中草药  2016, Vol. 47 Issue (15): 2606-2613
0
  PDF    
杭白芷醋酸乙酯部位化学成分研究
韦玮1, 徐嵬1, 杨秀伟1, 何忠梅2     
1. 北京大学, 药学院 天然药物学系, 天然药物及仿生药物国家重点实验室, 北京 100191 ;
2. 吉林农业大学中药材学院, 吉林 长春 130118
摘要: 目的 研究杭白芷Angelica dahurica var. formosana醋酸乙酯部位的化学成分。 方法 采用硅胶、HPLC等柱色谱方法进行分离纯化,通过质谱、核磁共振谱学数据鉴定化合物结构。 结果 从杭白芷70%乙醇水提取物的醋酸乙酯部位分离鉴定了42个化合物,分别为欧前胡素(1)、珊瑚菜内酯(2)、佛手酚(3)、独活属醇(4)、镰叶芹二醇(5)、异欧前胡素(6)、白当归素(7)、补骨脂素(8)、香柑内酯(9)、异栓翅芹烯醇(10)、日本当归醇A(11)、白术内酰胺(12)、二氢欧山芹醇当归酸酯(13)、5-羟基-8-甲氧基补骨脂素(14)、(8E)-1,8-十七碳二烯-4,6-二炔-3,10-二醇(15)、栓翅芹烯醇(16)、白当归素乙醚(17)、异白当归脑(18)、伞形花内酯(19)、花椒毒酚(20)、欧芹酚甲醚(21)、别欧前胡素(22)、5-(2-乙酰氧基-3-羟基-3-甲基丁氧基)补骨脂素(23)、水合氧化前胡素(24)、氧化前胡素乙醚(25)、别异欧前胡素(26)、牧草栓翅芹酮(27)、氧化别欧前胡素(28)、异氧化前胡内酯(29)、腺嘌呤(30)、反式阿魏酸(31)、香草酸(32)、2-乙氧基-2-对羟基苯乙醇(33)、栓质花椒素(34)、异茴芹素(35)、花椒毒素(36)、尤劳帕替醇(37)、2,4-二羟基苯甲酸甲酯(38)、滨蒿内酯(39)、东印度缎木内酯醇(40)、印度榅桲素(41)、5-羟甲基糠醛(42)。 结论 除化合物136710131416212426外,其余化合物均为首次从杭白芷中分离得到。
关键词: 杭白芷     欧前胡素     珊瑚菜内酯     异欧前胡素     水合氧化前胡素     栓质花椒素     东印度缎木内酯醇    
Chemical constituents from ethyl acetate soluble parts in roots of Angelica dahurica var. formosana
WEI Wei1, XU Wei1, YANG Xiu-wei1, HE Zhong-mei2     
1. State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China ;
2. College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
Abstract: Objective To study the chemical constituents of ethyl acetate soluble parts in 70% ethanol aqueous extract from the roots of Angelica dahurica var. formosana. Methods The compounds were separated and purified by repeated column chromatography on silica gel and HPLC, and their structures were determined by spectroscopic data analyses of MS and NMR. Results Forty-two compounds were obtained and identified as imperatorin (1), phellopterin (2), bergaptol (3), heraclenol (4), falcarindiol (5), isoimperatorin (6), byakangelicin (7), psoralen (8), bergapten (9), isogosferol (10), japoangelol A (11), atractylenolactam (12), columbianadin (13), 5-hydroxy-8-methoxypsoralen (14), (8E)-1, 8-heptadecadiene-4, 6-diyne-3, 10-diol (15), pabulenol (16), byakangelicin ethoxide (17), isobyakangelicol (18), umbelliferone (19), xanthotoxol (20), osthole (21), alloimperatorin (22), 5-(2-acetoxy-3-hydroxy-3-methylbutoxy) psoralen (23), oxypeucedanin hydrate (24), oxypeucedanin ethanolate (25), alloisoimperatorin (26), pabularinone (27), oxyalloimperatorin (28), isooxypeucedanin (29), adenine (30), trans-ferulic acid (31), vanillic acid (32), 2-ethoxy-2-(4-hydroxyphenyl)-ethanol (33), suberosin (34), isopimpinellin (35), xanthotoxin (36), ulopterol (37), 2, 4-dihydroxybenzoic acid methylate (38), scoparone (39), swietenol (40), marmesin (41), and 5-hydroxymethylfurfural (42), respectively. Conclusion Except for the compounds 1, 3, 6, 7, 10, 13, 14, 16, 21, 24, and 26, other compounds were isolated from the roots of A. dahurica var. formosana for the first time.
Key words: roots of of Angelica dahurica var. formosana     imperatorin     phellopterin     isoimperatorin     oxypeucedanin hydrate     suberosin     swietenol    

传统中药白芷Angelicae Dahuricae Radix系伞形科(Umbelliferae)植物杭白芷的干燥根。其物种的拉丁学名,《中国药典》1977[1] 至2015年版[2]记载为Angeliea dahurica (Fisch. ex Hoffm.) Benth. et Hook. f. var. formosana (Boiss.) Shan et Yuan。袁昌齐[3]于20世纪70年代对白芷的药材和原植物进行了整理、鉴定与合并,认为白芷的原植物主要来源于当归属的白芷及杭白芷。1983年在《中国当归属(Angelica L.)和山芹属(Ostericum Hoffm.)植物的分类研究》中修订为杭白芷和祁白芷2个新栽培变种,杭白芷原植物的拉丁学名定为Angelica dahurica (Fisch. ex Hoffm.) Benth. et Hook. f. ex Franch. et Sav. cv. Hangbaizhi(Angelica dahurica cv. Hangbaizhi),此与《中国植物志》[4]中的拉丁学名相同。

白芷始载于《神农本草经》,列为中品,药用历史悠久,其应用以明代及明代以前最为广泛,功效有祛风除湿、行气止痛、止血、消痈散结、托毒排脓、生肌止痛等,清代以后白芷的应用范围逐渐缩小,其中止血、解蛇毒等功能已不广泛使用。《本草品汇精要》记述白芷“道地,泽州,吴地尤胜”[5]。可见杭州自明代就是白芷的道地产区之一,至今已有千余年的历史。

中药物质基础研究是中药继承、发展、创新的关键科学问题[6]。在常用中药白芷类药材物质基础系统性研究中[7-11],本课题组报道了从杭白芷70%乙醇水提取物的环己烷部位分离鉴定了5-(3″-羟基- 3″-甲基丁基)-8-羟基呋喃香豆素 [5-(3″-hydroxy- 3″-methylbutyl)-8-hydroxyfuranocoumarin]、水合异白当归素-3″-乙醚(isobyakangelicin hydrate-3″-ethyl ether)和结合短或长链疏水基团的杭白芷香豆素(andafocoumarin)A~J[12]。本研究从杭白芷70%乙醇水提取物的醋酸乙酯部位分离鉴定了42个化合物,其中的22个经与从兴安白芷得到的对照品的理化常数、MS和NMR数据[13]比较,分别鉴定为欧前胡素(imperatorin,1)、珊瑚菜内酯(phellopterin,2)、独活属醇(heraclenol,4)、异欧前胡素(isoimperatorin,6)、白当归素(byakangelicin,7)、补骨脂素(psoralen,8)、香柑内酯(bergapten,9)、异栓翅芹烯醇(isogosferol,10)、5-羟基-8-甲氧基补骨脂素(5-hydroxy-8-methoxypsoralen,14)、栓翅芹烯醇(pabulenol,16)、白当归素乙醚(byakangelicin ethoxide,17)、异白当归脑(isobyakangelicol,18)、伞形花内酯(umbelliferone,19)、花椒毒酚(xanthotoxol,20)、水合氧化前胡素(oxypeucedanin hydrate,24)、牧草栓翅芹酮(pabularinone,27)、异氧化前胡内酯(isooxypeucedanin,29)、反式阿魏酸(trans-ferulic acid,31)、香草酸(vanillic acid,32)、异茴芹素(isopimpinellin,35)、花椒毒素(xanthotoxin,36)和印度榅桲素(marmesin,41)。其余的成分鉴定为佛手酚(bergaptol,3)、镰叶芹二醇(falcarindiol,5)、日本当归醇A(japoangelol A,11)、白术内酰胺(atractylenolactam,12)、二氢欧山芹醇当归酸酯(columbianadin,13)、(8E)-1,8-十七碳二烯-4,6-二炔-3,10-二醇 [(8E)-1,8-heptadecadiene-4,6-diyne- 3,10-diol,15]、欧芹酚甲醚(osthole,21)、别欧前胡素(alloimperatorin,22)、5-(2-乙酰氧基-3-羟基- 3-甲基丁氧基) 补骨脂素 [5-(2-acetoxy-3-hydroxy- 3-methylbutoxy) psoralen,23]、氧化前胡素乙醚(oxypeucedanin ethanolate,25)、别异欧前胡素(alloisoimperatorin,26)、氧化别欧前胡素(oxyalloimperatorin,28)、腺嘌呤(adenine,30)、2-乙氧基-2-对羟基苯基乙醇 [2-ethoxy-2-(4- hydroxyl-phenyl)-ethanol,33]、栓质花椒素(suberosin,34)、尤劳帕替醇(ulopterol,37)、2,4-二羟基苯甲酸甲酯(2,4-dihydroxybenzoic acid methylate,38)、滨蒿内酯(scoparone,39)、东印度缎木内酯醇(swietenol,40)和5-羟甲基糠醛(5-hydroxymethylfurfural,42)。除化合物136710131416212426外,其余化合物均为首次从杭白芷中分离得到。

1 仪器与试剂

Bruker AV Ⅲ 400型核磁共振波谱仪(Bruker BioSpin AG Facilities,Fllanden,Switzerland);Finnigan TRACE 2000 GC-MS质谱仪(EI-MS,Thermo Finnigan,San Jose,CA,美国);MDS SCIEX API QSTAR型质谱仪(ESI-TOF-MS,Applied Biosystems/MDS Sciex.,Foster City,CA,美国);LC 3000半制备型高效液相色谱(SP-HPLC)仪系统(北京创新通恒科技有限公司),配置P3050二元泵,CXTH-3000色谱工作站;中压液相色谱柱(2.6 cm×46 cm,北京元宝山色谱科技有限公司);柱色谱硅胶(200~300目,青岛海洋化工厂产品);Sephadex LH-20为Pharmacia公司产品;MCI-gel CHP 20(75~150 μm)为日本三菱化学产品;GF254薄层色谱(TLC)硅胶板分别为青岛海洋化工厂和Merck公司(Darmstadt,德国)产品。分析纯乙醇、甲醇、醋酸乙酯、三氯甲烷、丙酮、环己烷等为北京化工厂产品。

杭白芷药材于2012年8月采自杭白芷的道地产地浙江省磐安县深泽乡仰头村,经北京大学药学院杨秀伟教授鉴定为Angelica dahurica cv. Hangbaizhi的根,凭证标本(HBZ201208)存放在北京大学天然药物及仿生药物国家重点实验室。

2 提取与分离

杭白芷干燥根粉末7.5 kg加入3倍体积的70%乙醇水溶液回流提取5次,第1次提取2 h,第2~5次每次提取1 h,滤过,合并滤液,减压回收有机溶剂,得浸膏1 093.5g。浸膏加入适量的水溶解分散,依次用2倍体积的环己烷、醋酸乙酯、正丁醇萃取,减压回收溶剂,得到环己烷萃取物124.37 g、醋酸乙酯萃取物51.4 g、正丁醇萃取物209.67 g。

取醋酸乙酯萃取物(51.4 g)与硅胶按1∶1质量比混合均匀后,自然风干经硅胶柱色谱,环己烷-醋酸乙酯(10∶1→1∶1)梯度洗脱,得到10个流分(Fr. 1~10)。Fr. 1(3 g)经硅胶柱色谱,环己烷-丙酮(10∶1)等度洗脱,得到化合物1(1.1 g)、2(1.8 g)、3(5 mg)。Fr. 2(6.4 g)经硅胶柱色谱,环己烷-醋酸乙酯(20∶1→5∶1)梯度洗脱,再经Sephadex LH-20凝胶柱纯化(三氯甲烷-甲醇1∶1),得到化合物4(25 mg)、5(1.5 g)、6(1.1 g)。Fr. 3(4 g)经硅胶柱色谱,三氯甲烷-甲醇(20∶1)洗脱,得到6个流分Fr. 3-1~3-6。其中Fr. 3-2(1 g)经制备HPLC,乙腈-水(30∶70)洗脱,得到化合物7(500 mg,tR=33 min)、8(7 mg,tR=37 min)、9(13 mg,tR=44 min)、10(3 mg,tR=55 min)。Fr. 3-3(350 mg)依次经Sephadex LH-20凝胶、硅胶(三氯甲烷-甲醇30∶1)柱色谱,得到化合物11(5 mg)、12(4 mg)、13(6 mg)。Fr. 3-4(500 mg)经MCI柱色谱(甲醇-水40∶60)除色素,Seph adex LH-20凝胶柱色谱(三氯甲烷-甲醇1∶1)反复纯化,得到化合物14(7 mg)、15(3 mg)。Fr. 3-5经Sephadex LH-20凝胶柱(三氯甲烷-甲醇1∶1)色谱,得到化合物16(4 mg)。Fr. 4(1 g)经硅胶柱色谱,三氯甲烷-醋酸乙酯(30∶1)洗脱,得到化合物17(3 mg)、18(5 mg)、19(15 mg)、20(98 mg)、21(5 mg)、22(8 mg)。Fr. 5(600 mg)依次经Sephadex LH-20凝胶、硅胶(环己烷-丙酮5∶1)柱色谱,得到化合物23(45 mg)、24(3 mg)、25(3 mg)、26(6 mg)。Fr. 6(1.2 g)经硅胶柱色谱,三氯甲烷-甲醇(50∶1→3∶1)梯度洗脱,得到3个流分,Fr. 6-1~6-3。Fr. 6-2(300 mg)经Sephadex LH-20凝胶柱色谱反复纯化,得到化合物27(5 mg)、28(5 mg)、29(5 mg)。Fr. 6-3(200 mg)经制备HPLC,乙腈-水(24∶76)洗脱,得到化合物30(5 mg,tR=6 min)、31(500 mg,tR=15 min)、32(3 mg,tR=22 min)、33(15 mg,tR=25 min)。Fr. 7(300 mg)依次经硅胶柱色谱及Sephadex LH-20纯化,得到化合物34(4 m g)、35(3 mg)、36(5 mg)。Fr. 8(100 mg)经制备HPLC,乙腈-水(22∶78)洗脱,得到化合物37(3 mg,tR=50 min)、38(25 mg,tR=66 min)、39(5 mg,tR=100 min)。Fr. 9(150 mg)经硅胶柱色谱,三氯甲烷-甲醇(7∶1)洗脱,得到化合物40(8 mg)、41(5 mg)、42(8 mg)。

3 结构鉴定

化合物3:无色针晶(醋酸乙酯);mp 275~278 ℃;EI-MS m/z: 202 [M]+1H-NMR (400 MHz,DMSO-d6) δ: 11.31 (1H,s,5-OH),8.26 (1H,d,J = 9.8 Hz,H-4),7.91 (1H,d,J = 2.3 Hz,H-2′),7.20 (1H,d,J = 2.3 Hz,H-3′),7.16 (1H,s,H-8),6.27 (1H,d,J = 9.8 Hz,H-3)。NMR数据与文献报道一致[14],由此鉴定化合物3为佛手酚。

化合物5:淡黄色油状物;EI-MS m/z: 260 [M]+1H-NMR (400 MHz,CDCl3) δ: 5.89 (1H,ddd,J = 17.0,10.1,5.4 Hz,H-2),5.58~5.54 (1H,m,H-10),5.48 (1H,d,J = 8.2 Hz,H-9),5.41 (1H,d,J = 17.1 Hz,H-1b),5.20 (1H,d,J = 10.1 Hz,H-1a),5.15 (1H,d,J = 8.2 Hz,H-8),4.89 (1H,d,J = 5.4 Hz,H-3),2.05 (2H,q,J = 7.4 Hz,H-11a,11b),1.30~1.39 (2H,m,H-12a,12b),1.20~1.30 (8H,m,H-13~16),0.84 (3H,t,J = 6.8 Hz,H-17);13C-NMR (100 MHz,CDCl3) δ: 135.9 (C-2),134.2 (C-10),127.8 (C-9),117.2 (C-1),79.8 (C-4),78.4 (C-7),70.2 (C-5),68.7 (C-6),63.2 (C-3),58.4 (C-8),31.8 (C-15),29.3 (C-12),29.2 (C-13),29.1 (C-14),27.7 (C-11),22.6 (C-16),14.1 (C-17)。NMR数据与文献报道一致[15],由此鉴定化合物5为镰叶芹二醇。

化合物11:淡黄色油状物;ESI-MS m/z: 577.6 [M+H]+1H-NMR (400 MHz,CDCl3) δ: 8.12 (1H,d,J = 9.8 Hz,H-4),7.64 (1H,d,J = 2.3 Hz,H-2′),7.00 (1H,d,J = 2.3 Hz,H-3′),6.28 (1H,d,J = 9.8 Hz,H-3),5.92 (1H,ddd,J = 17.0,10.2,5.3 Hz,H-2′′′),5.46 (1H,dd,J = 10.5,8.1 Hz,H-10′′′),5.44 (1H,d,J = 17.0 Hz,H-1′′′b),5.41 (1H,dd,J = 7.1,10.5 Hz,H-9′′′),5.23 (1H,d,J = 10.1 Hz,H-1′′′a),5.15 (1H,d,J = 7.1 Hz,H-8′′′),4.91 (1H,d,J = 5.3 Hz,H-3′′′),4.59 (1H,dd,J = 10.3,3.0 Hz,H-1″b),4.26 (1H,dd,J = 10.3,8.3 Hz,H-1″a),4.18 (3H,s,5-OCH3),3.97 (1H,dd,J = 8.3,3.0 Hz,H-2″),2.06 (2H,m,H-11′′′),1.38 (3H,s,3″-CH3),1.36 (2H,m,H-12″),1.31 (3H,s,3″-CH3),1.25~1.27 (8H,m,H-13′′′~16′′′),0.87 (3H,t,J = 6.8 Hz,H-17′′′);13C-NMR (100 MHz,CDCl3) δ: 160.5 (C-2),150.5 (C-7),145.4 (C-2′),144.8 (C-5),144.1 (C-8a),139.6 (C-4),136.1 (C-2′′′),132.3 (C-10′′′),128.0 (C-9′′′),127.4 (C-8),117.3 (C-1′′′),114.9 (C-6),113.0 (C-3),107.8 (C-4a),105.3 (C-3′),80.6 (C-7′′′),78.7 (C-3″),78.1 (C-4′′′),76.1 (C-2″),75.7 (C-1″),70.7 (C-5′′′),68.7 (C-6 ′′′),63.6 (C-3′′′),61.0 (5-OCH3),59.1 (C-8′′′),31.9 (C-15′′′),29.4 (C-13′′′),29.3 (C-12′′′),29.1 (C-14′′′),28.1 (C-11′′′),23.2 (3″-CH3),22.8 (C-16′′′),22.3 (3″-CH3),14.2 (C-17′′′)。HMBC谱中,H-8′′′ (δH 5.15) 与C-3″ (δC 78.7) 相关,表明该化合物由镰叶芹二醇通过C-8′′′上的羟基与香豆素C-3″上的羟基脱水缩合而成。NMR数据与文献报道一致[16],由此鉴定化合物11为日本当归醇A。

化合物12:白色粉末(甲醇);mp 120~123 ℃;ESI-MS m/z: 230.2 [M+H]+1H-NMR (400 MHz,CDCl3) δ: 7.50 (1H,s,N-H),4.63 (1H,brs,H-15a),4.89 (1H,brs,H-15b),5.45 (1H,s,H-9),2.63 (1H,dd,J = 3.8,16.4 Hz,Hb-6),2.46 (1H,d,J = 13.4 Hz,H-6a),2.36 (1H,m,H-3),2.34 (1H,m,H-1),2.04 (1H,m,H-1),1.64 (2H,m,H-2),1.61 (1H,m,H-3),1.58 (1H,m,H-5),1.87 (3H,s,H-13),0.91 (3H,s,H-14);13C-NMR (100 MHz,CDCl3) δ: 173.3 (C-12),148.8 (C-4),141.8 (C-8),135.4 (C-7),124.9 (C-11),120.9 (C-9),107.2 (C-15),49.2 (C-5),39.5 (C-1),38.2 (C-10),36.4 (C-3),23.3 (C-6),22.5 (C-2),18.7 (C-14),8.3 (C-13)。NMR数据与文献报道一致[17],由此鉴定化合物12为白术内酰胺。

化合物13:无色针晶(三氯甲烷);mp 118 ℃;ESI-MS m/z: 329.3 [M+H]+1H-NMR (400 MHz,CDCl3) δ: 7.63 (1H,d,J = 9.5 Hz,H-4),7.27 (1H,d,J = 8.3 Hz,H-5),6.74 (1H,d,J = 8.3 Hz,H-6),6.21 (1H,d,J = 9.5 Hz,H-3),5.97 (1H,m,H-3″),5.12 (1H,dd,J = 9.4,7.9 Hz,H-2′),3.38 (2H,m,H-1′),1.89 (3H,dd,J = 7.3,1.5 Hz,H-4″),1.67 (3H,brs,H-5″),1.64 (3H,s,H-5′),1.59 (3H,s,H-4′);13C-NMR (100 MHz,CDCl3) δ: 167.3 (C-1″),164.2 (C-7),161.2 (C-2),151.4 (C-8a),144.1 (C-4),137.6 (C-3″),128.9 (C-2″),128.8 (C-5),113.7 (C-4a),113.1 (C-3),112.3 (C-8),106.8 (C-6),89.4 (C-2′),82.2 (C-3′),27.8 (C-1′),22.5 (C-4′),21.4 (C-5′),15.6 (C-4″),20.7 (C-5″)。NMR数据与文献报道一致[18],由此鉴定化合物13为二氢欧山芹醇当归酸酯。

化合物15:淡黄色油状物;ESI-MS m/z: 261.5 [M+H]+1H-NMR (400 MHz,CDCl3) δ: 6.33 (1H,dd,J = 15.9,5.6 Hz,H-9),5.96 (1H,ddd,J = 17.0,10.2,5.3 Hz,H-2),5.77 (1H,d,J = 15.9 Hz,H-8),5.48 (1H,d,J = 17.0 Hz,Ha-1),5.26 (1H,d,J = 10.2 Hz,Hb-1),4.98 (1H,d,J = 5.3 Hz,H-3),4.19 (1H,dt,J = 5.6,6.4 Hz,H-10),0.88 (3H,t,J = 6.8 Hz,H-17);13C-NMR (100 MHz,CDCl3) δ: 150.1 (C-9),136.1 (C-2),117.1 (C-1),108.2 (C-8),80.6 (C-4),77.7 (C-7),73.7 (C-6),72.2 (C-10),71.1 (C-5),63.8 (C-3),37.0 (C-11),31.9 (C-15),29.4 (C-13),29.3 (C-14),25.3 (C-12),22.8 (C-16),14.2 (C-17)。NMR数据与文献报道一致[19],由此鉴定化合物15为(8E)-1,8-十七碳二烯-4,6-二炔-3,10-二醇。

化合物21:白色粉末(醋酸乙酯);mp 84 ℃;ESI-MS m/z: 299.1 [M+K]+1H-NMR (400 MHz,CDCl3) δ: 7.61 (1H,d,J = 9.4 Hz,H-4),7.29 (1H,d,J = 8.6 Hz,H-5),6.83 (1H,d,J = 8.6 Hz,H-6),6.24 (1H,d,J = 9.4 Hz,H-3),5.22 (1H,t,J = 7.3 Hz,2′-H),3.92 (3H,s,7-OH3),3.54 (2H,d,J = 7.3 Hz,H-1′),1.84 (3H,s,3′-CH3),1.67 (3H,s,3′-CH3);13C-NMR (100 MHz,CDCl3) δ: 161.5 (C-2),160.4 (C-7),153.0 (C-8a),143.9 (C-4),132.8 (C-3′),126.3 (C-5),121.3 (C-2′),118.2 (C-8),113.2 (C-3),110.2 (C-4a),107.5 (C-6),56.2 (7-OCH3),25.9 (3′-CH3),22.1 (C-1′),18.1 (3′-CH3)。NMR数据与文献报道一致[20],由此鉴定化合物21为欧芹酚甲醚。

化合物22:淡黄色粉末(甲醇-醋酸乙酯);233~235 ℃;EI-MS m/z: 270 [M]+1H-NMR (400 MHz,CDCl3) δ: 8.00 (1H,d,J = 9.9 Hz,H-4),7.69 (1H,d,J = 2.2 Hz,H-2′),6.84 (1H,d,J = 2.2 Hz,H-3′),6.37 (1H,d,J = 9.9 Hz,H-3),5.99 (1H,s,8-OH),5.13 (1H,t,J = 6.9 Hz,H-2″),3.69 (2H,d,J = 6.9 Hz,H-1″),1.84 (3H,s,3″-CH3),1.70 (3H,s,3″-CH3);13C-NMR (100 MHz,CDCl3) δ: 160.0 (C-2),146.4 (C-2′),144.0 (C-7),141.7 (C-4),139.7 (C-9),132.7 (C-3″),127.7 (C-8),125.6 (C-6),123.1 (C-2″),122.3 (C-5),113.5 (C-10),113.5 (C-3),105.7 (C-3′),27.9 (C-1″),25.6 (3″-CH3),18.1 (3″-CH3)。NMR数据与文献报道一致[8],由此鉴定化合物22为别欧前胡素。

化合物23:白色粉末(丙酮);mp 155~158 ℃;ESI-MS m/z: 347.3 [M+H]+1H-NMR (400 MHz,CDCl3) δ: 7.98 (1H,d,J = 9.8 Hz,H-4),7.53 (1H,d,J = 2.3 Hz,H-2′),6.98 (1H,s,H-8),6.94 (1H,d,J = 2.3 Hz,H-3′),6.17 (1H,d,J = 9.8 Hz,H-3),5.30 (1H,dd,J = 8.5,2.6 Hz,H-2″),4.76 (1H,dd,J = 10.1,2.6 Hz,H-1″b),4.55 (1H,dd,J = 10.1,8.5 Hz,H-1″a),2.10 (3H,s,COCH3),1.32 (3H,s,3″-CH3),1.29 (3H,s,3″-CH3);13C-NMR (100 MHz,CDCl3) δ: 170.7 (C=O),161.3 (C-2),158.1 (C-7),152.4 (C-8a),148.5 (C-5),145.1 (C-2′),139.3 (C-4),113.0 (C-6),112.6 (C-3),106.5 (C-4a),105.0 (C-3′),94.0 (C-8),71.2 (C-1″),77.6 (C-2″),71.5 (C-3″),26.7 (3″-CH3),26.0 (3″-CH3),21.1 (COCH3)。NMR数据与文献报道一致[21],由此鉴定化合物23为5-(2-乙酰氧基-3-羟基- 3-甲基丁氧基) 补骨脂素。

化合物25:淡黄色粉末;mp 94 ℃;ESI-MS m/z: 333.4 [M+H]+1H-NMR (400 MHz,CDCl3) δ: 8.24 (1H,d,J = 9.8 Hz,H-4),7.59 (1H,d,J = 2.0 Hz,H-2′),7.18 (1H,s,H-8),7.02 (1H,d,J = 2.0 Hz,H-3′),6.29 (1H,d,J = 9.8 Hz,H-3),4.39 (1H,dd,J = 7.9,10.0 Hz,H-1″a),4.59 (1H,dd,J = 3.1,10.0 Hz,H-1″b),3.93 (1H,dd,J = 3.1,7.9 Hz,H-2″),3.46 (2H,q,J = 6.9 Hz,3″-OCH2CH3),1.27 (3H,s,3″-CH3),1.24 (3H,s,3″-CH3),1.18 (3H,t,J = 7.0 Hz,H-2′′′);13C-NMR (100 MHz,CDCl3) δ: 161.2 (C-2),158.3 (C-7),152.7 (C-8a),148.9 (C-5),145.1 (C-2′),139.6 (C-4),114.1 (C-6),112.8 (C-3),107.4 (C-4a),105.1 (C-3′),94.5 (C-8),76.3 (C-3″),75.9 (C-2″),74.4 (C-1″),56.8 (C-1′′′),21.5 (3″-CH3),21.5 (C-2′′′),16.2 (3″-CH3)。NMR数据与文献报道一致[7],由此鉴定化合物25为氧化前胡素乙醚。

化合物26:无色针晶(甲醇);mp 170~190 ℃;ESI-MS m/z: 271.5 [M+H]+1H-NMR (400 MHz,DMSO-d6) δ: 8.18 (1H,d,J = 9.8 Hz,H-4),8.04 (1H,brs,H-2′),7.08 (1H,brs,H-3′),6.40 (1H,d,J = 9.8 Hz,H-3),5.12 (1H,t,J = 6.6 Hz,H-2″),3.72 (2H,d,J = 6.6 Hz,H-1″),3.19 (1H,brs,5-OH),1.80 (3H,s,3″-CH3),1.63 (3H,s,3″-CH3);13C-NMR (100 MHz,DMSO-d6) δ: 160.2 (C-2),146.9 (C-2′),145.4 (C-7),142.0 (C-5,9),140.9 (C-4),131.2 (C-3″),128.1 (C-6),124.9 (C-8),123.2 (C-2″),113.9 (C-10),113.6 (C-3),106.6 (C-3′),27.4 (3″-CH3),25.1 (C-1″),18.0 (3″-CH3)。NMR数据与文献报道一致[8],由此鉴定化合物26为别异欧前胡素。

化合物28:白色粉末(甲醇);mp 153 ℃;EI-MS m/z: 300 [M]+1H-NMR (400 MHz,CDCl3) δ: 7.78 (1H,d,J = 1.7 Hz,H-2′),7.65 (1H,d,J = 9.6 Hz,H-4),6.68 (1H,d,J = 1.7 Hz,H-3′),6.60 (1H,d,J = 9.6 Hz,H-3),4.60 (1H,t,J = 7.6 Hz,H-2″),2.97 (3H,s,5-OCH3),2.72 (2H,t,J = 6.5 Hz,H-1″),1.53 (3H,s,3″-CH3),1.36 (3H,s,3″-CH3);13C-NMR (100 MHz,CDCl3) δ: 165.1 (C-8),159.0 (C-2),151.1 (C-8a),149.5 (C-2′),147.8 (C-7),140.2 (C-4),137.8 (C-3″),138.7 (C-6),127.0 (C-4a),121.0 (C-3),115.2 (C-2″),110.1 (C-3′),76.8 (C-5),52.9 (5-OCH3),40.0 (C-1″),25.9 (3″-CH3),18.2 (3″-CH3)。NMR数据与文献报道一致[22],由此鉴定化合物28为氧化别欧前胡素。

化合物30:白色粉末(乙腈);mp 360 ℃;EI-MS m/z: 135 [M]+1H-NMR (400 MHz,DMSO-d6) δ: 12.83 (1H,s,-NH),8.12 (1H,s,H-2),7.11 (1H,s,H-8);13C-NMR (100 MHz,DMSO-d6) δ: 155.9 (C-6),152.5 (C-2),151.7 (C-4),139.2 (C-8),117.5 (C-5)。NMR数据与文献报道一致[23],由此鉴定化合物30为腺嘌呤。

化合物33:无色油状物;EI-MS m/z: 182 [M]+1H-NMR (400 MHz,DMSO-d6) δ: 7.07 (2H,d,J = 8.5 Hz,H-5,7),6.72 (2H,d,J = 8.5 Hz,H-4,8),4.16 (1H,dd,J = 7.4,4.2 Hz,H-2),3.48 (1H,dd,J = 11.2,4.2 Hz,H-1b),3.34 (1H,dd,J = 11.2,4.2 Hz,H-1a),3.29 (2H,q,J = 7.0 Hz,H-1′),1.08 (3H,t,J = 7.0 Hz,H-2′);13C-NMR (100 MHz,DMSO-d6) δ: 156.8 (C-6),130.5 (C-3),127.9 (C-5,7),114.9 (C-4,8),82.4 (C-2),66.1 (C-1),63.3 (C-1′),15.3 (C-2′)。NMR数据与文献报道一致[24],由此鉴定化合物33为2-乙氧基-2-对羟基苯基乙醇。

化合物34:无色方晶(三氯甲烷);mp 87 ℃;ESI-MS m/z 245.4 [M+H]+1H-NMR (400 MHz,CDCl3) δ: 7.61 (1H,d,J = 9.4 Hz,H-4),7.17 (1H,s,H-5),6.77 (1H,s,H-8),6.22 (1H,d,J = 9.4 Hz,H-3),5.27 (1H,t,J = 7.4 Hz,H-2′),3.89 (3H,s,7-OCH3),3.30 (2H,d,J = 7.4 Hz,H-1′),1.76 (3H,s,3′-CH3),1.70 (3H,s,3′-CH3);13C-NMR (100 MHz,CDCl3) δ: 161.2 (C-2),160.8 (C-7),154.6 (C-8a),143.8 (C-4),133.9 (C-3′),127.7 (C-6),127.6 (C-5),121.5 (C-2′),112.9 (C-3),112.1 (C-4a),98.7 (C-8),56.0 (7-OCH3),27.9 (C-1′),25.9 (3′-CH3),17.9 (3′-CH3)。NMR数据与文献报道一致[25],由此鉴定化合物34为栓质花椒素。

化合物37:白色粉末(醋酸乙酯-丙酮);mp 140 ℃;ESI-MS m/z: 279.2 [M+H]+1H-NMR (400 MHz,CDCl3) δ: 7.62 (1H,d,J = 9.6 Hz,H-4),7.30 (1H,s,H-5),6.81 (1H,s,H-8),6.23 (1H,d,J = 9.6 Hz,H-3),3.90 (3H,s,7-OCH3),3.63 (1H,dd,J = 10.4,2.0 Hz,H-2′),3.00 (1H,dd,J = 13.9,2.0 Hz,H-1′a),2.55 (1H,dd,J = 13.9,10.4 Hz,H-1′b),1.31 (3H,s,3′-CH3),1.28 (3H,s,3′-CH3);13C-NMR (100 MHz,CDCl3) δ: 161.5 (C-7),160.9 (C-2),155.0 (C-9),143.4 (C-4),129.6 (C-5),125.0 (C-6),113.3 (C-3),112.1 (C-10),98.9 (C-8),77.7 (C-2′),72.9 (C-3′),56.2 (7-OCH3),32.5 (C-1′),26.4 (3′-CH3),23.7 (3′-CH3)。NMR数据与文献报道一致[8],由此鉴定化合物37为尤劳帕替醇。

化合物38:无色针晶(甲醇);mp 162~165 ℃;EI-MS m/z: 168 [M]+1H-NMR (400 MHz,DMSO-d6) δ: 7.48 (1H,dd,J = 8.1,2.0 Hz,H-5),7.46 (1H,s,H-3),6.87 (1H,d,J = 8.1 Hz,H-6),3.83 (3H,s,7-OCH3);13C-NMR (100 MHz,DMSO-d6) δ: 167.4 (C-7),151.2 (C-4),147.3 (C-2),123.6 (C-6),121.8 (C-1),115.1 (C-5),112.8 (C-3),55.6 (7-OCH3)。NMR数据与文献报道一致[26],由此鉴定化合物38为2,4-二羟基苯甲酸甲酯。

化合物39:无色针晶(丙酮),mp 145 ℃;EI-MS m/z: 206 [M]+1H-NMR (400 MHz,CDCl3) δ: 7.62 (1H,d,J = 9.5 Hz,H-4),6.85 (1H,s,H-5),6.84 (1H,s,H-8),6.29 (1H,d,J = 9.5 Hz,H-3),3.95 (3H,s,OCH3),3.92 (3H,s,OCH3);13C-NMR (100 MHz,CDCl3) δ: 161.5 (C-2),153.1 (C-7),100.2 (C-8),150.2 (C-8a),146.5 (C-6),143.4 (C-4),113.7 (C-3),111.6 (C-4a),108.2 (C-5),56.5 (OCH3)。NMR数据与文献报道一致[27],由此鉴定化合物39为滨蒿内酯。

化合物40:白色针晶(丙酮);mp 98 ℃;ESI-MS m/z: 231.0 [M+H-H2O]+1H-NMR (400 MHz,CDCl3) δ: 7.57 (1H,d,J = 9.4 Hz,H-4),7.15 (1H,s,H-5),6.72 (1H,s,H-8),6.20 (1H,d,J = 9.4 Hz,H-3),2.82 (2H,t,J = 6.7 Hz,H-1′),1.84 (2H,t,J = 6.7 Hz,H-2′),1.36 (6H,s,3′-CH3);13C-NMR (100 MHz,CDCl3) δ: 161.7 (C-2),157.9 (C-7),154.2 (C-8a),143.5 (C-4),128.4 (C-5),118.6 (C-6),113.0 (C-3),112.3 (C-4a),104.8 (C-8),22.1 (C-1′),32.6 (C-2′),75.9 (C-3′),27.0 (3′-CH3)。NMR数据与文献报道一致[28],由此鉴定化合物40为东印度缎木内酯醇。

化合物42:黄色油状物;EI-MS m/z: 126 [M]+1H-NMR (400 MHz,DMSO-d6) δ: 9.50 (1H,s,CHO),7.47 (1H,d,J = 3.4 Hz,H-3),6.59 (1H,d,J = 3.4 Hz,H-4),4.50 (2H,s,CH2OH);13C-NMR (100 MHz,DMSO-d6) δ: 178.0 (CHO),162.2 (C-5),151.8 (C-2),124.5 (C-3),109.9 (C-4),56.0 (CH2OH)。NMR数据与文献报道一致[29],由此鉴定化合物42为5-羟甲基糠醛。

4 讨论

《中国药典》2015年版一部白芷项下收载白芷基原植物有白芷Angelica dahurica (Fisch. ex Hoffm.) Benth. et Hook. f. 或杭白芷Angeliea dahurica (Fisch. ex Hoffm.) Benth. et Hook. f. var. formosana (Boiss.) Shan et Yuan [2]。市场流通中根据产地不同,白芷分为杭白芷、川白芷、禹白芷和祁白芷,均为栽培品,我国北方,包括朝鲜、韩国、原苏联西伯利亚地区广泛分布的兴安白芷是野生品[30-32]。由于栽培或野生分布地域不同,它们自身的次生代谢产物可能不尽相同,将直接影响它们作为药物应用的疗效。已有文献报道,欧前胡素、异欧前胡素、珊瑚菜内酯和氧化前胡素对脑γ-氨基丁酸受体A具有调节作用[33];欧前胡素、香柑内酯、氧化前胡素和花椒毒素具有抗惊厥作用[34-35];白当归素对人乙酰胆碱酯酶和丁酰胆碱酯酶活性具有抑制作用[36],这些作用可能是白芷用于脑病治疗的基础。亦有报道欧前胡素[37-38]、珊瑚菜内酯、香柑内酯、白当归素、新白当归素(neobyakangelicin)和花椒毒素对肿瘤细胞增殖具有细胞毒活性[39];异欧前胡素和水合氧化前胡素对HL-60、P388、HELA、A549等肿瘤细胞株的增殖均具有明显的抑制作用[40]。异欧前胡素具有抗炎[41-43]、镇痛[40-41]、解痉[40]等活性。欧前胡素、异欧前胡素、珊瑚菜内酯对脂多糖所致RAW264.7巨噬细胞一氧化氮生成具有抑制活性[10]。欧前胡素、异欧前胡素、水合氧化前胡素皆能明显缓解BaCl2所致家兔肠平滑肌痉挛[40],提示它们为白芷解痉的活性成分。补骨脂素能逆转HL60/HT细胞的多药耐药[44];具有促人皮肤成纤维细胞增殖的作用,可促进胶原蛋白合成,提示其具有潜在的抗皮肤衰老作用[45]。补骨脂素还可促进乳鼠颅骨成骨细胞的分化成熟,表现在可明显提高乳鼠颅骨成骨细胞的碱性磷酸酶活性,促进钙盐的沉积以及骨钙素的分泌,增加碱性磷酸酶阳性克隆数和钙化结节数量,提高IGF-1、Osterix、Runx-2和collagen I的mRNA水平,增强I型胶原蛋白表达,提示其具有抗骨质疏松作用[46]。在异欧前胡素肝微粒体代谢研究中,尽管其可代谢转化为18个以上的代谢产物,包括生药白芷中存在的水合氧化前胡素[11];珊瑚菜内酯可代谢转化为7个以上的代谢产物,包括生药白芷中存在的白当归素[47],但代谢率较低,仍以原型化合物为主,提示它们具有代谢稳定性,原型化合物可能是效应成分。欧前胡素、异欧前胡素和水化氧化前胡素是白芷中的主要成分,白当归素为白芷的特异性成分。明晰杭白芷的化学成分,为其药效物质基础的确定奠定了基础。

参考文献
[1] 中国药典[S]. 一部. 1977.
[2] 中国药典[S]. 一部. 2015.
[3] 袁昌齐. 中药白芷药材和原植物的鉴定整理[J]. 中草药 , 1979, 10 (7) :35–38.
[4] 中国科学院中国植物志编委会. 中国植物志. 北京:科学出版社[M]. 1992 .
[5] 明·刘文泰, 王槃, 高廷和, 等. 本草品汇精要[M]. 北京: 人民卫生出版社, 1982 .
[6] 杨秀伟. 中药物质基础研究是中药继承、发展、创新的关键科学问题[J]. 中国中药杂志 , 2015, 40 (17) :3429–3434.
[7] 赵爱红, 杨秀伟, 杨鑫宝, 等. 祁白芷根中新的天然产物[J]. 中国中药杂志 , 2012, 37 (16) :2400–2407.
[8] 邓改改, 杨秀伟, 张友波, 等. 川白芷根脂溶性化学成分研究[J]. 中国中药杂志 , 2015, 40 (11) :2148–2156.
[9] 邓改改, 崔治家, 杨秀伟. 川白芷根极性化学成分研究[J]. 中国中药杂志 , 2015, 40 (19) :3805–3810.
[10] Deng G G, Wei W, Yang X W, et al. New coumarins from the roots of Angelica dahurica var. formosana cv. Chuanbaizhi and their inhibition on NO production in LPS-activated RAW264. 7 cells[J]. Fitoterapia , 2015, 101 :194–200.
[11] Chen T L, Zhang Y B, Xu W, et al. Biotransformation of isoimperatorin by rat liver microsomes and its quantification by LC-MS/MS method[J]. Fitoterapia , 2014, 93 :88–97.
[12] Wei W, Wu X W, Deng G G, et al. Anti-inflammatory coumarins with short-and long-chain hydrophobic groups from roots of Angelica dahurica cv[J]. Phytochemistry , 2016, 123 :58–68.
[13] 赵爱红, 杨秀伟. 兴安白芷脂溶性部位中新的天然产物[J]. 中草药 , 2014, 45 (13) :1820–1828.
[14] 牛艳, 王磊, 黄晓君, 等. 化橘红香豆素类的化学成分[J]. 暨南大学学报:自然科学与医学版 , 2012, 33 (5) :501–505.
[15] Lechner D, Stavri M, Oluwatuyi M, et al. The anti-staphylococcal activity of Angelica dahurica (Bai Zhi)[J]. Phytochemistry , 2004, 65 (3) :331–335.
[16] Furumi K, Fujioka T, Fujii H, et al. Novel antiproliferative falcarindiol furanocoumarin ethers from the root of Angelica japonica[J]. Bioorg Med Chem Lett , 1998, 8 (1) :93–96.
[17] Wang X C, Wu W Q, Ma S P, et al. A new sesquiterpenoid from the roots of Chloranthus fortunei[J]. Chin J Nat Med , 2008, 6 (6) :404–407.
[18] 张俭, 李胜华, 谷荣辉. 水芹的化学成分研究[J]. 中草药 , 2012, 43 (7) :1289–1292.
[19] Yang R L, Yan Z H, Lu Y. Cytotoxic phenylpropanoids from carrot[J]. J Agric Food Chem , 2008, 56 (9) :3024–3027.
[20] 陶朝阳, 陈万生, 张卫东, 等. 刺异叶花椒根中香豆素类成分[J]. 中国中药杂志 , 2005, 30 (11) :832–834.
[21] Ivie G W. Linear furocoumarins (psoralens) from the seed of Texas Ammi majus L. (Bishop's weed)[J]. J Agric Food Chem , 1978, 26 (6) :1394–1403.
[22] Liu D P, Luo Q, Wang G H, et al. Furocoumarin derivatives from radix angelicae dahuricae and their effects on RXRα transcriptional regulation[J]. Molecules , 2011, 16 (8) :6339–6348.
[23] 游小琳, 李丽, 肖永庆. 白芷水溶性部分化学成分研究[J]. 中国中药杂志 , 2002, 27 (4) :279–280.
[24] Zhou Y, Zhang G L, Li B G, et al. Two new compounds from Melanosciadum pimpinelloideum H. Boiss[J]. Chin Chem Lett , 2001, 12 (4) :333–334.
[25] 周爱德, 李强, 雷海民. 白芷化学成分的研究[J]. 中草药 , 2010, 41 (7) :1081–1083.
[26] 张援虎, 杨亚婷, 陈东林, 等. 黑龙骨化学成分的研究[J]. 中草药 , 2006, 37 (3) :345–347.
[27] 吴锦玉, 吴岩斌, 易骏, 等. 凹叶厚朴叶的化学成分研究[J]. 中草药 , 2013, 44 (21) :2965–2968.
[28] Mujumdar R B, Rathi S S, Rao A V R. Heartwood constituents of Chloroxylon swietenia DC[J]. Indian J Chem , 1977, 15B (2) :200.
[29] 王富乾, 张锦文, 姚广民, 等. 乌桕叶化学成分研究[J]. 中国药学杂志 , 2013, 48 (22) :1908–1911.
[30] 黄璐琦, 王敏, 付桂芳, 等. 中药白芷种质资源的RAPD分析[J]. 中国中药杂志 , 1999, 24 (8) :457–459.
[31] 杨滨, 王敏, 曹春雨, 等. 中药白芷的分子遗传及其原植物分析[J]. 中国药学杂志 , 2004, 39 (9) :654–657.
[32] 黄璐琦. 中药白芷种质资源的系统研究[J]. 江西中医学院学报 , 2004, 16 (6) :5–7.
[33] Singhuber J, Baburin I, Ecker G F, et al. Insights into structure-activity relationship of GABAA receptor modulating coumarins and furanocoumarins[J]. Eur J Pharmacol , 2011, 668 (1/2) :57–64.
[34] Choi S Y, Ahn E M, So ng, M C, et al. In vitro GABA-transaminase inhibitory compounds from the root of Angelica dahurica[J]. Phytother Res , 2005, 19 (10) :839–845.
[35] ŁuszczkiJ J, Andres-MachM, GleńskM, 等. Anticonvulsant effects of four linear furanocoumarins, bergapten, imperatorin, oxypeucedanin, and xanthotoxin, in the mouse maximal electroshock-induced seizure model:a comparative study[J]. Pharmacol Rep , 2010, 62 (6) :1231–1236.
[36] Seo W D, Kim J Y, Ryu H W, et al. Identification and characterisation of coumarins from the roots of Angelica dahurica and their inhibitory effects against cholinesterase[J]. J Funct Foods , 2003, 5 (3) :1421–1431.
[37] Kleiner H E, Vulimiri S V, Miller L, et al. Oral administration of naturally occurring coumarins leads to altered phase I and II enzyme activities and reduced DNA adduct formation by polycyclic aromatic hydrocarbons in various tissues of SENCAR mice[J]. Carcinogenesis , 2001, 22 (1) :73–82.
[38] 杨秀伟, 徐波, 冉福香, 等. 40种香豆素类化合物对人表皮癌细胞系A432细胞株和人乳腺癌细胞系BCAP细胞株增殖抑制活性的筛选[J]. 中国现代中药 , 2006, 8 (12) :9–10.
[39] Maho S, Masahiro S, Masahiko T, et al. Anti-tumor effects of various furocoumarins isolated from the roots, seeds and fruits of Angelica and Cnidium species under ultraviolet A irradiation[J]. J Nat Med , 2014, 68 (1) :83–94.
[40] 王梦月, 贾敏如, 马逾英, 等. 白芷中四种线型呋喃香豆素类成分药理作用研究[J]. 天然产物研究与开发 , 2010, 22 (3) :485–489.
[41] Chen Y F, Tsai H Y, Wu T S. Anti-inflammatory and analgesic activities from roots of Angelica pubescens[J]. Planta Med , 1995, 61 (1) :2–8.
[42] Moon L, Ha Y M, Jang H J, et al. Isoimperatorin, cimiside E and 23-O-acetylshengmanol-3-xyloside from Cimicifugae rhizome inhibit TNF-alpha-induced VCAM-1 expression in human endothelial cells:involvement of PPAR-gamma upregulation and PI3K, ERK1/2, and PKC signal pathways[J]. J Ethnopharmacol , 2011, 133 (2) :336–344.
[43] Moon T C, Jin M, Son J K, et al. The effects of isoimperatorin isolated from Angelicae dahuricae on cyclooxygenase-2 and 5-lipoxygenase in mouse bone marrow-derived mast cells[J]. Arch Pharm Res , 2008, 31 (2) :210–215.
[44] 蔡天革, 蔡宇, 陈冰. 补骨脂素对HL60/HT耐药细胞的逆转作用及对细胞内钙离子浓度的影响[J]. 中草药 , 2006, 37 (6) :881–884.
[45] 胡中花, 祁永华, 熊辉, 等. 补骨脂素对人皮肤成纤维细胞衰老相关基因的调控作用[J]. 中药新药与临床药理 , 2015, 26 (6) :751–754.
[46] 翟远坤, 潘亚磊, 牛银波, 等. 补骨脂素与异补骨脂素对乳鼠颅骨成骨细胞分化成熟影响的比较研究[J]. 中国药理学通报 , 2012, 28 (3) :355–361.
[47] Zhao A H, Yang X B, Yang X W, et al. Biotransformation products of phellopterin by rat liver microsomes and the inhibition on NO production in LPS-activated RAW264. 7 cells[J]. J Asian Nat Prod Res , 2012, 14 (10) :956–965.