Abstract:
Neurodegenerative diseases (NDs), including Alzheimer’s, Parkinson’s, Huntington’s, and amyotrophic lateral sclerosis, are progressive disorders marked by neuronal dysfunction and death, driven by pathological mechanisms such as oxidative stress, mitochondrial dysfunction, neuroinflammation, apoptosis, and protein misfolding. Despite scientific advances, current treatments remain largely palliative, underscoring the need for multitargeted therapeutic strategies. This narrative review synthesizes preclinical and clinical evidence to explore the neuroprotective potential of natural products, with a focus on their ability to modulate key molecular pathways implicated in NDs. A comprehensive literature search across Scopus, ScienceDirect, PubMed, MDPI, and Web of Science identified relevant studies. Bioactive compounds such as curcumin, resveratrol, ginsenosides, quercetin, and marine-derived molecules like fucoxanthin and phlorotannin demonstrated antioxidant, anti-inflammatory, anti-amyloidogenic, and mitochondrial-protective effects by modulating pathways including PI3K/Akt, NF-κB, and Nrf2/ARE, thereby mitigating neuronal damage and promoting cell survival. Natural products from diverse sources, including honey, ginseng, marine macroalgae, and cyanobacteria, exhibited broad-spectrum neuroprotective properties, with advances in nano-formulations improving bioavailability and brain penetration. Furthermore, emerging approaches such as gene-drug interaction studies and scaffold-based drug design offer promising avenues for enhancing clinical translation. While natural products provide a holistic, multitargeted approach to combat NDs, challenges related to bioavailability and therapeutic translation persist, necessitating future research that integrates advanced drug delivery systems, precision medicine, and synthetic modifications to develop innovative and effective treatment paradigms.