄酮类、蒽醌类等化学成分[8-11]。本课题组前期研究发现苍耳子所含的部分化合物具有抗炎活性,为了更加深入全面地探寻活性化合物,本实验对苍耳子70%乙醇提取物进行系统研究,分离得到14个化合物,分别鉴定为xanthiazone(1)、羟基苍耳子噻嗪双酮苷(2-hydroxy-xanthiside,2)、尿苷(uridine,3)、3-吲哚甲醛(indole-3-carbaldehyde,4)、naphthisoxazol A(5)、氨基苯丙酰胺(amino benzenepropanamide,6)、N-benzoyl-2-aminoethyl-β-D-glucopyranoside(7)、ω-hydroxypropioguaiacone(8)、arbutin(9)、icariside D1(10)、lcariside F2(11)、(+)-erythro-guaiacylglycerol-8-O-4′-(coniferyl alcohol) ether(12)、(−)-threo-guaiacylglycerol-8-O-4′-(coniferyl alcohol) ether(13)、coniferine(14)。化合物3~14为首次从苍耳属植物中分离得到。

1 仪器与材料

Bruker-400核磁共振光谱仪(德国Bruker公司);ACQUITY Ultra Performance LCTM液质联用仪(美国Waters公司);2695-2996型分析HPLC色谱仪(美国Waters公司);515-2414型制备HPLC色谱仪(美国Waters公司);柱色谱硅胶和薄层色谱用硅胶G、H、GF254(青岛海洋化工有限公司),Sephadex LH-20凝胶(Pharmaciagongsi公司),MCI gel CHP 20P(日本三菱化学公司),ODS反相柱色谱(日本YMC公司),所用试剂均为分析纯(天津富宇公司);常规试剂均为分析纯;超纯水为Milli-Q纯水仪(Millipore,USA)自制。

苍耳子采收于黑龙江省哈尔滨市五常县,原植物标本存放于黑龙江中医药大学药学院(20111077),经黑龙江中医药大学药学院中药资源教研室王振月教授鉴定为苍耳Xanthium sibiricum Patr.的干燥带苞果实。

2 提取与分离

苍耳子干燥果实(2.7 kg)用70%乙醇提取3次,合并提取液,减压回收溶剂。分别用醋酸乙酯、正丁醇萃取,得正丁醇萃取部位59.4 g。正丁醇部位用二氯甲烷-甲醇(20:1、10:1、5:1、2:1)洗脱,对其中二氯甲烷-甲醇(10:1)组分进行反复柱色谱分离得组分Fr. 1~9,对Fr. 3进行反相ODS柱色谱,甲醇-水(1:1)洗脱获得Fr. 3-1,再经过制备液相色谱分离,甲醇-水(1:4)纯化得到化合物1(18 mg)、2(25 mg)、3(7 mg)。对Fr. 4进行Sephadex LH-20凝胶柱色谱分离,甲醇洗脱,合并后获得3个组分,其中Fr. 4-3再经过制备液相色谱分离,甲醇-水(1:1)洗脱得到化合物4(19 mg)、5(27 mg)、6(14.1 mg)、7(18.6 mg)、8(27.7 mg)。Fr. 6进行MCI gel CHP 20P反复柱色谱分离,甲醇-水(1:3)洗脱,获得各组分再经过制备液相分离,甲醇-水(1.5:1)纯化得到化合物9(26.3 mg)、10(28.2 mg)、11(9.7 mg)、12(17.9 mg)、13(10.3 mg)、14(25.9 mg)。

3 结构鉴定

化合物1:黄色无定形粉末,易溶于甲醇。HR-ESI-MS m/z: 239.061 6 [M]+,分子式为C11H13NSO31H-NMR (400 MHz, CD3OD) δ: 3.48 (2H, s, H-2), 6.54 (1H, s, H-6), 1.45 (3H, s, H-9), 1.45 (3H, s, H-10), 4.44 (2H, s, H-11);13C-NMR (100 MHz, CD3OD) δ: 29.7 (C-2), 164.7 (C-3), 131.0 (C-4a), 177.2 (C-5), 121.5 (C-6), 171.8 (C-7), 43.4 (C-8), 143.4 (C-8a), 27.5 (C-9), 27.4 (C-10), 61.2 (C-11)。以上数据与文献报道[12]一致,故鉴定化合物1为xanthiazone。

化合物2:黄色无定形粉末,易溶于甲醇。HR-ESI-MS m/z: 417.099 1 [M]+,分子式为C17H23NSO91H-NMR (400 MHz, CD3OD) δ: 5.28 (1H, s, H-2), 6.67 (1H, s, H-6), 1.47 (3H, s, H-9), 1.46 (3H, s, H-10), 4.52 (1H, d, J=16.0 Hz, H-11a), 4.78 (1H, d, J=16.0 Hz, H-11b), 4.36 (1H, d, J=7.7 Hz, H-1′), 3.30 (1H, m, H-2′), 3.35 (1H, m, H-3′), 3.25 (1H, m, H-4′), 3.38 (1H, m, H-5′), 3.47 (1H, d, J=11.7, 2.0 Hz, H-6a′), 3.89 (1H, d, J=11.7, 5.0 Hz, H-6b′);13C-NMR (100 MHz, CD3OD) δ: 70.9 (C-2), 164.8 (C-3), 131.1 (C-4a), 177.2 (C-5), 123.2 (C-6), 167.2 (C-7), 43.4 (C-8), 143.4 (C-8a), 27.2 (C-9), 27.6 (C-10), 64.4 (C-11), 103.8 (C-1′), 75.1 (C-2′), 78.2 (C-3′), 71.7 (C-4′), 78.1 (C-5′), 62.9 (C-6′)。以上数据与文献报道[13]一致,故鉴定化合物2为羟基苍耳子噻嗪双酮苷。

化合物3:白色无定形粉末,易溶于甲醇。HR-ESI-MS m/z: 244.069 5 [M]+,分子式为C9H12N2O61H-NMR (400 MHz, CD3OD) δ: 5.69 (1H, d, J=8.1 Hz, H-5), 8.00 (1H, d, J=8.1 Hz, H-6), 5.89 (1H, d, J=4.6 Hz, H-1′), 4.15 (1H, dd, J=4.5, 3.6 Hz, H-2′), 4.15 (1H, dd, J=4.5, 3.6 Hz, H-3′), 3.99 (1H, m, H-4′), 3.78 (1H, m, H-5′);13C-NMR (100 MHz, CD3OD) δ: 152.5 (C-2), 166.2 (C-4), 102.6 (C-5), 142.7 (C-6), 90.7 (C-1′), 71.3 (C-2′), 75.7 (C-3′), 86.4 (C-4′), 62.3 (C-5′)。以上数据与文献报道[14]一致,故鉴定化合物3为尿苷。

化合物4:白色无定形粉末,易溶于甲醇。HR-ESI-MS m/z: 146.052 8 [M+H]+,分子式为C9H7NO。1H-NMR (400 MHz, CD3OD) δ: 8.09 (1H, s, H-2), 8.15 (1H, dd, J=6.8, 1.2 Hz, H-4), 7.26 (1H, td, J=7.2, 1.4 Hz, H-5), 7.23 (1H, td, J=7.2, 1.4 Hz, H-6), 7.47 (1H, dd, J=6.8, 1.3 Hz, H-7), 9.88 (1H, s, H-8);13C-NMR (100 MHz, CD3OD) δ: 139.7 (C-2), 120.1 (C-3), 125.7 (C-3a), 125.0 (C-4), 122.4 (C-5), 123.6 (C-6), 113.1 (C-7), 138.9 (C-7a), 187.4 (C-8)。以上数据与文献报道[15]一致,故鉴定化合物4为3-吲哚甲醛。

化合物5:黄色油状物,易溶于甲醇。HR-ESI-MS m/z: 188.062 8 [M+H]+,分子式为C11H9NO21H-NMR (400 MHz, CD3OD) δ: 7.19 (1H, s, H-4), 7.69 (1H, brd, J=7.8 Hz, H-5), 7.04 (1H, ddd, J=7.8, 6.9, 0.9 Hz, H-6), 7.11 (1H, ddd, J=7.8, 6.9, 0.9 Hz, H-7), 7.36 (1H, brd, J=7.8 Hz, H-8), 3.86 (1H, dd, J=9.2, 3.7 Hz, H-9a) 3.51 (1H, dd, J=15.1, 3.7 Hz, H-9α), 3.15 (1H, dd, J=15.1, 9.2 Hz, H-9β);13C-NMR (100 MHz, CD3OD) δ: 174.6 (C-3), 109.7 (C-3a), 112.4 (C-4), 128.5 (C-4a), 119.4 (C-5), 120.1 (C-6), 122.9 (C-7), 125.1 (C-8), 138.4 (C-8a), 28.6 (C-9), 56.8 (C-9a)。以上数据与文献报道[16]一致,故鉴定化合物5为naphthisoxazol A。

化合物6:黄色无定形粉末,易溶于甲醇。HR-ESI-MS m/z: 165.079 0 [M]+,分子式为C9H11NO21H-NMR (400 MHz, CD3OD) δ: 7.25~7.36 (5H, m, H-2, 3, 4, 5, 6), 3.50 (1H, dd, J=14.7, 4.0 Hz, H-2′), 3.33 (1H, d, J=4.0 Hz, H-3′), 3.15 (1H, d, J=14.5 Hz, H-3′);13C-NMR (100 MHz, CD3OD) δ: 137.4 (C-1), 173.9 (C-1′), 130.0 (C-2, 6), 130.4 (C-3, 5), 128.4 (C-4), 57.6 (C-2′), 38.3 (C-3′)。以上数据与文献报道[17]一致,故鉴定化合物6为氨基苯丙酰胺。

化合物7:白色无定形粉末,易溶于甲醇。HR-ESI-MS m/z: 328.131 8 [M+H]+,分子式为C15H21NO71H-NMR (400 MHz, DMSO-d6) δ: 7.83 (2H, d, J=7.1 Hz, H-2, 6), 7.46 (2H, d, J=7.1 Hz, H-3, 5), 7.53 (1H, d, J=7.2 Hz, H-4), 3.09 (1H, m, H-8), 3.53 (1H, m, H-8), 3.86 (1H, m, H-9a), 3.62 (1H, m, H-9b), 8.44 (1H, t, J=5.4 Hz, -NH), 4.18 (1H, d, J=7.8 Hz, H-1′), 3.20 (1H, m, H-2′), 3.17 (1H, m, H-3′), 3.25 (1H, m, H-4′), 3.28 (1H, m, H-5′), 3.78 (1H, dd, J=12.0, 2.0 Hz, H-6′a), 3.59 (1H, dd, J=12.0, 5.0 Hz, H-6′b);13C-NMR (100 MHz, DMSO-d6)δ: 134.3 (C-1), 127.1 (C-2, 6), 128.3 (C-3, 5), 131.2 (C-4), 166.4 (C-7), 39.3 (C-8), 61.0 (C-9), 103.1 (C-1′), 73.4 (C-2′), 76.5 (C-3′), 70.0 (C-4′), 76.8 (C-5′), 63.0 (C-6′)。以上数据与文献报道[18]一致,故鉴定化合物7N-benzoyl-2-aminoethyl-β-D-glucopyranoside。

化合物8:黄色无定形粉末,易溶于甲醇。HR-ESI-MS m/z: 196.073 6 [M]+,分子式为C10H12O41H-NMR (400 MHz, CD3OD) δ: 3.16 (2H, t, J=6.2 Hz, H-2), 3.94 (2H, t, J=6.2 Hz, H-3), 7.55 (1H, d, J=2.0 Hz, H-2′), 6.86 (1H, d, J=8.2 Hz, H-5′), 7.58 (1H, dd, J=10.2, 2.0 Hz, H-6′), 3.90 (3H, s, OCH3);13C-NMR (100 MHz, CD3OD) δ: 199.7 (C-1), 41.7 (C-2), 58.9 (C-3), 130.6 (C-1′), 111.8 (C-2′), 153.4 (C-3′), 149.1 (C-4′), 115.8 (C-5′), 124.7 (C-6′), 56.4 (OCH3)。以上数据与文献报道[19]一致,故鉴定化合物8为ω-hydroxypropioguaiacone。

化合物9:白色无定形粉末,易溶于甲醇。HR-ESI-MS m/z: 273.087 4 [M+H]+,分子式为C12H16O71H-NMR (400 MHz, CD3OD) δ: 6.96 (1H, d, J=8.8 Hz, H-2), 6.69 (1H, d, J=8.8 Hz, H-3), 6.67 (1H, d, J=8.8 Hz, H-5), 6.94 (1H, d, J=8.8 Hz, H-6), 4.72 (1H, d, J=7.6 Hz, H-1′), 3.30 (1H, m, H-2′), 3.40 (1H, m, H-3′), 3.29 (1H, m, H-4′), 3.36 (1H, m, H-5′), 3.70 (1H, dd, J=12.0, 5.2 Hz, H-6a′), 3.88 (1H, d, J=12.0 Hz, H-6b′);13C-NMR (100 MHz, CD3OD) δ: 152.5 (C-1), 119.4 (C-2, 6), 116.6 (C-3, 5), 153.8 (C-4), 103.7 (C-1′), 75.0 (C-2′), 78.1 (C-3′), 71.5 (C-4′), 78.0 (C-5′), 62.6 (C-6′)。以上数据与文献报道[20]一致,故鉴定化合物9为arbutin。

化合物10:白色无定形粉末,易溶于甲醇。HR-ESI-MS m/z: 417.152 2 [M+H]+,分子式为C19H28O101H-NMR (400 MHz, CD3OD) δ: 7.41 (2H, m, H-2, 6), 7.32 (2H, m, H-3, 5), 7.26 (1H, m, H-4), 3.23 (2H, m, H-7β), 4.00 (2H, m, H-8α), 4.31 (1H, d, J=8.0 Hz, H-1′), 3.27 (1H, m, H-2′), 3.40 (1H, m, H-3′), 3.39 (1H, m, H-4′), 3.37 (1H, m, H-5′), 3.61 (1H, dd, J=12.0, 4.0 Hz, H-6′), 3.98 (1H, dd, J=12.0, 2.0 Hz, H-6′), 5.03 (1H, d, J=2.4 Hz, H-1″), 3.91 (1H, brs, H-2″), 3.74 (1H, d, J=10.0 Hz, H-4″), 3.97 (1H, d, J=10.0 Hz, H-4″), 3.58 (2H, s, H-5″);13C-NMR (100 MHz, CD3OD) δ: 139.0 (C-1), 129.3 (C-2, 6), 129.3 (C-3, 5), 128.7 (C-4), 37.5 (C-7β), 71.8 (C-8α), 103.2 (C-1′), 75 (C-2′), 78 (C-3′), 71.8 (C-4′), 77 (C-5′), 68.7 (C-6′), 111 (C-1″), 78.1 (C-2″), 80.6 (C-3″), 75.1 (C-4″), 65.6 (C-5″)。以上数据与文献报道[21]一致,故鉴定化合物10为icariside D1。

化合物11:白色无定形粉末,易溶于甲醇。HR-ESI-MS m/z: 403.153 3 [M+H]+,分子式为C18H26O101H-NMR (400 MHz, CD3OD) δ: 7.42 (2H, m, H-3, 5), 7.33 (2H, m, H-2, 6), 7.26 (1H, m, H-4), 4.87 (1H, d, J=11.0 Hz, H-7a), 4.62 (1H, d, J=11.0 Hz, H-7b), 4.84 (1H, d, J=7.2 Hz, H-1′), 3.29 (1H, m, H-2′), 3.35 (1H, m, H-3′), 3.37 (1H, m, H-4′), 3.34 (1H, m, H-5′), 3.61 (1H, dd, J=12.0, 4.0 Hz, H-6′), 3.98 (1H, dd, J=12.0, 2.0 Hz, H-6′), 5.04 (1H, d, J=2.4 Hz, H-1″), 4.65 (1H, brs, H-2″), 3.71 (1H, d, J=10.0 Hz, H-4a″), 3.95 (1H, d, J=10.0 Hz, H-4b″), 3.56 (2H, s, H-5″);13C-NMR (100 MHz, CD3OD) δ: 139.0 (C-1), 129.3 (C-3, 5), 129.3 (C-2, 6), 128.7 (C-4), 71.8 (C-7), 103.2 (C-1′), 75.0 (C-2′), 78.1 (C-3′), 71.8 (C-4′), 77.0 (C-5′), 68.7 (C-6′), 111.0 (C-1″), 78.1 (C-2″), 80.6 (C-3″), 75.0 (C-4″), 65.6 (C-5″)。以上数据与文献报道[22]一致,故鉴定化合物11为lcariside F2。

化合物12:白色无定形粉末,易溶于甲醇。HR-ESI-MS m/z: 377.152 2 [M+H]+,分子式为C20H24O71H-NMR (400 MHz, CD3OD) δ: 7.01 (1H, d, J=1.8 Hz, H-2), 6.74 (1H, d, J=8.1 Hz, H-5), 6.84 (1H, dd, J=8.1, 1.8 Hz, H-6), 4.82 (1H, d, J=6.0 Hz, H-7), 4.30 (1H, dt, J=5.6, 3.8 Hz, H-8), 3.73 (1H, dd, J=12.0, 4.0 Hz, H-9a), 3.86 (1H, dd, J=12.0, 6.0 Hz, H-9b), 6.86 (1H, d, J=1.0 Hz, H-2′), 6.98 (1H, d, J=8.0 Hz, H-5′), 7.00 (1H, dd, J=8.0, 1.0 Hz, H-6′), 6.52 (1H, d, J=14.0 Hz, H-7′), 6.22 (1H, dt, J=14.0, 6.0 Hz, H-8′), 4.19 (1H, dd, J=5.8, 1.4 Hz, H-9′), 3.80 (3H, s, OCH3), 3.79 (3H, s, OCH3);13C-NMR (100 MHz, CD3OD) δ: 134.1 (C-1), 111.9 (C-2), 148.7 (C-3), 147.0 (C-4), 115.7 (C-5), 121.0 (C-6), 74.1 (C-7), 86.2 (C-8), 62.2 (C-9), 133.1 (C-1′), 111.4 (C-2′), 151.9 (C-3′), 149.0 (C-4′), 118.9 (C-5′), 120.7 (C-6′), 128.5 (C-7′), 131.5 (C-8′), 63.8 (C-9′), 56.5 (OCH3), 56.3 (OCH3)。以上数据与文献报道[23]一致,故鉴定化合物12为(+)-erythro-guaiacylglycerol-8-O-4′-(coniferyl alcohol) ether。

化合物13:白色无定形粉末。HR-ESI-MS m/z: 377.167 9 [M+H]+,分子式为C20H24O71H-NMR (400 MHz, CD3OD) δ: 7.05 (1H, d, J=1.8 Hz, H-2), 6.75 (1H, d, J=8.1 Hz, H-5), 6.85 (1H, dd, J=8.1, 1.8 Hz, H-6), 4.88 (1H, d, J=5.6 Hz, H-7), 4.30 (1H, dt, J=5.2, 4.4 Hz, H-8), 3.73 (1H, dd, J=12.0, 3.9 Hz, H-9a), 3.47 (1H, dd, J=12.0, 5.3 Hz, H-9b), 7.02 (1H, d, J=1.8 Hz, H-2′), 6.99 (1H, d, J=8.1 Hz, H-5′), 6.91 (1H, dd, J=8.1, 1.8 Hz, H-6′), 6.53 (1H, d, J=15.9 Hz, H-7′), 6.22 (1H, dt, J=15.9, 5.8 Hz, H-8′), 4.19 (1H, dd, J=5.7, 1.1 Hz, H-9′), 3.81 (3H, s, OCH3), 3.86 (3H, s, OCH3);13C-NMR (100 MHz, CD3OD) δ: 133.8 (C-1), 111.8 (C-2), 148.9 (C-3), 147.2 (C-4), 115.9 (C-5), 120.8 (C-6), 74.0 (C-7), 87.1 (C-8), 61.9 (C-9), 133.2 (C-1′), 111.3 (C-2′), 151.7 (C-3′), 149.2 (C-4′), 118.8 (C-5′), 120.8 (C-6′), 128.6 (C-7′), 131.4 (C-8′), 63.8 (C-9′), 56.4 (OCH3), 56.6 (OCH3)。以上数据与文献报道[23]一致,故鉴定化合物13为(−)-threo-guaiacylglycerol-8-O-4′-(coniferyl alcohol) ether。

化合物14:黄色无定形粉末,易溶于甲醇。HR-ESI-MS m/z: 342.131 5 [M]+,分子式为C16H22O81H-NMR (400 MHz, CD3OD) δ: 7.05 (1H, d, J=1.7 Hz, H-2), 7.06 (1H, d, J=8.3 Hz, H-5), 6.94 (1H, dd, J=8.3, 1.8 Hz, H-6), 6.54 (1H, d, J=15.9 Hz, H-7), 6.27 (1H, dt, J=15.8, 5.7 Hz, H-8), 4.21 (2H, dd, J=5.7, 1.3 Hz, H-9), 3.86 (3H, s, 3-OCH3), 4.79 (1H, d, J=7.8 Hz, H-1′), 3.44 (1H, m, H-2′), 3.27 (1H, m, H-3′), 3.35 (1H, m, H-4′), 3.46 (1H, m, H-5′), 3.84 (1H, m, H-6a′), 3.71 (1H, dd, J=11.8, 4.6 Hz, H-6b′);13C-NMR (100 MHz, CD3OD) δ: 131.8 (C-1), 109.8 (C-2), 150.4 (C-3), 146.7 (C-4), 117.3 (C-5), 119.1 (C-6), 129.9 (C-7), 127.2 (C-8), 62.9 (C-9), 55.0 (3-OCH3), 103.1 (C-1′), 73.5 (C-2′), 76.5 (C-3′), 70.1 (C-4′), 76.4 (C-5′), 61.2 (C-6′)。以上数据与文献报道[24]一致,故鉴定化合物14为coniferine。

参考文献
[1] 中国药典[S].一部.2015.
[2] 苏新国, 宓穗卿, 王宁生. 苍耳子药用研究进展[J]. 中药新药与临床药理, 2006, 17(l):68–71.
[3] 李红, 周谋. 苍耳子及复方制剂的药理作用和临床研究进展[J]. 山西医科大学学报, 2004, 35(3):313–315.
[4] 阂云山, 罗燕梅, 李喜香. 复方苍耳子滴鼻液的药效学实验研究[J]. 卫生职业教育, 2005, 23(17):142–143.
[5] 左祖英, 唐恩洁, 夏建平, 等. 防风苍耳子水煎剂对小鼠免疫功能的影响[J]. 川北医学院学报, 1997, 12(3):9–10.
[6] Huang M H, Wang B S, Chiu C S, et al. Antioxidant, antinociceptive, and anti-inflammatory activities of Xanthii Fructus extract[J]. J Ethnopharmacol, 2011, 135(2): 545–552. DOI:10.1016/j.jep.2011.03.057
[7] 崔秀荣, 马海波, 张旗, 等. 苍耳子的化学成分和临床应用研究进展[J]. 现代药物与临床, 2012, 27(6):614–618.
[8] Piacente S, Pizza C, Tommasi N D, et al. Sesquiterpene and diterpene glycosides from Xanthium spinosum[J]. Phytochemistry, 1996, 41(41): 1357–1360.
[9] Qin L, Han T, Li H, et al. A new thiazinedione from Xanthium strumarium[J]. Fitoterapia, 2006, 77(3): 245–246. DOI:10.1016/j.fitote.2006.02.001
[10] Jiang H, Yang L, Liu C, et al. Four new glycosides from the fruit of Xanthium sibiricum Patr[J]. Molecules, 2013, 18(18): 12464–12473.
[11] 姜海, 张妍妍, 张颖. 苍耳子化学成分研究[J]. 中医药信息, 2016, 33(3):8–10.
[12] Ma Y T, Huang M C, Hsu F L, et al. Thiazinedione from Xanthium strumarium[J]. Phytochemistry, 1998, 48(6): 1083–1085. DOI:10.1016/S0031-9422(98)00084-3
[13] Han T, Li H, Zhang Q, et al. New thiazinediones and other components from Xanthium strumarium[J]. Chem Nat Compd, 2006, 42(5): 567–570. DOI:10.1007/s10600-006-0215-2
[14] Boakye-Yiadom M, Han L F, Li W, et al. Chemical constituents from stems of Cistanches deserticola[J]. Chin Herb Med, 2016, 8(3): 293–296. DOI:10.1016/S1674-6384(16)60053-9
[15] 厉学, 宋少江, 朴淑娟, 等. 辽宁海绵Aplysinopsis sp.的化学成分研究[J]. 中国海洋药物, 2009(4):21–25.
[16] Guo Q L, Yang B Z, Hua S G. A new isoxazol from Glehnia littoralis[J]. Fitoterapia, 2008, 79(3): 238–239. DOI:10.1016/j.fitote.2008.01.002
[17] 彭燕, 郑建仙, 黄日明, 等. 海燕中含氮化合物的研究[J]. 中草药, 2010, 41(2):208–210.
[18] Pocci M, Alfei S, Lucchesini F, et al. Nanostructured styrenic co-polymers containing glucopyranosyl residues and their functionalization[J]. Tetrahedron, 2009, 65(29): 5684–5692.
[19] Achenbach H, Stöcker M, Constenla M A. Flavonoid and other constituents of Bauhinia manca[J]. Phytochemistry, 1988, 27(6): 1835–1841. DOI:10.1016/0031-9422(88)80455-2
[20] Zhong X N, Otsuka H, Ide T, et al. Hydroquinone glycosides from leaves of Myrsine seguinii[J]. Phytochemistry, 1998, 49(49): 2149–2153.
[21] 王立波, 王健伟, 王策, 等. 沙生蜡菊花降脂活性部位的化学成分(Ⅲ)[J]. 中国药物化学杂志, 2012, 22(3):220–222.
[22] Wang M, Li J, Rangarajan M, et al. Antioxidative phenolic compounds from sage (Salvia officinalis)[J]. J Agr Food Chem, 1999, 46(12): 4869–4873.
[23] Lourith N, Katayama T, Suzuki T. Stereochemistry and biosynthesis of 8-O-4'neolignans in Eucommia ulmoides:diastereoselective formation of guaiacylglycerol-8-O-4'-(sinapyl alcohol) ether[J]. J Wood Sci, 2005, 51(4): 370–378. DOI:10.1007/s10086-004-0660-0
[24] Kazaz C. Secondary metabolites from Nepeta heliotropifolia[J]. Turk J Chem, 2009, 33(5): 667–675.