中草药  2016, Vol. 47 Issue (17): 3127-3132
0
  PDF    
陈皮抗心脑血管疾病相关药理研究进展
俞静静, 苏洁, 吕圭源     
浙江中医药大学药物研究所, 浙江 杭州 310053
摘要: 陈皮Citri Reticulatae Pericarpium为芸香科植物橘Citrus reticulata及其栽培变种的干燥成熟果皮,作为一种常用中药,分布广泛,资源丰富,药用价值高。陈皮的主要有效成分为黄酮类化合物,流行病学调查显示橘类黄酮的摄入可改善心脑血管疾病,大量的体内外研究也发现陈皮及其成分具有良好的改善心脑血管疾病的作用,包括调血脂、防治脂肪肝、抗血栓、抗动脉粥样硬化、心脑保护等,以及与之密切相关的抗氧化和抗炎作用等,从而达到预防和治疗心脑血管疾病的功效。
关键词: 陈皮     心脑血管疾病     二氢黄酮     多甲氧基黄酮     脂肪肝     调血脂     抗动脉粥样硬化     心脑保护    
Research progress in anti-cardiovascular and cerebrovascular disease activity of Citri Reticulatae Pericarpium
YU Jing-jing, SU Jie, LV Gui-yuan     
Institute of Materia Medica, Zhejiang Chinese Medical University, Hangzhou 310053, China
Abstract: Citri Reticulatae Pericarpium is a common Chinese materia medica, with extensive distribution, abundant resource, and high medicinal value. Epidemiologic studies showed that Citrus flavonoid intake can relieve the symptom of cardiovascular and cerebrovascular disease. Numerous in vitro and in vivo studies have found that Citri Reticulatae Pericarpium and its composition were good to treat cardiovascular and cerebrovascular disease, including hypolipidemic, anti-fatty liver, anti-thrombusis, anti-atherosclerosis, cardio-cerebral-vascular protection, and anti-oxidant and anti-inflammatory effects closely related to the above. Evidence obtained from these studies indicates that Citri Reticulatae Pericarpium has the potential in the prevention and treatment of cardiovascular and cerebrovascular disease.
Key words: Citri Reticulatae Pericarpium     cardiovascular and cerebrovascular disease     flavonone     polymethoxylated flavones     fatty liver     hypolipidemia     anti-atherosclerosis     cardio-cerebral-vascular protection    

陈皮Citri Reticulatae Pericarpium为芸香科植物橘Citrus reticulata Blanco及其栽培变种的干燥成熟果皮,味辛、苦,性温,归脾、肺经,具有理气健脾、燥湿化痰的功效,用于脾胃气滞证、呕吐、呃逆证、湿痰、寒痰咳嗽及胸痹证。其传统功用为治疗消化系统[1]和呼吸系统疾病[2]等。流行病学调查显示食物中橘类黄酮的摄入可以改善心脑血管疾病[3-4],现代药理研究也发现陈皮及其成分具有良好的改善心脑血管疾病的作用,如调血脂、抗血栓、抗动脉粥样硬化、心脑保护等,且这些作用都与陈皮及其成分的抗氧化和抗炎作用密不可分。陈皮的心脑血管保护作用已经进行较为广泛的研究,但缺乏系统总结,本文就国内外对陈皮及其成分的改善心脑血管疾病,以及抗氧化和抗炎的药理作用研究进展进行综述,从而为陈皮这一资源丰富、易于获取的常用中药的心脑血管方面的深入研究和开发利用提供参考。

1 调血脂和防治脂肪肝

陈皮的调血脂和防治脂肪肝作用已有文献报道,主要通过降低肝脂或血脂水平、增加脂肪酸氧化、保护肝脏等途径实现的。

1.1 降低肝脂/血脂水平

研究发现陈皮整味药材及其成分(主要为黄酮类成分)均具有降低肝脂或血脂水平的作用。陈皮提取物可改善脂代谢,降低卵巢切除大鼠的脂蛋白、碱性磷酸酶(ALP)、丙氨酸氨基转移酶(ALT)、天冬氨酸氨基转移酶(AST)、肝脂水平,抗肝脂质沉积[5]。橙皮苷可降低高血脂大鼠血清总胆固醇(TC)、低密度脂蛋白胆固醇(LDL-C)水平,升高高密度脂蛋白胆固醇(HDL-C)水平[6],而其苷元橙皮素可促进载脂蛋白-A1(Apo-A1)介导的胆固醇外流,进而增加HDL-C水平[7]。多甲氧基黄酮类成分也具有该方面的作用,5-O-demethyl nobiletin能抑制清道夫受体表达,抑制佛波酯(PMA)诱导的THP1单核细胞转化为巨噬细胞,降低泡沫细胞的形成,还通过上调胆固醇调节元件结合蛋白-2(SREBP-2)和抑制二酰甘油-O-酰基转移酶同源物2(DGAT2)的表达,促进低密度脂蛋白受体(LDLR)表达,改善HepG2细胞的脂质平衡[8]。羟化多甲氧基黄酮可抑制脂肪细胞的脂滴积聚,下调过氧化物酶体增殖物激活受体γ(PPARγ)和SREBP-1c及其下游的aP2、FAS、ACC表达,激活3T3-L1脂肪细胞的腺苷酸活化蛋白激酶(AMPK)信号,降低高脂小鼠脂肪、AST、ALT、TC、三酰甘油(TG)水平[9]。川陈皮素可降低高脂饮食诱导的肥胖小鼠的体质量及血脂、白色脂肪组织及血清TG水平,改善脂联素水平和糖耐量[10-11]

1.2 增加脂肪酸氧化

橘类黄酮可通过抑制肝脂肪酸合成和增加脂肪酸氧化,防止肝脂肪变性、脂代谢紊乱[12]。橙皮素、柚皮素可促进脂肪酸氧化和三羧酸循环,降低肝内脂肪酸的量,具有强氧化剂的作用[13]。多甲氧基黄酮sudachitin,具有降低db/db小鼠TG和自由脂肪酸(FFA)水平,改善糖耐量和胰岛素抵抗作用[14]。甜橙黄酮能抑制胰岛素刺激的葡萄糖的吸收,增强脂肪酸β氧化[15]

1.3 肝脏保护作用

橘类总黄酮可降低非酒精性脂肪肝(NASH)小鼠肝TG、血清AST水平,增强肝脏抗氧化能力[16]。高胆固醇饮食中添加1.5%多甲氧基黄酮,可显著降低AST和ALP活性、血清肌酸激酶(CK)和乳酸脱氢酶(LDH)水平,可用于治疗或预防肝损伤[17]。川陈皮素也具有保肝作用[18]

2 抗血栓

陈皮提取物和橙皮苷、柚皮素及其衍生物可通过抗血小板凝聚等实现抗血栓作用。陈皮能抑制大鼠血小板聚集,降低红细胞聚集[19]。橙皮苷、橙皮素及其衍生物具有抗血小板聚集和抗凝作用[20]。橙皮苷还能体内外抑制由胶原、花生四烯酸、ADP和凝血酶诱导的大鼠血小板凝聚和延长小鼠尾静脉出血时间[21]。柚皮素-7-葡萄糖苷(樱桃苷)可抑制血小板和红细胞聚集,改善血流变[22]

3 抗动脉粥样硬化

陈皮抗动脉粥样硬化作用研究最多的是其有效成分柚皮苷和柚皮素等二氢黄酮,除此外还有多甲氧基黄酮和柑橘果胶等。

柚皮苷抗动脉粥样硬化作用主要表现在通过抑制羟甲戊二酰辅酶A还原酶(HMGCR)和酰基辅酶A胆固醇酰基转移酶(ACAT)活性来调节血脂、LDL-C、Apo-B水平和non-HDL-C的量,通过抑制血管细胞黏附分子-1(VCAM-1)、单核细胞趋化蛋白-1(MCP-1)和细胞间黏附分子-1(ICAM-1)表达,抑制巨噬细胞渗入、平滑肌细胞增殖、免疫细胞黏附、内皮功能紊乱,从而减少高脂动物血管斑块的发展[23-24]。柚皮素的体内外研究均表明其具有抗动脉粥样硬化作用,体外研究中发现柚皮素与其II相代谢产物能干扰与动脉粥样硬化相关的人巨噬细胞炎症基因的表达[25];橙皮素、柚皮素代谢产物可通过抑制动脉粥样硬化相关基因(如炎症、细胞黏附、细胞骨架组织)的表达,降低单核细胞黏附于内皮细胞上[26];柚皮素可通过促进血管平滑肌细胞(VSMCs)中血红素氧化酶-1(HO-1)的表达和活性,抑制VSMC的增殖和迁移,阻滞活性氧(ROS)的产生,从而抗动脉粥样硬化[27]。体内研究中发现柚皮素对高脂饲料喂养LDLR/小鼠,可减少肝巨噬细胞的渗入和炎症,减少胆固醇诱导的泡沫细胞的形成和炎症标志物的表达,从而防止动脉粥样硬化[28];柚皮素还可通过抑制c-Jun NH2端激酶而抑制高脂饮食诱导肥胖小鼠的脂肪MCP-1的量,从而抑制巨噬细胞的渗入而防止血管粥样硬化[29]

甜橙黄酮、川陈皮素有抗血管生成作用[30],甜橙黄酮还可下调斑马鱼flt1、kdrl、hras基因表达,抑制细胞周期于G0/G1[31]。橘皮素能通过阻滞PI3K/AKT信号通路抑制大鼠主动脉平滑肌细胞(RASMCs)的增殖和迁移,预防和治疗动脉粥样硬化等血管疾病[32]。MacKinnon等[33]研究发现柑橘果胶可抑制半乳糖凝集素-3(gal-3),减小ApoE和gal-3双敲除小鼠后期动脉粥样硬化的斑块,而降低动脉粥样硬化。

4 心肌保护作用

陈皮主治胸痹证,胸痹证的疼痛部位、性质、表现及预后等均与西医的心肌缺血、心肌梗死有不同程度的吻合,因此,陈皮具有抗心肌缺血/梗死、抗心肌损伤等作用。橙皮苷、橙皮素及其衍生物可抗心肌凋亡、抑制冠脉血管增殖和迁移,在心肌损伤、心脏重构、心肌缺血、心肌梗死方面均显示良好的作用[20]。橙皮素通过降低凋亡细胞比率,caspsae-3和caspase-9活性,实现抗心肌细胞凋亡和心肌细胞损伤保护作用[34]。柚皮素可降低大鼠颈动脉气球损伤模型中新生内膜/中膜层的比例和血清8-异前列腺素F2α(8-iso-PGF2α)水平,说明柚皮素可用于心瓣血管成形术后再狭窄的预防;还可降低急性梗死大鼠由缺血-再灌注诱导的心肌损伤,而具有心肌保护作用[35]

5 脑保护作用

陈皮中的川陈皮素、橘皮素等具有大脑神经保护、大脑缺血-再灌注损伤保护和改善运动认知等作用。川陈皮素可改善老化和与年龄相关的神经退行性病变引起的学习和记忆障碍,以及氧化应激以及tau过度磷酸化[36];也可激活ERK通路及其环磷酸腺苷(cAMP)转录[37]。川陈皮素还可降低脑缺血-再灌注模型大鼠脑梗死面积,抑制脑水肿和中性粒细胞侵入缺血区域,并降低脑缺血半球凋亡脑细胞的死亡,激活环磷腺苷效应元件结合蛋白(CREB),并改善脑缺血大鼠的运动功能障碍,从而保护大脑缺血-再灌注损伤[38]。川陈皮素可通过增强多巴胺释放,改善帕金森模型小鼠的运动和认知障碍[39]。川陈皮素对局灶性脑缺血、阿尔茨海默病[40]神经具有保护作用,可以改善神经功能缺损症状,减轻脑水肿,减少脑梗死体积,其保护作用可能与激活Akt/CREB通路,上调脑源性神经营养因子(BDNF)、Bcl-2和claudin-5的表达有关[41]。川陈皮素和橘皮素[42]可通过诱导线粒体轻度去极化而保护脑神经。

6 抗炎和抗氧化作用

陈皮及其成分具有广泛的治疗心血管疾病作用,包括调血脂、抗血栓、抗动脉粥样硬化、抗心肌缺血/梗死、脑保护作用等,上述作用多依赖于陈皮及其成分的抗炎和抗氧化作用。

6.1 抗炎作用

陈皮发挥抗炎作用的主要有效成分是黄酮类成分,包括二氢黄酮和多甲氧基黄酮。其中二氢黄酮的抗炎作用,主要通过以下途径实现的:(1)降低脂质过氧化物,增强抗氧化应激能力;(2)抑制炎症因子表达;(3)抑制细胞黏附分子表达;(4)降低免疫细胞和炎性细胞浸润。二氢黄酮中抗炎作用研究最多的为橙皮苷、柚皮苷和芸香柚皮苷。橙皮苷、柚皮苷可降低亚硝酸盐、过氧化脂质(LPO)水平和谷胱甘肽过氧化物酶(GSH-Px)、超氧化物歧化酶(SOD)、过氧化氢酶(CAT)活性,降低血清中CAT、血清丙氨酸转氨酶(SGPT),且橙皮苷作用强于柚皮苷[43]。研究发现橙皮苷、柚皮苷和芸香柚皮苷等橘类黄酮具有降低肥胖大鼠γ干扰素(IFN-γ)水平的作用[44];通过抑制p38 MAPK信号通路降低人脐静脉内皮细胞(HUVECs)ICAM-1的表达[45];还可降低小鼠巨噬细胞NO、白细胞介素-10(IL-10)、IL-12、肿瘤坏死因子-α(TNF-α)水平[46];降低大鼠TNF-α和IL-1β水平[47]。但通过对陈皮醇提物、水提物及橙皮苷部位的研究发现陈皮提取物的抗炎活性优于橙皮苷[48]。多甲氧基黄酮也具有很强的抗炎能力。川陈皮素、橘皮素、羟基化后的5-去甲基川陈皮素和橘皮素及其代谢产物均可抑制脂多糖(LPS)诱导的RAW264.7细胞炎症以及诱导型一氧化氮合酶(iNOS)和环氧合酶-2(COX-2)基因表达[49]。3, 5, 6, 7, 8, 3′, 4′-heptameth-oxyflavone、5, 7, 3′, 4′, 5′-五甲氧基黄酮也都具有抗炎作用[50]

6.2 抗氧化作用

陈皮富含黄酮类化合物,具有很强的抗氧化活性[51]。陈皮酶水解残留物具有抗氧化作用,并与总酚、黄酮(包括柚皮苷、柚皮素、橙皮苷、新橙皮苷)等呈正相关[52]。柚皮素也具有降低小鼠脂质过氧化、增加GSH及其转移酶、还原酶和过氧化物酶,SOD及CAT的活性等强抗氧化能力[53-54]。其他研究表明柚皮苷、橙皮苷等[55-56]也具有抗氧化应激、降低脂质过氧化物水平的作用。陈皮中的多甲氧基黄酮是橘类所特有的,也具有很强的抗氧化作用。柑橘皮中的多甲氧基黄酮尤其是川陈皮素有抗亚油酸氧化,浓度依懒性地抑制脂质体过氧化和清除•OH自由基的能力,且多甲氧基黄酮的活性强于橙皮苷[57]。川陈皮素可呈浓度依赖性地增加高糖诱导的HUVEC细胞总SOD活力和NO分泌量[58]。橘皮素也能降低肾组织脂质过氧化和炎症性细胞因子、DNA损伤标志物的表达,还可改善酶和非酶抗氧化作用,使肾Nrf2/Keap表达正常化,从而下调炎症因子和蛋白的表达[59]。除了黄酮,陈皮挥发油可增强过氧化物酶、CAT、GSH、GSH-Px、SOD活性、减少脂质过氧化产物丙二醛(MDA)的量,而具有抗氧化作用[60]

7 分析与展望

陈皮中含有的丰富的黄酮类成分,而其抗心脑血管疾病的药效成分主要是黄酮,目前研究最多是橙皮苷、橙皮素、柚皮苷、柚皮素,多甲氧基黄酮也在陆续的研究中。作为橘类所特有的黄酮类成分,多甲氧基黄酮具有很强的抗炎和抗氧化作用,而炎症和氧化应激在心脑血管疾病发生发展过程中起到了很大的作用,因此多甲氧基黄酮具有很大的应用前景,值得进一步深入研究。

与名贵的治疗心脑血管中药相比,陈皮是一味常用中药,分布广泛,资源丰富,易于栽培,药用价值较高,毒副作用低,还可食用,是卫生部公布的88种药食两用中药之一,有很大的开发利用潜力,因而对其抗心脑血管功效进行深入研究有很重要的理论意义和实用价值。

参考文献
[1] 官福兰, 王汝俊, 王建华. 陈皮及橙皮甙对小鼠胃排空、小肠推进功能的影响[J]. 中药药理与临床 , 2002, 18 (3) :7–9.
[2] 周贤梅, 赵阳, 何翠翠, 等. 陈皮挥发油对大鼠肺纤维化的干预作用[J]. 中西医结合学报 , 2012, 10 (2) :200–209.
[3] Cassidy A, Rimm E B, O'Reilly E J, et al. Dietary flavonoids and risk of stroke in women[J]. Stroke , 2012, 43 (4) :946–951. DOI:10.1161/STROKEAHA.111.637835
[4] Lai H T, Threapleton D E, Day A J, et al. Fruit intake and cardiovascular disease mortality in the UK Women's Cohort Study[J]. Eur J Epidemiol , 2015, 30 (9) :1035–1048. DOI:10.1007/s10654-015-0050-5
[5] Lim D W, Lee Y, Kim Y T. Preventive effects of Citrus unshiu peel extracts on bone and lipid metabolism in OVX rats[J]. Molecules , 2014, 19 (1) :783–794. DOI:10.3390/molecules19010783
[6] 李雄英, 陈素红, 吕圭源, 等. 橙皮苷对脂肪乳剂致高脂血症模型大鼠血脂及血液流变学的影响[J]. 浙江中医药大学学报 , 2013, 37 (3) :308–312.
[7] Iio A, Ohguchi K, Iinuma M, et al. Hesperetin upregulates ABCA1 expression and promotes cholesterol efflux from THP-1 macrophages[J]. J Nat Prod , 2012, 75 (4) :563–566. DOI:10.1021/np200696r
[8] Yen J H, Weng C Y, Li S, et al. Citrus flavonoid 5-demethylnobiletin suppresses scavenger receptor expression in THP-1 cells and alters lipid homeostasis in HepG2 liver cells[J]. Mol Nutr Food Res , 2011, 55 (5) :733–748. DOI:10.1002/mnfr.201000226
[9] Lai C S, Ho M H, Tsai M L, et al. Suppression of adipogenesis and obesity in high-fat induced mouse model by hydroxylated polymethoxyflavones[J]. J Agric Food Chem , 2013, 61 (43) :10320–10328. DOI:10.1021/jf402257t
[10] Nemoto K, Ikeda A, Yoshida C, et al. Characteristics of nobiletin-mediated alteration of gene expression in cultured cell lines[J]. Biochem Biophys Res Commun , 2013, 431 (3) :530–534. DOI:10.1016/j.bbrc.2013.01.024
[11] Lee Y S, Cha B Y, Choi S S, et al. Nobiletin improves obesity and insulin resistance in high-fat diet-induced obese mice[J]. J Nutr Biochem , 2013, 24 (1) :156–162. DOI:10.1016/j.jnutbio.2012.03.014
[12] Assini J M, Mulvihill E E, Huff M W. Citrus flavonoids and lipid metabolism[J]. Curr Opin Lipidol , 2013, 24 (1) :34–40. DOI:10.1097/MOL.0b013e32835c07fd
[13] Constantin R P, do Nascimento G S, Constantin R P, et al. Citrus flavanones affect hepatic fatty acid oxidation in rats by acting as prooxidant agents[J]. Biomed Res Int , 2013, 2013 :342973.
[14] Tsutsumi R, Yoshida T, Nii Y, et al. Sudachitin, a polymethoxylated flavone, improves glucose and lipid metabolism by increasing mitochondrial biogenesis in skeletal muscle[J]. Nutr Metab (Lond) , 2014, 11 (1) :1–14. DOI:10.1186/1743-7075-11-1
[15] Kang S I, H Shin S, Ko H C, et al. Effects of sinensetin on lipid metabolism in mature 3T3-L1 adipocytes[J]. Phytother Res , 2013, 27 (1) :131–134. DOI:10.1002/ptr.v27.1
[16] 陈芝芸, 李剑霜, 蒋剑平, 等. 胡柚皮黄酮对非酒精性脂肪性肝炎小鼠肝组织SIRTI/PGC-1a通路[J]. 中国中药杂志 , 2014, 39 (1) :100–105.
[17] Green C O, Wheatley A O, McGrowder D A, et al. Citrus peel polymethoxylated flavones extract modulates liver and heart function parameters in diet induced hypercholesterolemic rats[J]. Food Chem Toxicol , 2013, 51 (1) :306–309.
[18] Onoue S, Nakamura T, Uchida A, et al. Physicochemical and biopharmaceutical characterization of amorphous solid dispersion of nobiletin, a citrus polymethoxylated flavone, with improved hepatoprotective effects[J]. Eur J Pharm Sci , 2013, 49 (4) :453–460. DOI:10.1016/j.ejps.2013.05.014
[19] 吉中强, 宋鲁卿, 牛其昌. 15种理气中药体外对人血小板聚集的影响[J]. 中草药 , 2001, 32 (5) :428–430.
[20] Roohbakhsh A, Parhiz H, Soltani F, et al. Molecular mechanisms behind the biological effects of hesperidin and hesperetin for the prevention of cancer and cardiovascular diseases[J]. Life Sci , 2015, 124 :64–74. DOI:10.1016/j.lfs.2014.12.030
[21] Yu H Y, Park S W, Chung I M, et al. Anti-platelet effects of yuzu extract and its component[J]. Food Chem Toxicol , 2011, 49 (12) :3018–3024. DOI:10.1016/j.fct.2011.09.038
[22] Itoh K, Masuda M, Naruto S, et al. Effects of unripe Citrus hassaku fruits extract and its flavanone glycosides on blood fluidity[J]. Biol Pharm Bull , 2010, 33 (4) :659–664. DOI:10.1248/bpb.33.659
[23] Chanet A, Milenkovic D, Deval C, et al. Naringin, the major grapefruit flavonoid, specifically affects atherosclerosis development in diet-induced hypercholesterolemia in mice[J]. J Nutr Biochem , 2012, 23 (5) :469–477. DOI:10.1016/j.jnutbio.2011.02.001
[24] Bharti S, Rani N, Krishnamurthy B, et al. Preclinical evidence for the pharmacological actions of naringin:a review[J]. Planta Med , 2014, 80 (6) :437–451. DOI:10.1055/s-00000058
[25] Dall'Asta M, Derlindati E, Curella V, et al. Effects of naringenin and its phase Ⅱ metabolites on in vitro human macrophage gene expression[J]. Int J Food Sci Nutr , 2013, 64 (7) :843–849. DOI:10.3109/09637486.2013.804039
[26] Chanet A, Milenkovic D, Claude S, et al. Flavanone metabolites decrease monocyte adhesion to TNF-alpha-activated endothelial cells by modulating expression of atherosclerosis-related genes[J]. Br J Nutr , 2013, 110 (4) :587–598. DOI:10.1017/S0007114512005454
[27] Chen S, Ding Y, Tao W, et al. Naringenin inhibits TNF-alpha induced VSMC proliferation and migration via induction of HO-1[J]. Food Chem Toxicol , 2012, 50 (9) :3025–3031. DOI:10.1016/j.fct.2012.06.006
[28] Assini J M, Mulvihill E E, Sutherland B G, et al. Naringenin prevents cholesterol-induced systemic inflammation, metabolic dysregulation, and atherosclerosis in Ldlr (-)/(-) mice[J]. J Lipid Res , 2013, 54 (3) :711–724. DOI:10.1194/jlr.M032631
[29] Yoshida H, Watanabe H, Ishida A, et al. Naringenin suppresses macrophage infiltration into adipose tissue in an early phase of high-fat diet-induced obesity[J]. Biochem Biophys Res Commun , 2014, 454 (1) :95–101. DOI:10.1016/j.bbrc.2014.10.038
[30] Lam K H, Alex D, Lam I K, et al. Nobiletin, a polymethoxylated flavonoid from citrus, shows anti-angiogenic activity in a zebrafish in vivo model and HUVEC in vitro model[J]. J Cell Biochem , 2011, 112 (11) :3313–3321. DOI:10.1002/jcb.v112.11
[31] Lam I K, Alex D, Wang Y H, et al. In vitro and in vivo structure and activity relationship analysis of polymethoxylated flavonoids:identifying sinensetin as a novel antiangiogenesis agent[J]. Mol Nutr Food Res , 2012, 56 (6) :945–956. DOI:10.1002/mnfr.201100680
[32] Seo J, Lee H S, Ryoo S, et al. Tangeretin, a citrus flavonoid, inhibits PGDF-BB-induced proliferation and migration of aortic smooth muscle cells by blocking AKT activation[J]. Eur J Pharmacol , 2011, 673 (1/3) :56–64.
[33] MacKinnon A C, Liu X, Hadoke P W, et al. Inhibition of galectin-3 reduces atherosclerosis in apolipoprotein E-deficient mice[J]. Glycobiology , 2013, 23 (6) :654–663. DOI:10.1093/glycob/cwt006
[34] Yang Z, Liu Y, Deng W, et al. Hesperetin attenuates mitochondria-dependent apoptosis in lipopolysaccharide-induced H9C2 cardiomyocytes[J]. Mol Med Rep , 2014, 9 (5) :1941–1946.
[35] Testai L, Martelli A, Marino A, et al. The activation of mitochondrial BK potassium channels contributes to the protective effects of naringenin against myocardial ischemia/reperfusion injury[J]. Biochem Pharmacol , 2013, 85 (11) :1634–1643. DOI:10.1016/j.bcp.2013.03.018
[36] Nakajima A, Aoyama Y, Nguyen T T, et al. Nobiletin, a citrus flavonoid, ameliorates cognitive impairment, oxidative burden, and hyperphosphorylation of tau in senescence-accelerated mouse[J]. Behav Brain Res , 2013, 250 (6) :351–360.
[37] Kimura J, Nemoto K, Yokosuka A, et al. 6-Demethoxynobiletin, a nobiletin-analog citrus flavonoid, enhances extracellular signal-regulated kinase phosphorylation in PC12D cells[J]. Biol Pharm Bull , 2013, 36 (10) :1646–1649. DOI:10.1248/bpb.b13-00230
[38] Yasuda N, Ishii T, Oyama D, et al. Neuroprotective effect of nobiletin on cerebral ischemia-reperfusion injury in transient middle cerebral artery-occluded rats[J]. Brain Res , 2014, 1559 (17) :46–54.
[39] Yabuki Y, Ohizumi Y, Yokosuka A, et al. Nobiletin treatment improves motor and cognitive deficits seen in MPTP-induced Parkinson model mice[J]. Neuroscience , 2014, 259 (4) :126–141.
[40] 王秀琪, 丁晓波, 曾明. 川陈皮素对阿尔茨海默病的神经保护作用[J]. 重庆医学 , 2014, 43 (22) :2948–2951.
[41] 张兰.川陈皮素对实验性脑梗死大鼠脑保护作用及其对p-Akt、p-CREB、BDNF、Bcl-2和Claudin-5调节作用的实验研究[D].石家庄:河北医科大学, 2013.
[42] Wu J J, Cui Y, Yang Y S, et al. Mild mitochondrial depolarization is involved in a neuroprotective mechanism of Citrus sunki peel extract[J]. Phytother Res , 2013, 27 (4) :564–571. DOI:10.1002/ptr.v27.4
[43] Jain M, Parmar H S. Evaluation of antioxidative and anti-inflammatory potential of hesperidin and naringin on the rat air pouch model of inflammation[J]. Inflamm Res , 2011, 60 (5) :483–491. DOI:10.1007/s00011-010-0295-0
[44] Leray V, Freuchet B, Le Bloc'h J, et al. Effect of citrus polyphenol-and curcumin-supplemented diet on inflammatory state in obese cats[J]. Br J Nutr , 2011, 106 .
[45] Kim S W, Kim C E, Kim M H. Flavonoids inhibit high glucose-induced up-regulation of ICAM-1 via the p38 MAPK pathway in human vein endothelial cells[J]. Biochem Biophys Res Commun , 2011, 415 (4) :602–607. DOI:10.1016/j.bbrc.2011.10.115
[46] Zanotti Simoes Dourado G K, de Abreu Ribeiro L C, Zeppone Carlos I, et al. Orange juice and hesperidin promote differential innate immune response in macrophages ex vivo[J]. Int J Vitam Nutr Res , 2013, 83 (3) :162–167. DOI:10.1024/0300-9831/a000157
[47] Bentli R, Ciftci O, Cetin A, et al. Oral administration of hesperidin, a citrus flavonone, in rats counteracts the oxidative stress, the inflammatory cytokine production, and the hepatotoxicity induced by the ingestion of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD)[J]. Eur Cytokine Netw , 2013, 24 (2) :91–96.
[48] 贺燕林, 杨中林. 陈皮不同提取物及橙皮苷部位的抗炎活性比较研究[J]. 亚太传统医药 , 2014, 10 (13) :23–25.
[49] 郭珊珊.多甲氧基黄酮的抗炎活性及相关分子机制研究[D].青岛:中国海洋大学, 2012.
[50] Manthey J A, Bendele P. Anti-inflammatory activity of an orange peel polymethoxylated flavone, 3', 4', 3, 5, 6, 7, 8-heptamethoxyflavone, in the rat carrageenan/paw edema and mouse lipopolysaccharide-challenge assays[J]. J Agric Food Chem , 2008, 56 (20) :9399–9403. DOI:10.1021/jf801222h
[51] 张海丽. 陈皮提取物的抗氧化活性研究[J]. 黑龙江医药 , 2014, 24 (2) :306–309.
[52] Im S J, Kim J H, Kim M Y. Evaluation of bioactive components and antioxidant and anticancer properties of citrus wastes generated during bioethanol production[J]. Nat Prod Commun , 2014, 9 (4) :483–486.
[53] Roy A, Das A, Das R, et al. Naringenin, a citrus flavonoid, ameliorates arsenic-induced toxicity in Swiss albino mice[J]. J Environ Pathol Toxicol Oncol , 2014, 33 (3) :195–204. DOI:10.1615/JEnvironPatholToxicolOncol.v33.i3
[54] Mershiba S D, Dassprakash M V, Saraswathy S D. Protective effect of naringenin on hepatic and renal dysfunction and oxidative stress in arsenic in toxicated rats[J]. Mol Biol Rep , 2013, 40 (5) :3681–3691. DOI:10.1007/s11033-012-2444-8
[55] Hermenean A, Ardelean A, Stan M, et al. Antioxidant and hepatoprotective effects of naringenin and its beta-cyclodextrin formulation in mice intoxicated with carbon tetrachloride:a comparative study[J]. J Med Food , 2014, 17 (6) :670–677. DOI:10.1089/jmf.2013.0007
[56] Sharma M, Akhtar N, Sambhav K, et al. Emerging potential of citrus flavanones as an antioxidant in diabetes and its complications[J]. Curr Top Med Chem , 2015, 15 (2) :187–195. DOI:10.2174/1568026615666141209163013
[57] 单杨, 李高阳, 李忠海. 柑橘皮中多甲氧基黄酮的体外抗氧化活性研究[J]. 食品科学 , 2007, 28 (8) :100–103.
[58] 宫先卫.川陈皮素对高糖诱导人脐静脉内皮细胞损伤的保护作用[D].济南:山东大学, 2011.
[59] Lakshmi A, Subramanian S P. Tangeretin ameliorates oxidative stress in the renal tissues of rats with experimental breast cancer induced by 7, 12-dimethylbenz[J]. Toxicol Lett , 2014, 229 (2) :333–348. DOI:10.1016/j.toxlet.2014.06.845
[60] 何少玲.陈皮、姜提取物治疗胸痹证的药效学研究[D].广州:广州中医药大学, 2012.