中草药  2016, Vol. 47 Issue (22): 3965-3969
0
  PDF    
假酸浆果中黄酮类化学成分及免疫活性研究
刘艳, 杨炳友, 许振鹏, 李晓毛, 罗雨萌, 吕邵娃, 匡海学     
黑龙江中医药大学 北药基础与应用研究教育部重点实验室, 黑龙江 哈尔滨 150040
摘要: 目的 研究假酸浆Nicandra physaloides果中的黄酮类化学成分及其免疫活性。 方法 采用硅胶、ODS及HPLC等色谱方法分离化合物,利用NMR、MS波谱学方法鉴定其结构,并采用脂多糖(LPS)诱导的小鼠脾淋巴细胞增殖模型评价化合物的免疫活性。 结果 从假酸浆果70%乙醇回流提取物的正丁醇部位分离得到13个化合物,分别鉴定为3"- hydroxy-puerarin(1)、puerarin-6"-O-glucoside(2)、daidzein 8-C-[α-D-apiofranosyl-(1→6)]-β-D-glucopyranoside(3)、葛根素(4)、3"-methoxyl-puerarin(5)、6-C-α-L-arabinosyl-8-C-β-D-glycosylchrysin(6)、oroxylin A-7-O-β-D-glucuronide methyl ester(7)、大豆黄苷(8)、黄芩苷(9)、quercetin-3-O-β-D-galactopyranoside(10)、quercetin 3-rutinoside(11)、kaempferol 3-rutinoside(12)和quercetin 3-glucoside(13);化合物对LPS刺激的小鼠脾淋巴细胞增殖影响的实验表明,化合物1~3、7、9、10、12、13显示出对小鼠脾淋巴细胞增殖的抑制作用,而化合物6表现出对小鼠脾淋巴细胞增殖的促进作用。 结论 化合物1~7为首次从茄科植物中分离得到,8~13为首次从该属植物中分离得到,且化合物1~3、6、7、9、10、12、13可能具有潜在的免疫活性。
关键词: 假酸浆     异黄酮     黄酮苷     3"-hydroxy-puerarin     葛根素     黄芩苷     免疫活性    
Study on flavonoids from Nicandra physaloides and their immune activities
LIU Yan, YANG Bing-you, XU Zhen-peng, LI Xiao-mao, LUO Yu-meng, LV Shao-wa, KUANG Hai-xue     
Key Laboratory of Chinese Materia Medica Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
Abstract: Objective To investigate the flavonoids from the fruits of Nicandra physaloides and clarify the immune activities of the isolated compounds. Methods The separations and purifications were taken by silica gel and ODS chromatogram columns as well as preparative HPLC, and the structural identification based on physicochemical property, 1H-NMR, and 13C-NMR as well as HR-MS data. And the immune activities were evaluated by mice splenic lymphocyte proliferation model induced by LPS. Results Thirteen compounds were obtained from the butanol fraction of the 70% ethanol extract of N. physaloides fruits, which were identified as 3"-hydroxy-puerarin (1), puerarin-6"-O-glucoside (2), daidzein 8-C-[α-D-apiofranosyl-(1→6)]-β-D-glucopyranoside (3), puerarin (4), 3"-methoxyl-puerarin (5), chrysin 6-C-α-L-arabinopyranosyl-8-C-β-D-glucopyranoside (6), oroxylin A-7-O-β-D-glucuronide methyl ester (7), daidzin (8), baicalin (9), quercetin-3-O-β-D-galactopyranoside (10), quercetin 3-rutinoside (11), kaempferol 3-rutinoside (12), and quercetin 3-glucoside (13), respectively. The results indicated that compounds 1-3, 7, 9-10, and 12-13 could inhibit the proliferation of mice spleen lymphocytes and 6 could promote the proliferation in the influence of mice spleen lymphocytes proliferation induced by LPS. Conclusion Compounds 1-7 are isolated from the plants of Solanaceae for the first time, compounds 8-13 are obtained from the plants of Nicandra Adans. firstly. And the compounds 1-3, 6, 7, 9-10, and 12-13 possibly possess the potential immune activities.
Key words: Nicandra physaloides (L.) Gaertn.     isoflavone     flavonoid glycoside     3"-hydroxy-puerarin     puerarin     baicalin     immune activities    

假酸浆Nicandra physaloides (L.) Gaertn. 为茄科(Solanaceae)假酸浆属Nicandra Adans. 植物,又名大千生、田珠、冰粉、水晶凉粉、蓝花天仙子、鞭打绣球等。其原产自秘鲁,以“Apple of Peru” “Belladonna de Pais”为人们熟知,也因其花色淡紫或蓝紫,清秀幽雅,被作为观赏植物[1]。其以全草、果及种子入药,性平,味微苦、甘、酸,具有镇静、祛痰、清热解毒等功效,用于狂犬病、精神病、癫痫、风湿痛、鼻渊、感冒、泌尿道感染以及疮疖[2-3]。假酸浆种子可加工成凉粉、果冻,是消炎利尿、消暑解渴的夏季保健品。现代研究表明,假酸浆具有降糖、利尿、麻醉、抗氧化等药理作用,国外亦作镇痛、驱虫、抗菌、消炎、退热、利尿、散瞳剂使用[4]。然而,关于假酸浆的化学成分的研究并不深入,且主要集中在甾体类、生物碱等。为了深入探讨假酸浆中的化学成分、寻找其多种生物活性的药效物质基础,本实验对假酸浆果乙醇提取物的正丁醇部位的化学成分进行研究,最终得到13个黄酮类化合物,分别鉴定为3''-hydroxy-puerarin(1)、daidzein-8-C-[β-D-glucopyranosyl-(1→6)]-β-D-gluco-pyranoside(2)、puerarin-6″-O-glucoside(3)、葛根素(puerarin,4)、3''-methoxyl-puerarin(5)、6-C-α- L-arabinosyl-8-C-β-D-glycosylchrysin(6)、oroxylin A-7-O-β-D-glucuronide methyl ester(7)、大豆黄苷(daidzin,8)、黄芩苷(baicalin,9)、quercetin-3-O- β-D-galactopyra-noside(10)、quercetin-3-rutinoside(11)、kaempferol-3-rutinoside(12)、quercetin-3- glucoside(13)。并在此基础上,开展了基于脂多糖(LPS)诱导的小鼠脾淋巴细胞增殖模型免疫活性评价。

1 仪器与材料

2695-2996型分析HPLC(美国Waters公司);Delta 600-2487型制备HPLC(美国Waters公司);Sunfire C18色谱柱(250 mm×4.6 mm,5 μm,美国Waters公司);Sunfire C18色谱柱(250 mm×19 mm,10 μm,美国Waters公司);Bruker-400超导核磁共振光谱仪(德国Bruker公司);Acquity Ultra Performance LCTM液质联用色谱仪(美国Waters公司);柱色谱反相ODS-AM(日本YMC公司);TLC用硅胶板(Silicagel60 F254)和RP18反相板均为德国Merck公司产品;所用试剂均为分析纯(西陇科学股份有限公司);ELx 800酶标仪(美国BioTek公司);BT 25S型电子分析天平(德国Sartorius公司);150i型二氧化碳培养箱(美国Thermo公司);胎牛血清(杭州四季青生物工程材料有限公司);RPMI 1640(美国Corning公司);10 000 U/mL青霉素/链霉素(美国Corning公司);Hanks’平衡盐溶液(Biotopped公司);DMSO(Sigma公司);lipopolsaccharide(Biosharp公司);噻唑蓝(MTT,Biotopped公司);醋酸地塞米松(批号150423,天津天药药业股份有限公司);96孔板(美国Corning公司)。

BALB/c小鼠,雌雄各半,18~20 g,由黑龙江中医药大学动物实验中心提供,动物许可证号SYXK(黑)2016004。

假酸浆果采收于黑龙江中医药大学药用植物园,经黑龙江中医药大学药学院药用植物教研室樊锐锋鉴定为茄科假酸浆属植物假酸浆Nicandra Physaloides (L.) Gaertn. 的果实。原植物标本(2014007)保存于黑龙江中医药大学中药化学教研室。

2 提取与分离

干燥粉碎的去籽假酸浆果(30 kg)用70%乙醇回流提取3次,每次2.5 h,减压回收溶剂,得提取物2.99 kg。提取物与水混悬均匀,依次用石油醚、醋酸乙酯、水饱和正丁醇萃取。正丁醇部分(100 g)经正相硅胶柱色谱,二氯甲烷-甲醇系统(100∶1→0∶1)梯度洗脱,得到13个部分,即Fr. I~XIII。Fr. VIII经过正相硅胶柱色谱分离,得9个流分,其中流分8经HPLC分离即得化合物7(10 mg)。Fr. X经过正相硅胶柱色谱,得10个流分,其中流分3经HPLC分离即得化合物9(13 mg)。流分6经过反相ODS柱色谱得到8个组分Fr. 1~8,其中Fr. 6析出结晶即得化合物8(9 mg),其余母液经过HPLC得化合物5(12 mg)和10(10 mg)。Fr. XI经过正相硅胶柱色谱,得12个流分。其中流分8经过ODS柱色谱得到9个组分Fr. 1~9,Fr. 8经过HPLC分离得化合物1(10 mg)、4(11 mg)、12(8 mg)和13(12 mg)。Fr. XIII经过正相硅胶柱色谱,得15个流分。流分12经过ODS柱色谱分离得到17个组分Fr. 1~17,Fr. 11经过HPLC分离得化合物2(9 mg),Fr. 13经过HPLC分离得化合物6(16 mg),Fr. 14经过HPLC分离得化合物11(11 mg),Fr. 15经过HPLC分离得化合物3(17 mg)。

3 结构鉴定

化合物1:不定形粉末(甲醇),分子式为C21H20O10,ESI-MS m/z: 433.117 1 [M+H]+1H- NMR (400 MHz,CD3OD) δ: 8.13 (1H,s,H-2),8.03 (1H,d,J = 8.8 Hz,H-5),6.97 (1H,d,J = 8.8 Hz,H-6),7.01 (1H,d,J = 1.8 Hz,H-2′),6.82 (1H,dd,J = 1.8,8.2 Hz,H-5′),6.80 (1H,d,J = 8.2 Hz,H-6′),5.09 (1H,d,J = 9.9 Hz,H-1″);13C-NMR (100 MHz,CD3OD) δ: 154.5 (C-2),125.6 (C-3),178.3 (C-4),128.1 (C-5),116.5 (C-6),163.0 (C-7),113.1 (C-8),158.0 (C-9),118.5 (C-10),124.7 (C-1′),116.4 (C-2′),146.7 (C-3′),146.2 (C-4′),117.5 (C-5′),121.7 (C-6′),75.6 (C-1″),73.0 (C-2″),80.0 (C-3″),71.7 (C-4″),82.8 (C-5″),62.8 (C-6″)。以上数据与文献报道[5]基本一致,故鉴定化合物1为3''-hydroxy-puerarin。

化合物2:不定形粉末(甲醇),分子式为C27H30O14,ESI-MS m/z: 579.172 3 [M+H]+1H- NMR (400 MHz,CD3OD) δ: 8.15 (1H,s,H-2),8.03 (1H,d,J = 8.8 Hz,H-5),6.96 (1H,d,J = 8.8 Hz,H-6),7.36 (2H,d,J = 8.4 Hz,H-2′,6′),6.84 (2H,d,J = 8.4 Hz,H-3′,5′),5.09 (1H,d,J = 9.9 Hz,H-1″),4.25 (1H,d,J = 7.4 Hz,H-1′′′);13C-NMR (100 MHz,CD3OD) δ: 154.5 (C-2),125.6 (C-3),178.3 (C-4),128.2 (C-5),116.3 (C-6),163.0 (C-7),112.8 (C-8),158.7 (C-9),118.5 (C-10),124.2 (C-1′),131.4 (C-2′),116.3 (C-3′),158.7 (C-4′),116.3 (C-5′),131.4 (C-6′),75.8 (C-1″),73.0 (C-2″),79.7 (C-3″),71.5 (C-4″),81.5 (C-5″),66.9 (C-6″),105.3 (C-1′′′),78.0 (C-2′′′),77.7 (C-3′′′),71.1 (C-4′′′),74.8 (C-5′′′),62.8 (C-6′′′)。以上数据与文献报道[6]基本一致,故鉴定化合物2为puerarin-6″-O-glucoside。

化合物3:不定形粉末(甲醇),分子式为C26H29O13,ESI-MS m/z: 549.158 8 [M+H]+1H-NMR (400 MHz,CD3OD) δ: 8.15 (1H,s,H-2),8.02 (1H,d,J = 8.8 Hz,H-5),6.96 (1H,d,J = 8.8 Hz,H-6),7.35 (2H,d,J = 8.5 Hz,H-2′,6′),6.83 (2H,d,J = 8.5 Hz,H-3′,5′),5.09 (1H,d,J = 9.9 Hz,H-1″),4.24 (1H,d,J = 7.5 Hz,H-1′′′);13C-NMR (100 MHz,CD3OD) δ: 154.5 (C-2),125.5 (C-3),178.3 (C-4),128.1 (C-5),116.3 (C-6),163.0 (C-7),112.9 (C-8),158.0 (C-9),118.5 (C-10),124.2 (C-1′),131.4 (C-2′),116.3 (C-3′),158.6 (C-4′),116.3 (C-5′),131.4 (C-6′),75.8 (C-1″),73.2 (C-2″),79.8 (C-3″),71.5 (C-4″),81.4 (C-5″),68.9 (C-6″),111.0 (C-1′′′),78.0 (C-2′′′),80.5 (C-3′′′),75.0 (C-4′′′),65.6 (C-5′′′)。以上数据与文献报道[7]基本一致,故鉴定化合物3为6″-O-α-D- apiofranosylpuerarin。

化合物4:不定形粉末(甲醇),分子式为C21H20O9,ESI-MS m/z: 417.121 3 [M+H]+1H-NMR (400 MHz,CD3OD) δ: 8.17 (1H,s,H-2),8.03 (1H,d,J = 8.8 Hz,H-5),6.97 (1H,d,J = 8.8 Hz,H-6),7.36 (2H,d,J = 8.4 Hz,H-2′,6′),6.83 (2H,d,J = 8.4 Hz,H-3′,5′),5.09 (1H,d,J = 9.8 Hz,H-1″);13C-NMR (100 MHz,CD3OD) δ: 154.5 (C-2),125.6 (C-3),178.3 (C-4),128.1 (C-5),116.5 (C-6),163.0 (C-7),113.2 (C-8),158.0 (C-9),118.5 (C-10),124.2 (C-1′),116.3 (C-2′),131.4 (C-3′),158.6 (C-4′),131.4 (C-5′),116.3 (C-6′),75.7 (C-1″),73.0 (C-2″),80.0 (C-3″),71.7 (C-4″),82.8 (C-5″),62.8 (C-6″)。以上数据与文献报道[8]基本一致,故鉴定化合物4为葛根素。

化合物5:不定形粉末(甲醇),分子式为C22H23O10,ESI-MS m/z: 447.126 8 [M+H]+1H-NMR (400 MHz,CD3OD) δ: 8.18 (1H,s,H-2),8.02 (1H,d,J = 8.8 Hz,H-5),6.96 (1H,d,J = 8.8 Hz,H-6),7.14 (1H,d,J = 1.8 Hz,H-2′),6.93 (1H,dd,J = 1.8,8.0 Hz,H-5′),6.80 (1H,d,J = 8.2 Hz,H-6′),5.09 (1H,d,J = 9.9 Hz,H-1″);13C-NMR (100 MHz,CD3OD) δ: 154.7 (C-2),125.5 (C-3),178.2 (C-4),128.1 (C-5),116.2 (C-6),163.0 (C-7),113.2 (C-8),158.0 (C-9),118.5 (C-10),124.7 (C-1′),116.2 (C-2′),148.7 (C-3′),147.8 (C-4′),114.0 (C-5′),122.8 (C-6′),75.7 (C-1″),73.0 (C-2″),80.0 (C-3″),71.7 (C-4″),82.8 (C-5″),62.8 (C-6″)。以上数据与文献报道[9]基本一致,故鉴定化合物5为3″-methoxyl-puerarin。

化合物6:不定形粉末(甲醇),分子式为C22H23O10,ESI-MS m/z: 447.130 2 [M+H]+1H-NMR (400 MHz,CD3OD) δ: 6.69 (1H,s,H-2),6.96 (2H,m,H-2′,6′),8.04 (2H,m,H-3′,5′);13C-NMR (100 MHz,CD3OD) δ: 163.6 (C-2),105.7 (C-3),184.2 (C-4),160.2 (C-5),108.5 (C-6),163.2 (C-7),105.9 (C-8),157.5 (C-9),105.9 (C-10),133.2 (C-1′),130.2 (C-2′),128.2 (C-3′),132.5 (C-4′),128.2 (C-5′),130.2 (C-6′),76.5 (C-1″),75.2 (C-2″),72.0 (C-3″),71.3 (C-4″),70.4 (C-5″),75.0 (C-1′′′),73.2 (C-2′′′),80.2 (C-3′′′),72.4 (C-4′′′),82.9 (C-5′′′),63.1 (C-6′′′)。以上数据与文献报道[10]基本一致,故鉴定化合物6为6-C-α-L-arabinosyl-8-C-β-D-glycosylchrysin。

化合物7:不定形粉末(甲醇),分子式为C23H22O11,ESI-MS m/z: 475.124 7 [M+H]+1H-NMR (400 MHz,CD3OD) δ: 6.81 (1H,s,H-3),6.61 (1H,s,H-8),5.21 (1H,d,J = 7.0 Hz,H-1″);13C-NMR (100 MHz,CD3OD) δ: 166.0 (C-2),106.2 (C-3),184.3 (C-4),151.1 (C-5),132.4 (C-6),158.1 (C-7),100.3 (C-8),157.6 (C-9),107.3 (C-10),131.3 (C-1′),127.6 (C-2′),130.3 (C-3′),133.4 (C-4′),130.3 (C-5′),127.6 (C-6′),101.8 (C-1″),74.5 (C-2″),77.2 (C-3″),72.8 (C-4″),76.8 (C-5″),170.8 (C-6″),62.5 (6″-OCH3),53.0 (7-OCH3)。以上数据与文献报道[11]基本一致,故鉴定化合物7为oroxylin A-7-O-β-D-glucuronide methyl ester。

化合物8:不定形粉末(甲醇),分子式为C21H20O9,ESI-MS m/z: 417.115 9 [M+H]+1H-NMR (400 MHz,CD3OD) δ: 8.21 (1H,s,H-2),8.15 (1H,d,J = 8.5 Hz,H-5),7.21 (1H,dd,J = 2.2,8.5 Hz,H-6),7.24 (1H,d,J = 2.2 Hz,H-8),7.38 (2H,d,J = 7.8 Hz,H-2′,6′),6.86 (2H,d,J = 7.8 Hz,H-3′,5′),5.10 (1H,d,J = 7.8 Hz,H-1″);13C-NMR (100 MHz,CD3OD) δ: 155.1 (C-2),126.2 (C-3),178.2 (C-4),128.3 (C-5),117.1 (C-6),163.5 (C-7),105.1 (C-8),158.7 (C-9),120.2 (C-10),124.1 (C-1′),131.4 (C-2′),116.3 (C-3′),159.2 (C-4′),116.3 (C-5′),131.4 (C-6′),101.8 (C-1″),78.4 (C-2″),77.8 (C-3″),74.7 (C-4″),71.2 (C-5″),62.4 (C-6″)。以上数据与文献报道[12]基本一致,故鉴定化合物8为大豆黄苷。

化合物9:不定形粉末(甲醇),分子式为C21H18O11,ESI-MS m/z: 447.091 7 [M+H]+1H-NMR (400 MHz,CD3OD) δ: 6.95 (1H,s,H-3),6.95 (1H,s,H-8),7.55 (3H,m,H-3′,4′,5′),7.97 (2H,d,J = 7.4 Hz,H-2′,6′),5.20 (1H,d,J = 7.4 Hz,H-1″);13C-NMR (100 MHz,CD3OD) δ: 166.2 (C-2),105.7 (C-3),184.5 (C-4),151.4 (C-5),132.1 (C-6),152.6 (C-7),95.7 (C-8),148.2 (C-9),107.9 (C-10),132.6 (C-1′),127.5 (C-2′),130.2 (C-3′),133.1 (C-4′),130.2 (C-5′),127.5 (C-6′),102.2 (C-1″),74.4 (C-2″),76.8 (C-3″),72.9 (C-4″),76.7 (C-5″),170.9 (C-6″)。以上数据与文献报道[13]基本一致,故鉴定化合物9为黄芩苷。

化合物10:不定形粉末(甲醇),分子式为C21H20O12,ESI-MS m/z: 465.105 1 [M+H]+1H-NMR (400 MHz,CD3OD) δ: 6.18 (1H,d,J = 2.0 Hz,H-6),6.36 (1H,d,J = 2.0 Hz,H-8),7.84 (1H,d,J = 2.1 Hz,H-2′),6.89 (1H,d,J = 8.4 Hz,H-5′),7.57 (1H,dd,J = 2.1,8.4 Hz,H-6′),5.22 (1H,d,J = 7.5 Hz,H-1″);13C-NMR (100 MHz,CD3OD) δ: 157.3 (C-2),134.3 (C-3),178.0 (C-4),161.4 (C-5),98.4 (C-6),164.5 (C-7),93.2 (C-8),156.9 (C-9),104.2 (C-10),121.4 (C-1′),114.6 (C-2′),144.3 (C-3′),148.4 (C-4′),116.3 (C-5′),121.4 (C-6′),104.1 (C-1″),71.7 (C-2″),73.6 (C-3″),68.5 (C-4″),75.7 (C-5″),60.4 (C-6″)。以上数据与文献报道[14]基本一致,故鉴定化合物10为quercetin-3-O-β-D-galactopyrano side。

化合物11:不定形粉末(甲醇),分子式为C27H30O16,ESI-MS m/z: 611.159 7 [M+H]+1H-NMR (400 MHz,CD3OD) δ: 6.19 (1H,d,J = 2.0 Hz,H-6),6.37 (1H,d,J = 2.0 Hz,H-8),7.66 (1H,d,J = 1.9 Hz,H-2′),6.87 (1H,d,J = 8.4 Hz,H-5′),7.62 (1H,dd,J = 1.9,8.4 Hz,H-6′),5.09 (1H,d,J = 7.4 Hz,H-1″);13C-NMR (100 MHz,CD3OD) δ: 158.5 (C-2),135.7 (C-3),179.4 (C-4),162.9 (C-5),100.0 (C-6),166.0 (C-7),94.9 (C-8),159.3 (C-9),105.6 (C-10),123.1 (C-1′),117.8 (C-2′),145.8 (C-3′),149.8 (C-4′),116.1 (C-5′),123.6 (C-6′),104.8 (C-1″),75.8 (C-2″),78.2 (C-3″),71.4 (C-4″),77.2 (C-5″),68.6 (C-6″),102.4 (C-1′′′),72.1 (C-2′′′),72.3 (C-3′′′),74.0 (C-4′′′),69.7 (C-5′′′),17.9 (C-6′′′)。以上数据与文献报道[15]基本一致,故鉴定化合物11为quercetin 3-rutinoside。

化合物12:不定形粉末(甲醇),分子式为C27H30O15,ESI-MS m/z: 595.167 4 [M+H]+1H-NMR (400 MHz,CD3OD) δ: 6.20 (1H,d,J = 2.0 Hz,H-6),6.40 (1H,d,J = 2.0 Hz,H-8),8.06 (2H,d,J = 8.8 Hz,H-2′,6′),6.87 (2H,d,J = 8.8 Hz,H-3′,5′),5.12 (1H,d,J = 7.4 Hz,H-1″);13C-NMR (100 MHz,CD3OD) δ: 161.5 (C-2),135.5 (C-3),179.4 (C-4),163.0 (C-5),100.0 (C-6),166.2 (C-7),95.0 (C-8),158.6 (C-9),105.6 (C-10),122.8 (C-1′),132.4 (C-2′),116.2 (C-3′),159.4 (C-4′),116.2 (C-5′),132.4 (C-6′),104.6 (C-1″),75.8 (C-2″),78.1 (C-3″),71.5 (C-4″),77.2 (C-5″),68.6 (C-6″),102.4 (C-1′′′),72.1 (C-2′′′),72.3 (C-3′′′),73.9 (C-4′′′),69.7 (C-5′′′),17.9 (C-6′′′)。以上数据与文献报道[15]基本一致,故鉴定化合物12为kaempferol 3-rutinoside。

化合物13:不定形粉末(甲醇),分子式为C21H20O12,ESI-MS m/z: 465.102 5 [M+H]+1H-NMR (400 MHz,CD3OD) δ: 6.18 (1H,d,J = 2.0 Hz,H-6),6.37 (1H,d,J = 2.0 Hz,H-8),7.70 (1H,d,J = 2.1 Hz,H-2′),6.86 (1H,d,J = 8.4 Hz,H-5′),7.56 (1H,dd,J = 2.1,8.4 Hz,H-6′),5.24 (1H,d,J = 7.5 Hz,H-1″);13C-NMR (100 MHz,CD3OD) δ: 158.4 (C-2),135.6 (C-3),179.5 (C-4),163.0 (C-5),99.9 (C-6),166.0 (C-7),94.8 (C-8),159.0 (C-9),105.7 (C-10),123.2 (C-1′),116.0 (C-2′),149.9 (C-3′),154.9 (C-4′),117.6 (C-5′),123.1 (C-6′),104.4 (C-1″),75.7 (C-2″),78.1 (C-3″),71.2 (C-4″),78.4 (C-5″),62.6 (C-6″)。以上数据与文献报道[15]基本一致,故鉴定化合物13为quercetin 3-glucoside。

4 免疫活性评价

参照文献方法[16]考察化合物113对LPS刺激的小鼠脾淋巴细胞增殖的影响。取健康BALB/c小鼠,颈椎脱臼处死,于75%酒精浸泡中消毒。在无菌条件下取出小鼠脾脏,用RPMI 1640不完全培养基冲洗2次后置于一次性平皿中,重复吹打分离脾淋巴细胞,研磨余下脾脏同细胞悬液过200目筛网,调整脾淋巴细胞密度为5×106个/mL,加入到96孔板中,每孔100 μL。并加入50 μL的LPS(80 μg/mL),最后分别加入25、50、100、200、400 μg/mL的化合物。将96孔板置于37 ℃、5% CO2培养箱中,连续培养48 h后,每孔加入20 μL的5 mg/mL MTT溶液,继续培养4 h后,离心吸弃上清,每孔加入DMSO溶液150 μL,震荡混匀,10 min后于酶标仪570 nm处测定吸光度(A)值,计算IC50值,见表 1

表 1 化合物113LPS诱导小鼠脾细胞增殖的影响 Table 1 Effects of compounds 1—13 on mice splenocytes proliferation induced by LPS

实验结果表明,化合物1379101213对小鼠脾淋巴细胞增殖抑制作用,化合物6对小鼠脾淋巴细胞增殖具有促进作用,而其他化合物活性作用不明显。

5 结论

本实验探索了假酸浆果中黄酮类化学成分,并利用LPS诱导的小鼠脾淋巴细胞增殖模型评价了这些化合物的免疫活性。以上实验结果,为阐明假酸浆的药效物质基础和进一步开发利用这一药用资源提供了实验基础和科学依据。

参考文献
[1] Rajamaki M L, Valkonen J T. Detection of a natural point mutation in Potato virus A that overcomes resistance to vascular movement in Nicandra physaloides, and studies on seed transmissibility of the mutant virus[J]. Ann Appl Biol , 2004, 144 (1) :77–86. DOI:10.1111/aab.2004.144.issue-1
[2] 《全国中草药汇编》编写组. 全国中草药汇编[M]. 北京: 中国卫生出版社, 1987 .
[3] Tu G Y, Wang Z W, Ou H. Study on rheological properties of mixed xanthan gum and gum in seed of Nicandra physaloides (L.) Gaertn[J]. Nat Prod Res Dev , 2010, 22 (2) :285–288.
[4] Anton Hogstad J R. A morphological and chemical study of Nicandra physalodes (L.) Pers[J]. J Am Pharm Assoc , 1923, 12 (7) :576–582.
[5] Hirakura K, Morita M, Nakajima K, et al. Phenolic glucosides from the root of Pueraria lobata[J]. Phytochemistry , 1997, 46 (5) :921–928. DOI:10.1016/S0031-9422(97)00371-3
[6] Niu Y, Li H, Dong J, et al. Identification of isoflavonoids in Radix Puerariae for quality control using on-line high performance liquid chromatography-diode array detector-electrospray ionization-mass spectrometry coupled with post-column derivatization[J]. Food Res Int , 2012, 48 (2) :528–537. DOI:10.1016/j.foodres.2012.05.021
[7] Kayano S, Matsumura Y, Kitagawa Y, et al. Isoflavone C-glycosides isolated from the root of kudzu (Pueraria lobata) and their estrogenic activities[J]. Food Chem , 2012, 134 :282–287. DOI:10.1016/j.foodchem.2012.02.137
[8] 龚婧如, 王书芳. 刺五加的化学成分研究[J]. 中草药 , 2012, 43 (12) :2337–2341.
[9] Kinjo J, Furusawa J, Baba J, et al. Studies on the constituents of Pueraria lobata. III. isoflavonoids and related compounds in the roots and the voluble stems[J]. Chem Pharmt Bull , 1987, 35 (12) :4846–4850. DOI:10.1248/cpb.35.4846
[10] Takagi S, Yamaki M, Inoue K. Flavone di-C-glycosides from Scutellaria baicalensis[J]. Phytochemistry , 1981, 20 (10) :2443–2444. DOI:10.1016/S0031-9422(00)82692-8
[11] Zhou Z H, Zhang Y J, Yang C R. New flavonoid glycosides from Scutellaria amoena[J]. Stud Plant Sci , 1999, 6 :305–310. DOI:10.1016/S0928-3420(99)80040-8
[12] Ruan B, Kong L Y, Takaya Y, et al. Studies on the chemical constituents of Psoralea corylifolia L[J]. J Asian Nat Prod Res , 2007, 9 (1) :41–44. DOI:10.1080/10286020500289618
[13] Malikov V M, Yuldashev M P. Phenolic compounds of plants of the Scutellaria L.genus. Distribution, structure, and properties[J]. Chem Nat Com , 2002, 38 (4) :358–406. DOI:10.1023/A:1021638411150
[14] An R B, Sohn D H, Jeong G S, et al. In vitro hepatoprotective compounds from Suaeda glauca[J]. Arch Pharm Res , 2008, 31 (5) :594–597. DOI:10.1007/s12272-001-1198-1
[15] Kazuma K, Noda N, Suzuki M. Malonylated flavonol glycosides from the petals of Clitoria ternatea[J]. Phytochemistry , 2003, 62 (2) :229–237. DOI:10.1016/S0031-9422(02)00486-7
[16] 宋博翠. 瑞香素对小鼠淋巴细胞免疫抑制效果及其作用机制的研究[D]. 长春:吉林大学, 2014.