2. 中国医科大学药学院, 辽宁 沈阳 110001;
3. 沈阳化工研究院有限公司生物与医药研究室, 辽宁 沈阳 110021
2. School of Pharmacy, China Medical University, Shenyang 110001, China ;
3. Biotechnology and Pharmaceutical Research Laboratory, Shenyang Research Institute of Chemical Industry Co., Ltd, Shenyang 110021, China
伏立康唑作为氟康唑的衍生物,具有抗菌谱广、抗菌效力强的特点,其临床疗效优于氟康唑[1]。伏立康唑通过抑制真菌中由细胞色素P450介导的14α-固醇去甲基化酶的功能,从而抑制功能性真菌膜的形成以及维持真菌生长的麦角固醇的生物合成,破坏真菌细胞的完整性而导致真菌细胞死亡[2]。伏立康唑临床上主要用于治疗侵袭性曲霉菌和念珠菌引发的感染,特别是对耐氟康唑的白色念珠菌有极好的疗效。其对病原性酵母菌的活性优于氟康唑,对新生隐球菌的抗菌活性优于氟康唑和伊曲康唑,对侵袭性曲霉菌的疗效优于两性霉素B[3],同时对临床上难以治疗的烟曲霉菌感染也有较好疗效[4]。常见不良反应为视觉障碍、发热、恶心、呕吐、腹痛以及呼吸功能紊乱等。
伏立康唑口服和静脉给药均有效,约5 d能达到稳态血药浓度[5]。口服给药吸收迅速而完全,1~2 h达到血药浓度峰值,生物利用度高达90%以上[6]。伏立康唑可广泛分布在细胞内和细胞外间隙,其分布容积为2~4.6 L/kg,血浆蛋白结合率约58%,消除半衰期约6 h[7]。伏立康唑主要通过肝脏代谢,主要代谢酶为肝脏细胞色素P450同工酶CYP2C19,约总剂量的80%以代谢物的形式排出体外,仅有不到2%的药物以原形经尿液排出,其代谢产物主要为N-氧化物,在血浆中约占72%[8]。
伏立康唑体内过程具有非线性药动学特征,个体间差异大,其血药浓度还可被多种药物影响。因此全面了解伏立康唑的药动学特征及其影响因素对于临床给药方案的选择和调整具有重要的指导意义。本文从伏立康唑药动学主要影响因素以及特殊人群的药动学特征两个方面对其药动学行为进行比较和分析,为临床安全、合理用药提供理论依据。
1 代谢酶对药动学特征的影响国内外对伏立康唑药代动力学的影响因素进行了较为深入的研究,其中遗传多态性、药物相互作用以及在不同人群的药动学特征均对伏立康唑药动学特征有影响[9]。
1.1 CYP2C19遗传多态性的影响伏立康唑主要通过肝脏细胞色素P450同工酶CYP2C19、CYP2C9、CYP3A4代谢,其中CYP2C19是其主要的代谢酶,而CYP2C19呈遗传多态性。Wrighton等[10]的研究结果显示CYP2C19存在多种等位基因,主要包括CYP2C19*2、CYP2C19*3和CYP2C19*17,因此基因多态性是伏立康唑在不同个体或不同种族间表现出不同代谢能力的主要原因之一[11-12]。
CYP2C19的酶活性在不同个体和不同种族间也存在着显著差异。根据酶活性的大小,可将人群划分为快代谢人群和慢代谢人群。白种人和黑种人中慢代谢人群占3%~5%,而亚洲人中慢代谢者则占15%~20%,其中中国人CYP2C19慢代谢者的表型主要为CYP2C19*2和CYP2C19*3。一项针对健康白种人和健康日本人的研究结果显示,同一种族中慢代谢者伏立康唑给药后的血药浓度要较快代谢者高4倍多[13]。
Wang等[14]研究显示携带CYP2C19*17等位基因的人群伏立康唑在其体内代谢较快,属于快代谢型人群。
1.2 药物间相互作用的影响临床上真菌感染的同时往往还合并有其他疾病,因此在治疗过程中需要联合应用多种药物。合并用药虽然可以增强药效、提高治疗效果,但同时也可能导致药物不良反应发生率升高或严重程度加重,药物间的相互作用已成为影响临床合理用药的一个重要因素[15]。
伏立康唑在体内主要以肝代谢为主,它既是CYP2C19、CYP2C9和CYP3A4的底物,同时也是这3种酶的抑制剂。因此这3种酶的底物、诱导剂和抑制剂均能对伏立康唑的血药浓度产生影响[16]。酶诱导剂可通过增强CYP酶的活性,增加药物转运体(如P糖蛋白等)的表达,进而降低伏立康唑的血药浓度;酶抑制剂则通过降低CYP酶的活性,抑制药物转运体的表达,而使伏立康唑的血药浓度升高[17];底物可以通过与伏立康唑竞争转运体的结合位点对其血药浓度产生影响。因此明确伏立康唑与其他药物间的相互作用机制以及相应的处理方法对临床联合用药的选择以及指导合理用药有重要意义。与伏立康唑产生相互作用而使其浓度改变的药品以及相应的处理方法见表 1~3[5, 18-22]。
![]() |
表 1 与伏立康唑有相互作用使其浓度降低的药品 Table 1 Drugs reduced concentration of voriconazole with interaction |
![]() |
表 2 与伏立康唑有相互作用使其浓度升高的药物 Table 2 Drugs which could increase concentration of voriconazole with interaction |
![]() |
表 3 与伏立康唑有相互作用可能使其浓度升高的药物[5] Table 3 Drugs which may increase concentration of voriconazole with interaction |
表 1中列出利福平等CYP酶诱导剂以及部分CYP酶底物与伏立康唑产生相互作用而使其浓度降低的药品以及相应的处理方法;表 2中列出西咪替丁等CYP酶抑制剂以及环孢素等CYP酶底物与伏立康唑产生相互作用而使其浓度升高的药品以及相应的处理方法;表 3中主要列出CYP酶底物与伏立康唑产生相互作用从而可能使其浓度升高的药品以及相应的处理方法。当临床用药过程中伏立康唑与上述药物合用时均会引起血药浓度改变,需避免联合应用或依据血药浓度监测结果调整给药剂量。
2 特殊人群对伏立康唑药动学特征的影响不同人群间由于病理(肝肾功能的改变)、生理(年龄、性别、体质量)等因素的影响,均会导致伏立康唑体内药动学特征存在较大的差异。伏立康唑体内代谢呈非线性药动学特征,而有研究表明儿童(2~12岁)应用伏立康唑后具用更高的清除率、较低的暴露量以及呈线性药动学过程[26-27]。肝功能异常如肝移植患者[28]以及肾功能损伤[29]均会使伏立康唑的清除率降低、半衰期延长、血药浓度-时间曲线下面积增加。不同的体外肾替代疗法对伏立康唑的体内清除的影响各异,但对肝功能正常的肾衰竭患者的体内药动学过程的影响有限[30-32]。由于伏立康唑在脂肪组织的分布有限,肥胖患者与正常体质量健康受试者体内药物暴露无统计学差异[33]。由此可见伏立康唑在不同人群体内的药动学行为有很大的差异,需要因人而异制定适宜的给药方案。
表 4中列出了不同人群的主要药动学参数,给药频次均为1次/12 h,包括健康志愿者[5, 34]、重症儿童[34]、免疫低下儿童[27, 35]、青少年[34]和成年人[37]、肝移植患者[28]、造血干细胞移植患者[36]、正常肾功能 (NRF)[29]、中等肾功能不全(MRI)[29]、持续静脉高通量血液透析(CVVHF)[30]、持续静脉血液透析滤过(CVVHDF)[31-32]、肥胖健康成年[33]等。
![]() |
表 4 伏立康唑在不同人群的主要药动学参数 Table 4 Pharmacokinetic parameters of voriconazole in different groups of people |
3 结语
伏立康唑体内过程受遗传多态性、合并用药以及特殊人群药动学特征等多种因素影响,过高的给药剂量、肝肾功能损伤或不合适的联合用药可能导致药物的暴露量增加并在体内产生蓄积,进而使不良反应发生率增加;而给药量不足又会造成无法达到有效治疗浓度,难以保证抗真菌活性的发挥而影响疗效。因此在临床上使用伏立康唑时不能一概而论,应针对不同患者的生理、病理情况,药物相互作用以及基因多态性等诸多因素综合分析各种因素的影响,优化给药方案,在保证疗效和安全性的同时减少其毒副作用和不良反应的发生,以实现个体化给药。
[1] | Sanati H, Belanger P, Fratti R, et al. A new triazole, voriconazole (UK-109,496), blocks sterol biosynthesis in Candida albicans and Candi&krusei[J]. Antimicmb Agents Chemother, 1997, 41 (11) :2492–2496. |
[2] | Johnson L B, Kauffman C A. Voriconazole: a new triazole antifungal agent[J]. Clin Infect Dis, 2003, 36 (5) :630–637. |
[3] | Herbrecht R, Denning D W, Patterson T F, et al. Voriconazole versus amphotericin B for primary therapy of invasive aspergillosis[J]. N Engl J Med, 2002, 347 (6) :408–415. |
[4] | 曹永兵, 张磊, 王彦, 等. 伏立康唑及其临床应用[J]. 中国新药与临床杂志,2005,24 (4) :330–332. |
[5] | Theuretzbacher U, Ihle F, Derendorf H. Pharmacokinetic/ pharmacodynamic profile of voriconazole[J]. Clin Pharmacokinet, 2006, 45 (7) :649–663. |
[6] | Purkins L, Wood N, Ghahramani P, et al. Pharmacokinetics and safety of voriconazole following intravenous-to oral-dose escalation regimens[J]. Antimicrob Agents Chemother, 2002, 46 (8) :2546–2553. |
[7] | Hariprasad S M, Mieler W F, Holz E R, et al. Determination of vitreous, aqueous, and plasma concentration of orally administered voriconazole in humans[J]. Arch Ophthalmol, 2004, 122 (1) :42–47. |
[8] | Roffey S J, Cole S P, Gibson D, et al. The disposition of voriconazole in mouse, rat, rabbit, guinea pig, dog, and human[J]. Drug Metab Dispos, 2003, 31 (6) :731–741. |
[9] | Jeu L, Piacenti F J, Lyakhovetskiy A G, et al. Voriconazole[J]. Clin Ther, 2003, 25 (5) :1321–1381. |
[10] | 郑露, 邵建国. CYP2C19的基因多态性与临床[J]. 第二军医大学学报,2007,28 (11) :1262–1265. |
[11] | Pestka E L, Hale A M, Johnson B L, et al. Cytochrome P450 testing for better psychiatric care[J]. J Psychosoc Nurs Ment Health Serv, 2007, 45 (10) :15–18. |
[12] | Bertilsson L. Metabolism of antidepressant and neuroleptic drugs by cytochrome p450: clinical and interethnic aspects[J]. Clin Pharmacol Ther, 2007, 82 (5) :606–609. |
[13] | Nakamoto K, Kidd J R, Jenison R D, et al. Genotyping and haplotyping of CYP2C19 functional alleles on thin-film biosensor chips[J]. Pharmacogenet Genomics, 2007, 17 (2) :103–114. |
[14] | Wang G, Lei H P, Li Z, et al. The CYP2C19 ultra-rapid metabolizer genotype influences the pharmacokinetics of voriconazole in healthy male volunteers[J]. Eur J Clin Pharmacol, 2009, 65 (3) :281–285. |
[15] | 杨花平. 药物相互作用在评价合理用药中的意义[J]. 中国医药指南: 学术版,2007 (S1) :39–39. |
[16] | Hyland R, Jones B C, Smith D A. Identification of the cytochrome P450 enzymes involved in the N-oxidation of voriconazole[J]. Drug Metab Dispos, 2003, 31 (5) :540–547. |
[17] | 孟现民, 张莉. 伏立康唑药物相互作用与处理对策[J]. 中国新药与临床杂志,2009,28 (6) :415–420. |
[18] | Finch C K, Chrisman C R, Baeiewicz A M, et al. Rifampin and rifabutin drug interactions: an update[J]. Arch Inter Med, 2002, 162 (9) :985–992. |
[19] | Purkins L, Wood N, Ghahramani P, et al. Coadministration of voriconazole and phenytoin: pharmacokinetic interaction, safety, and toleration[J]. Br J Clin Pharmacol, 2003, 56 (Suppl 1) :37–44. |
[20] | Donnelly J P, De Pauw B E. Voriconazole-a new therapeutic agent with an extended spectrum of antifungal activity[J]. Clin Microbiol Infect, 2004, 10 (Suppl 1) :107–117. |
[21] | Jens R, Maria B, Klaus-Dieter R, et al. Opposite effects of short-term and long-term St John's wort intake on voriconazole pharmacokinetics[J]. Clin Pharmacol Ther, 2005, 78 (1) :25–33. |
[22] | Malingré M M, Godschalk P C, Klein S K. A case report of voriconazole therapy failure in a homozygous ultrarapid CYP2C19*17/*17 patient comedicated with carbamazepine[J]. Br J Clin Pharmacol, 2012, 74 (1) :205–206. |
[23] | Purkins L, Wood N, Kleinermans D, et al. Histamine H2-receptor antagonists have no clinically significant effect on the steady-state pharmacokinetics of voriconazole[J]. Br J Clin Pharmacol, 2003, 56 (Suppl 1) :51–55. |
[24] | de Maat M M, Ekhart G C, Huitema A D, et al. Drug interactions between antiretroviral drugs and comedicated agents[J]. Clin Pharmacokinet, 2003, 42 (3) :223–282. |
[25] | Purkins L, Wood N, Kleinermans D, et al. Voriconazole potentiates warfarin-induced prothrombin time prolongation[J]. Br J Clin Pharmacol, 2003, 56 (Suppl 1) :24–29. |
[26] | Walsh T J, Karlsson M O, Driscoll T, et al. Pharmacokinetics and safety of intravenous voriconazole in children after single or multiple dose administration[J]. Antimicrob Agents Chemother, 2004, 48 (6) :2166–2172. |
[27] | Friberg L E, Patanjali R, Karlsson M O, et al. Integrated population pharmacokinetic analysis of voriconazole in children, adolescents, and adults[J]. Antimicrob Agents Chemother, 2012, 56 (6) :3032–3042. |
[28] | Johnson H J, Han K, Capitano B, et al. Voriconazole pharmacokinetics in liver transplant recipients[J]. Antimicrob Agents Chemother, 2010, 54 (2) :852–859. |
[29] | Sinnollareddy M, Peake S L, Roberts M S, et al. Using pharmacokinetics and pharmacodynamics to optimise dosing of antifungal agents in critically ill patients: a systematic review[J]. Int J Antimicrob Agents, 2012, 39 (1) :1–10. |
[30] | Quintard H, Papy E, Massias L, et al. The pharmacokinetic profile of voriconazole during continuous high-volume venovenous hemofiltration in a critically ill patient[J]. Ther Drug Monit, 2008, 30 (1) :117–119. |
[31] | Robatel C, Rusca M, Padoin C, et al. Disposition of voriconazole during continuous veno-venous haemodiafiltration (CVVHDF) in a single patient[J]. J Antimicrob Chemother, 2004, 54 (1) :269–270. |
[32] | Fuhrmann V, Schenk P, Jaeger W, et al. Pharmacokinetics of voriconazole during continuous venovenous haemodiafiltration[J]. J Antimicrob Chemother, 2007, 60 (5) :1085–1090. |
[33] | Pai M P, Lodise T P. Steady-state plasma pharmacokinetics of oral voriconazole in obese adults[J]. Antimicrobial Agents Chemother, 2011, 55 (6) :2601–2605. |
[34] | Driscoll T A, Lolie C Y, Frangoul H, et al. Comparison of pharmacokinetics and safety of voriconazole intravenous-to-oral switch in immunocompromised children and healthy adults[J]. Antimicrob Agents Chemother, 2011, 55 (12) :5770–5779. |
[35] | Walsh T J, Driscoll T, Milligan P A, et al. Pharmacokinetics, safety, and tolerability of voriconazole in immunocompromised children[J]. Antimicrob Agents Chemother, 2010, 54 (10) :4116–4123. |
[36] | Brüggemann R J, Blijlevens N M, Burger D M, et al. Pharmacokinetics and safety of 14 days intravenous voriconazole in allogeneic haematopoietic stem cell transplant recipients[J]. J Antimicrob Chemother, 2010, 65 (1) :107–113. |
[37] | Michael C, Bierbach U, Frenzel K, et al. Voriconazole pharmacokinetics and safety in immunocompromised children compared to adult patients[J]. Antimicrob Agents Chemother, 2010, 54 (8) :3225–3232. |