中草药  2016, Vol. 47 Issue (9): 1480-1485
0
  PDF    
小黄皮茎的化学成分研究
欧阳国庆, 李创军, 杨敬芝, 马洁, 张东明     
北京协和医学院中国医学科学院药物研究所天然药物活性物质与功能国家重点实验室, 北京 100050
摘要目的 研究芸香科植物小黄皮Clausena emarginata茎的化学成分。方法 利用大孔树脂、硅胶柱色谱、反相柱色谱、凝胶柱色谱、中压液相等色谱方法对小黄皮茎的化学成分进行分离,再经制备液相进行纯化,通过紫外光谱、质谱和核磁共振谱等方法鉴定化合物结构。初步考察化合物1112 的神经保护活性。结果 从小黄皮茎的95%乙醇提取物的石油醚和丙酮2个洗脱部位分离得到16个化合物,分别鉴定为1H-indole-3-carboxaldehyde(1)、E-N-benzoiltiramine(2)、去氢双松柏醇(3)、tortoside A(4)、浙贝素(5)、evofolin B(6)、2,3,5,4'-四羟基二苯乙烯-2-O-β-D-葡萄糖苷(7)、紫花松果菊苷A(8)、3-甲基咔唑(9)、murrayafoline A(10)、clausine Z(11)、indizoline(12)、clausenaline B(13)、mafaicheenamine A(14)、dictamnine(15)和和厚朴酚(16)。结论 化合物1~8为首次从该属植物中分离得到,化合物1~16 为首次从该植物中分离得到。化合物1112 对鱼藤酮损伤PC12细胞模型具有一定的神经保护作用。
关键词小黄皮茎     去氢双松柏醇     浙贝素     紫花松果菊苷A     和厚朴酚     神经保护活性    
Chemical constituents from stems of Clausena emarginata
OUYANG Guo-qing, LI Chuang-jun, YANG Jing-zhi, MA Jie, ZHANG Dong-ming    
State Key laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
Abstract: Objective To investigate the chemical constituents from the stems of Clausena emarginata. Methods The compounds were isolated by macroporous resin, silica gel, ODS column chromatography, Sephadex LH-20, reversed-phase MPLC, and then purified by preparative HPLC. Their structures were determined by the analysis of ultraviolet spectrum, mass spectrum, and NMR spectrum. Neuroprotective activities of compounds 11 and 12 were initially investigated. Results Sixteen compounds were isolated from the petroleum ether and acetone fractions of 95% ethanol extract of the stems of Cl. emarginata, and their structures were identified as 1H-Indole-3-carboxaldehyde (1), E-N-benzoiltiramine (2), dehydrodiconiferyl alcohol (3), tortoside A (4), zhebeiresinol (5), evofolin B (6), 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucopyranoside (7), echipuroside A (8), 3-methylcarbazole (9), murrayafoline A (10), clausine Z (11), indizoline (12), clausenaline B (13), mafaicheenamine A (14), dictamnine (15), and honokiol (16). Conclusion Compounds 1-8 are isolated from the plants of genus Clausena L. for the first time, compounds 1-16 are isolated from this plant for the first time. Compounds 11 and 12 show the neuroprotective activity against rotenone induced PC12 cell damage.
Key words: Clausena emarginata Huang     dehydrodiconiferyl alcohol     zhebeiresinol     echipuroside A     honokiol     neuroprotective activity    

小黄皮Clausena emarginata Huang是芸香科(Rutaceae)黄皮属Clausena P. Clausen小乔木,产自云南西南、东南部海拔300~800 m的石灰岩灌丛中,广西也有分布。小黄皮的根、叶均可入药,其性苦、辛,微温,具有宣肺止咳、行气止痛、通经活络等功效,主治感冒头痛、风寒咳嗽、胃痛、风湿性关节炎等[1]。前期本课题组对小黄皮茎95%乙醇提取物的氯仿和醋酸乙酯两个部位进行了系统的化学成分及生物活性研究,从中分离得到了一系列的咔唑生物碱、柠檬苦素等化合物,并对其进行了药理活性筛选,药理实验显示部分化合物具有良好的神经保护作用[2, 3]

为了丰富小黄皮的药效物质基础研究,为其临床应用以及资源的合理利用与开发提供理论支持,本实验对小黄皮茎95%乙醇提取物的石油醚和丙酮2个洗脱部位的化学成分与药理活性进行了系统的研究。通过大孔吸附树脂柱色谱、硅胶柱色谱、中压制备液相色谱、高效制备液相色谱等技术,从小黄皮茎中分离得到16个化合物,分别鉴定为1H-indole-3-carboxaldehyde(1)、E-N-benzoil- tiramine(2)、去氢双松柏醇(dehydrodiconiferyl alcohol,3)、tortoside A(4)、浙贝素(zhebeiresinol,5)、evofolin B(6)、2,3,5,4′-四羟基二苯乙烯-2-O-β-D-葡萄糖苷(2,3,5,4′-tetrahydroxy-stilbene-2-O-β-D- glucopyranoside,7)、紫花松果菊苷A(echipuroside A,8)、3-甲基咔唑(3-methylcarbazole,9)、murrayafoline A(10)、clausine Z(11)、indizoline(12)、clausenaline B(13)、mafaicheenamine A(14)、dictamnine(15)和和厚朴酚(honokiol,16)。其中化合物18为首次从该属植物中分离得到,化合物116为首次从该植物中分离得到。药理活性筛选显示化合物1112对鱼藤酮损伤PC12细胞模型具有一定的神经保护作用。

1 仪器与材料

Aglient 1100高效液相色谱仪,安捷伦科技有限公司;Mercury-400和Bruker AVⅢHD 600、VNS-600核磁共振仪;中压制备液相色谱系统(瑞士布琪有限公司),配有C-605型二元梯度液相泵、C-635型检测器、C-615型控制单元、C-660型馏分收集器、进样单元、C-690型剥离色谱柱(560 mm×60 mm);制备液相色谱仪(LC-6AD,日本岛津公司);反相填料(YMC-ODS C18 50 μm,日本YMC公司);Sephadex LH-20(美国GE公司);制备柱(YMC ODS-A C18,250 mm×20 mm,5 μm);薄层色谱用硅胶GF254和柱色谱用硅胶(100~200、200~300、300~400目,青岛海洋化工有限公司);HPD-100型大孔树脂(河北沧州宝恩化工有限公司);色谱纯甲醇、乙腈(美国Fisher公司);分析纯甲醇、氯仿(国药集团化学试剂有限公司)。

小黄皮于2010年8月采自云南西双版纳,经中国科学院西双版纳植物园崔景云研究员鉴定为Clausena emarginata Huang的干燥茎枝,其标本(ID-22254)存于中国医学科学院药物研究所标本室。

2 提取与分离

小黄皮茎18 kg,干燥后粉碎,用95%乙醇加热回流提取3次,每次2 h,提取液经减压浓缩,得到浸膏570 g。95%乙醇提取物浸膏通过硅藻土柱色谱,分成石油醚、氯仿、醋酸乙酯、丙酮、丙酮-乙醇(1∶1)、乙醇、乙醇-水(1∶1)等部位。其中石油醚洗脱部位(45 g)经过硅胶柱色谱(200~300 目,600 g)分离,以环己烷-醋酸乙酯(20∶1、9∶1、8∶2、7∶3、6∶4、5∶5)进行梯度洗脱,最后用甲醇冲柱。根据TLC色谱合并相似组分,共得到7个组分(A1~A7)。其中A3(3.2 g)经过开放性ODS柱分离(60%~100%甲醇洗脱),得到15个组分(A3-1~A3-15),A3-4经制备液相色谱进行纯化(75%甲醇),得到化合物9(4 mg)和10(10 mg)。A5(9.5 g)经过中压制备液相分离(60%~100%甲醇洗脱6 h),得到8个组分(A5-1~A5-8)。A5-3(1.8 g)经过硅胶柱色谱(硅胶H,180 g),接着经过制备液相纯化(73%甲醇),得到化合物15(10 mg);A5-5经过Sephadex LH-20分离(石油醚-氯仿-甲醇5∶5∶1),再经过制备液相纯化(63%甲醇),分别得到化合物1(13 mg)和12(4 mg);A5-7经过Sephadex LH-20分离(石油醚-氯仿-甲醇5∶5∶1),再经过制备液相纯化(40%乙腈),分别得到化合物2(3 mg)、13(3 mg)和14(8 mg)。丙酮洗脱部位(65 g)经过大孔吸附树脂(HPD-100)柱分离(水-95%乙醇洗脱),共得到5个组分(B1~B5)。其中B3经过硅胶柱分离,以氯仿甲醇-洗脱,得到10个组分(B3-1~B3-10),B3-2经过开放性ODS柱分离,然后经过制备液相(55%甲醇)纯化,得到化合物11(25 mg)和16(11 mg);B3-5经过中压制备液相分离后,再经过制备液相纯化(50%甲醇),分别得到化合物3(7 mg)、4(8 mg)和5(5 mg);B3-7经过Sephadex LH-20分离分离后,再经过制备液相纯化(25%甲醇),分别得到化合物6(11 mg)、7(14 mg)和8(25 mg)。

3 结构鉴定

化合物1:淡黄色粉末。1H-NMR (400 MHz,DMSO-d6) δ: 12.42 (1H,s,NH),9.91 (1H,s,H-10),8.26 (1H,s,H-2),8.07 (1H,d,J = 7.6 Hz,H-4),7.50 (1H,d,J = 7.9 Hz,H-7),7.22 (2H,m,H-5,6);13C-NMR (125 MHz,DMSO-d6) δ: 184.8 (C-10),138.7 (C-2),137.3 (C-8),124.2 (C-9),123.3 (C-4),122.0 (C-5),120.8 (C-6),118.1 (C-3),112.5 (C-7)。以上数据与文献报道基本一致[4],故鉴定化合物1为1H-indole-3-carboxaldehyde。

化合物2:白色无定形粉末。1H-NMR (400 MHz,DMSO-d6) δ: 8.50 (1H,t,J = 5.4 Hz,NH),7.81 (2H,d,J = 7.9 Hz,H-2′,6′),7.50 (1H,d,J = 6.6 Hz,H-4′),7.44 (2H,d,J = 7.6 Hz,H-3′,5′),7.02 (2H,d,J = 7.8 Hz,H-2,6),6.67 (2H,d,J = 7.7 Hz,H-3,5),3.69 (2H,m,H-8),2.72 (2H,t,J = 7.4 Hz,H-7);13C-NMR (150 MHz,DMSO-d6) δ: 166.1 (9-C=O),155.6 (C-1),134.7 (C-1′),131.0 (C-4),129.6 (C-4′),129.5 (C-3,5),128.3 (C-3′,5′),127,1 (C-2′,6′),115.1 (C-2,6),41.3 (C-8),34.3 (C-7)。以上数据与文献报道基本一致[5, 6],故鉴定化合物2E-N-benzoyltyramine。

化合物3:白色粉末。1H-NMR (400 MHz,DMSO-d6) δ: 6.94 (1H,s,H-6),6.92 (2H,s,H-2,2′),6.75 (2H,s,H-5′,6′),6.46 (1H,d,J = 15.9 Hz,H-7),6.21 (1H,m,H-8),5.45 (1H,d,J = 6.5 Hz,H-7′),4.08 (2H,d,J = 4.2Hz,H-9),3.79 (3H,s,3-OCH3),3.74 (3H,s,3′-OCH3),3.71 (2H,m,H-9′),3.44 (1H,m,H-8′);13C-NMR (125 MHz,DMSO-d6) δ: 147.5 (C-3),147.1 (C-4′),146.5 (C-4),143.6 (C-3′),132.2 (C-1),130.5 (C-5′),129.5 (C-1′),128.9 (C-7′),128.0 (C-8′),118.5 (C-6),115.3 (C-5),114.9 (C-6′),110.4 (C-2,2′),87.2 (C-7),62.9 (C-9),61.6 (C-9′),55.9 (3-OCH3),55.6 (3′-OCH3),53.0 (C-8)。以上数据与文献报道基本一致[7],故鉴定化合物3为去氢双松柏醇。

化合物4:白色粉末。1H-NMR (400 MHz,DMSO-d6) δ: 6.65 (2H,d,J = 1.4 Hz,H-2′,6′),6.60 (2H,d,J = 1.4 Hz,H-2,6),4.95 (1H,d,J = 5.5 Hz,glc-H-1″),4.67 (1H,d,J = 4.0 Hz,H-7′),4.29 (1H,d,J = 5.0 Hz,H-7),4.18 (2H,m,H-9β,9′β),3.80 (1H,m,H-9α),3.76 (6H,s,3′,5′-OCH3),3.76 (6H,s,3,5-OCH3),3.59 (1H,m,glc-H-6″β),3.40 (1H,m,glc-H-6″α),3.31 (2H,m,H-8′,9′α),3.18 (1H,m,glc-H-5″),3.15 (1H,m,glc-H-3″),3.11 (1H,m,glc-H-4″),3.07 (1H,m,glc-H-2″),3.05 (1H,m,H-8);13C-NMR (125 MHz,DMSO-d6) δ: 152.6 (C-3′,5′),147.9 (C-3,5),137.2 (C-4′),134.8 (C-4),133.7 (C-1′),131.3 (C-1),104.2 (C-2′,6′),103.6 (C-2,6),102.7 (glc-C-1″),85.3 (C-7′),85.1 (C-7),77.2 (glc-C-3″),76.5 (glc-C-5″),74.2 (glc-C-2″),71.3 (C-9′),71.2 (C-9),69.9 (glc-C-4″),60.9 (glc-C-6″),56.4 (3′,5′-OCH3),56.0 (3,5-OCH3),53.7 (C-8′),53.6 (C-8)。以上数据与文献报道基本一致[8],故鉴定化合物4为tortoside A。

化合物5:红褐色固体。1H-NMR (400 MHz,DMSO-d6) δ: 6.63 (2H,s,H-2′,6′),5.54 (1H,brs,4′-OH),4.62 (1H,d,J = 6.5 Hz,H-6),4.51 (1H,dd,J = 6.6,9.6 Hz,H-8a),4.39 (1H,t,J = 9.0 Hz,H-4a),4.35 (1H,d,J = 9.2 Hz,H-8b),4.21 (1H,t,J = 8.6 Hz,H-4b),3.76 (6H,s,3′,5′-OCH3),3.58 (1H,m,H-1),3.13 (1H,m,H-5);13C-NMR (150 MHz,DMSO-d6) δ: 178.7 (C-2),147.9 (C-3′,5′),135.1 (C-4′),130.0 (C-1′),103.7 (C-2′,6′),85.7 (C-6),70.2 (C-4),69.4 (C-8),56.0 (3′,5′-OCH3),47.6 (C-1),45.8 (C-5)。以上数据与文献报道基本一致[9],故鉴定化合物5为浙贝素。

化合物6:淡黄色油状物。1H-NMR (400 MHz,DMSO-d6) δ: 7.60 (1H,J = 8.2 Hz,H-6),7.49 (1H,d,J = 1.5 Hz,H-2),6.9l (1H,s,H-2′),6.82 (1H,d,J = 8.3 Hz,H-5),6.66 (2H,m,H-5′,6′),4.75 (1H,dd,J = 8.8,5.1 Hz,H-8),4.09 (1H,t,J = 9.5 Hz,H-9a),3.80 (3H,s,3-OCH3),3.73 (3H,s,3′-OCH3),3.51 (1H,dd,J = 10.0,5.0 Hz,H-9b);13C-NMR (150 MHz,DMSO-d6) δ: 197.1 (7-C=O),151.6 (C-4),147.6 (C-3′),147.5 (C-3),145.6 (C-4′),128.6 (C-1),128.3 (C-l′),123.5 (C-6),120.5 (C-6′),115.5 (C-5′),114.8 (C-5),112.4 (C-2′),111.6 (C-2),63.8 (C-9),55.6 (3-OCH3),55.5 (3′-OCH3),53.9 (C-8)。以上数据与文献报道基本一致[10],故鉴定化合物6为evofolin B。

化合物7:白色无定形粉末。1H-NMR (400 MHz,DMSO-d6) δ: 7.67 (1H,d,J = 16.5 Hz,H-8),7.43 (2H,d,J = 8.4 Hz,H-2′,6′),6.88 (1H,d,J = 16.5 Hz,H-7),6.74 (2H,d,J = 8.5 Hz,H-3′,5′),6.54 (1H,s,H-4),6.18 (1H,d,J = 2.6 Hz,H-6),4.51 (1H,s,H-1″),3.81 (2H,m,H-6″),3.50 (1H,m,H-4″),3.40 (1H,m,H-2″),3.32 (1H,m,H-5″),3.22 (2H,m,H-3″);13C-NMR (100 MHz,DMSO-d6) δ: 157.2 (C-4′),154.7 (C-5),150.7 (C-3),136.4 (C-2),131.9 (C-1),128.6 (C-1′),128.5 (C-8),128.2 (C-2′,6′),120.5 (C-7),115.5 (C-3′,5′),106.7 (C-4),102.7 (glc-C-1″),101.0 (C-6),77.1 (C-5″),76.1 (C-3″),74.0 (C-2″),69.3 (C-4″),60.7 (C-6″)。以上数据与文献报道基本一致[11],故鉴定化合物7为2,3,5,4′-四羟基二苯乙烯-2-O-β-D-葡萄糖苷。

化合物8:白色粉末。1H-NMR (400 MHz,DMSO-d6) δ: 7.03 (1H,d,J = 5.4 Hz,H-2,6),6.66 (2H,d,J = 6.3 Hz,H-3,5),4.59 (1H,s,H-1″),4.17 (1H,d,J = 6.2 Hz,H-1′),3.81 (2H,m,H-6′a,8a),3.60 (2H,m,H-6′b,8b),3.42 (2H,m,H-5′,5″),3.25 (2H,m,H-3′,3″),3.15 (2H,m,H-4′,4″),2.97 (2H,m,H-2′,2″),2.73 (2H,t,J = 6.9 Hz,H-7),1.12 (3H,s,H-6″);13C-NMR (100 MHz,DMSO-d6) δ: 155.6 (C-4),129.8 (C-2,6),128.7 (C-1),115.1 (C-3,5),103.0 (C-1′),100.8 (C-1″),76.7 (C-3′),75.4 (C-5′),73.4 (C-2′),72.0 (C-4″),70.7 (C-2″),70.5 (C-8),70.2 (C-3″),70.0 (C-4′),68.4 (C-5″),67.1 (C-6′),35.0 (C-7),18.1 (C-6″)。以上数据与文献报道基本一致[12],故鉴定该化合物8为紫花松果菊苷A。

化合物9:黑色油状物。1H-NMR (400 MHz,DMSO-d6) δ: 11.08 (1H,brs,NH),8.05 (1H,d,J = 7.8 Hz,H-5),7.89 (1H,brs,H-4),7.44 (1H,d,J = 8.1 Hz,H-8),7.34 (2H,m,H-1,7),7.20 (1H,d,J = 8.1 Hz,H-2),7.11 (1H,t,J = 7.4 Hz,H-6),2.46 (3H,s,3-CH3);13C-NMR (125 MHz,DMSO-d6) δ: 140.0 (C-8a),138.0 (C-5a),127.1 (C-3),126.9 (C-2),125.3 (C-7),122.5 (C-4a),122.2 (C-1a),120.1 (C-5),119.9 (C-4),118.3 (C-6),110.9 (C-8),110.7 (C-1),21.2 (3-CH3)。以上数据与文献报道基本一致[13],故鉴定化合物9为3-甲基咔唑。

化合物10:黑色油状物。1H-NMR (400 MHz,DMSO-d6) δ: 11.13 (1H,brs,NH),8.00 (1H,d,J = 7.8 Hz,H-5),7.47 (1H,brs,H-4),7.44 (1H,d,J = 8.1 Hz,H-8),7.32 (1H,t,J = 7.6 Hz,H-7),7.10 (1H,t,J = 7.6 Hz,H-6),6.81 (1H,s,H-2),3.96 (3H,s,1-OCH3),2.40 (3H,s,3-CH3);13C-NMR (125 MHz,DMSO-d6) δ: 145.4 (C-1),139.8 (C-8a),128.1 (C-1a),127.9 (C-3),125.2 (C-5a),123.5 (C-7),122.5 (C-5),120.2 (C-6),118.3 (C-4),112.3 (C-8),111.4 (C-2),107.8 (C-4a),55.3 (1-OCH3),21.6 (3-CH3)。以上数据与文献报道基本一致[14],故鉴定化合物10为murrayafoline A。

化合物11:棕色不定形粉末。1H-NMR (400 MHz,DMSO-d6) δ: 11.45 (1H,brs,NH),9.90 (1H,s,3-CHO),8.12 (1H,s,H-4),7.44 (1H,d,J = 1.8 Hz,H-5),7.34 (1H,d,J = 8.6 Hz,H-8),7.23 (1H,s,H-2),6.93 (1H,dd,J = 8.7,1.8 Hz,H-7);13C-NMR (125 MHz,DMSO-d6) δ: 191.8 (3-CHO),151.3 (C-6),143.8 (C-1),134.6 (C-1a),134.1 (C-8a),128.8 (C-3),123.9 (C-5a),123.2 (C-4a),119.0 (C-4),115.7 (C-7),112.4 (C-8),106.4 (C-2),105.0 (C-5)。以上数据与文献报道基本一致[15],故鉴定化合物11为clausine Z。

化合物12:淡黄色粉末。1H-NMR (400 MHz,DMSO-d6) δ: 11.83 (1H,brs,NH),10.18 (1H,s,3-CHO),8.47 (1H,s,H-4),8.19 (1H,d,J = 7.7 Hz,H-5),7.56 (1H,d,J = 8.0 Hz,H-8),7.45 (1H,t,J = 7.6 Hz,H-7),7.24 (1H,t,J = 7.5 Hz,H-6),5.17 (1H,t,J = 6.8 Hz,H-2′),3.94 (2H,d,J = 6.8 Hz,H-1′),3.92 (3H,s,1-OCH3),1.80 (3H,s,H-5′),1.64 (3H,s,H-4′);13C-NMR (150 MHz,DMSO-d6) δ: 191.7 (3-CHO),142.9 (C-1),140.5 (C-8a),136.5 (C-3),132.4 (C-3′),130.7 (C-2),126.7 (C-1a),126.4 (C-7),124.1 (C-2′),123.0 (C-5a),122.5 (C-4a),122.0 (C-4),120.5 (C-5),120.0 (C-6),111.8 (C-8),61.0 (1-OCH3),25.5 (C-5′),23.6 (C-1′),17.9 (C-4′)。以上数据与文献报道基本一致[16],故鉴定化合物12为indizoline。

化合物13:淡黄色粉末。1H-NMR (400 MHz,DMSO-d6) δ: 11.67 (1H,brs,NH),8.22 (1H,d,J = 8.0 Hz,H-5),8.19 (1H,s,H-4),7.51 (1H,d,J = 8.1 Hz,H-8),7.42 (1H,t,J = 7.3 Hz,H-7),7.18 (1H,t,J = 7.4 Hz,H-6),4.07 (3H,s,1-OCH3),3.42 (1H,dd,J = 17.0,8.3 Hz,H-1′a),3.02 (1H,dd,J = 17.0,3.9 Hz,H-1′b),2.73 (1H,dd,J = 8.4,4.0 Hz,H-2′),2.28 (1H,dd,J = 6.4,4.0 Hz,H-3′),1.05 (3H,d,J = 6.8 Hz,H-5′),0.75 (3H,d,J = 6.8 Hz,H-4′);13C-NMR (150 MHz,DMSO-d6) δ: 206.4 (3-CO),140.9 (C-1),140.8 (C-8a),139.5 (C-2),137.4 (C-1a),130.4 (C-3),126.6 (C-7),125.3 (C-4a),123.1 (C-5a),120.9 (C-5),119.6 (C-6),111.6 (C-4),111.1 (C-8),60.0 (1-OCH3),52.8 (C-2′),28.8 (C-3′),24.8 (C-1′),20.5 (C-5′) 17.2 (C-4′)。以上数据与文献报道基本一致[17],故鉴定化合物13为clausenaline B。

化合物14:淡黄色粉末。1H-NMR (400 MHz,DMSO-d6) δ: 11.82 (1H,brs,NH),8.57 (1H,s,H-4),8.23 (1H,d,J = 7.9 Hz,H-5),7.55 (1H,d,J = 8.1 Hz,H-8),7.45 (1H,t,J = 7.6 Hz,H-7),7.22 (1H,t,J = 7.5 Hz,H-6),4.87 (1H,brs,3′-OH),4.23 (1H,d,J = 12.0 Hz,H-2′),3.95 (3H,s,1-OCH3),3.50 (1H,dd,J = 16.0,2.5 Hz,H-1′a),2.96 (1H,dd,J = 16.0,2.5 Hz,H-1′b),1.27 (3H,s,H-4′),1.26 (3H,s,H-5′);13C-NMR (150 MHz,DMSO-d6) δ: 165.7 (C-10),140.7 (C-1),140.5 (C-8a),136.2 (C-1a),128.3 (C-2),126.6 (C-7),123.4 (C-5a),122.9 (C-4a),120.8 (C-5),119.8 (C-6),118.9 (C-4),116.1 (C-3),111.7 (C-8),83.9 (C-2′),69.8 (C-3′),60.8 (1-OCH3),26.8 (C-4′),24.7 (C-5′),22.0 (C-1′a)。以上数据与文献报道基本一致[18],故鉴定化合物14为mafaicheenamine A。

化合物15:黄色固体。1H-NMR (400 MHz,DMSO-d6) δ: 8.22 (1H,d,J = 8.4 Hz,H-5),8.05 (1H,s,H-8),7.89 (1H,dt,J = 8.5,1.4 Hz,H-7),7.72 (1H,t,J = 7.6 Hz,H-2),7.44 (1H,dt,J = 8.4,1.2 Hz,H-6),7.28 (1H,d,J = 2.8 Hz,H-3),4.45 (3H,s,4-OCH3);13C-NMR (125 MHz,DMSO-d6) δ: 163.5 (C-1a),156.4 (C-4),144.9 (C-8a),144.5 (C-2),129.7 (C-7),127.4 (C-8),123.9 (C-6),122.2 (C-5),118.1 (C-4a),105.6 (C-3),103.4 (C-3a),59.6 (4-OCH3)。以上数据与文献报道基本一致[19],故鉴定化合物15为dictamnine。

化合物16:棕红色粉末。1H-NMR (400 MHz,DMSO-d6) δ: 7.19 (1H,dd,J = 8.4,2.4 Hz,H-4),7.16 (1H,d,J = 2.4 Hz,H-6),6.94 (1H,dd,J = 8.4,2.4 Hz,H-2′),6.86 (1H,d,J = 8.2 Hz,H-6′),6.80 (1H,d,J = 8.4 Hz,H-3),6.78 (1H,d,J = 8.4 Hz,H-3′),5.94 (2H,m,H-8,8′),5.06 (4H,m,H-9,9′),3.30 (2H,d,J = 6.6 Hz,H-7),3.25 (2H,d,J = 6.7 Hz,H-7′);13C-NMR (125 MHz,DMSO-d6) δ: 154.1 (C-2),152.6 (C-4′),138.4 (C-8′),137.3 (C-8),131.5 (C-5′),130.3 (C-6),130.2 (C-6′),129.1 (C-1′),127.9 (C-2′),127.7 (C-4),127.3 (C-1),125.2 (C-5),116.0 (C-9),115.2 (C-3),115.2 (C-3′),114.5 (C-9′),38.8 (C-7),34.0 (C-7′)。以上数据与文献报道基本一致[20],故鉴定化合物16为和厚朴酚。

4 神经保护活性研究

鱼藤酮损伤PC12细胞模型的建立:将PC12细胞接种至多聚赖氨酸包被的96孔板培养,细胞浓度为5×103/孔。贴壁24 h后更换培养基,对照组加入含5% FBS及5% ES的DMEM完全培养基,模型组及给药组细胞中加入4 μmol/L的鱼藤酮于完全培养基中,各给药组在此模型基础上加入相应浓度的药物(化合物1112)。置于37 ℃、5% CO2的孵箱中培养48 h后,以MTT法检测各组的细胞存活率,结果见表 1

表 1 化合物1112对鱼藤酮损伤模型神经保护作用筛选结果 Table 1 1 Screen results of nicouline injury model neuroprotection in compounds 11 and 12

结果显示化合物1112对鱼藤酮损伤PC12细胞具有较好的神经保护作用,在浓度为10 μmol/L时细胞存活率分别达到83%和80%。

参考文献
[1] 谢宗万, 范崔生, 朱兆仪, 等. 全国中草药汇编(下册)[M]. 北京:人民卫生出版社, 1976.
[2] Xia H M, Ouyang G Q, Zhang D M, et al. Clauemarazoles A-G, seven carbazole alkaloids from the stems of Clausena emarginata[J]. Fitoterapia, 2015, 103:83-89.
[3] Xia H M, Li C J, Zhang D M, et al. A, D-seco-limonoids from the stems of Clausena emarginata[J]. J Nat Prod, 2014, 77(40):784-791.
[4] Zhou H F, Jian R J, Kang J, et al. Anti-inflammatory effects of Caper fruit aqueous extract and the isolation of main phytochemicals[J]. J Agric Food Chem, 2010, 58(24):12717-12721.
[5] Cerqueira C D N, Santos D A P D, Malaquias K D S, et al. Novel N-benzoyltyramines of Swinglea glutinosa (Rutaceae)[J]. Quim Nova, 2012, 35(11):2181-2185.
[6] Ghosh P, Sil P, Das S, et al. Tyramine derivatives from the fruit of Limonia acidissima[J]. J Nat Prod, 1991, 54(5):1389-1393.
[7] Deyama T, Ikawa T, Kitagawa S, et al. The constituents of Eucommia ulmoides OLIV. VI. Isolation of a new sesquilignan and neolignan glycosides[J]. Chem Pharm Bull, 1987, 35(5):1803-1807.
[8] 杨鑫, 丁怡, 张东明, 等. 毛冬青的化学成分研究[J]. 中草药, 2005, 36(8):1146-1147.
[9] 孙永慧, 凌勇, 任美荣, 等. 红果槲寄生的化学成分研究[J]. 中草药, 2010, 41(9):1418-1420.
[10] 谢帆, 张勉, 张朝凤, 等. 川楝子的化学成分研究[J]. 中国药学杂志, 2008, 43(14):1066-1069.
[11] 梁妍, 田维熙, 马晓丰. 首乌藤的化学成分[J]. 沈阳药科大学学报, 2009, 26(7):536-538.
[12] 李继仁, 乔梁, 艾铁民, 等. 紫花松果菊水溶性成分研究[J]. 药学学报, 2002, 37(2):121-123.
[13] Manas C, Yaeko K, Shampa K, et al. Carbazole alkaloids from Murraya koenigii[J]. Phytochemistry, 1997, 46(4):751-755.
[14] Furukawa H, Wu T S, Ohta T, et al. Chemical constituents of Murraya euchrestifolia Hayata. Structures of novel carbazolequinones and other new carbazole alkaloids[J]. Chem Pharm Bull, 1985, 33(10):4132-4138.
[15] Potterat O, Puder C, Bolek W, et al. Clausine Z, a new carbazole alkaloid from Clausena excavata with inhibitory activity on CDK5[J]. Pharmazie, 2005, 60(8):637-639.
[16] Li W S, McChesney J D, El-Feraly F S. Carbazole alkaloids from Clausena Lansium[J]. Phytochemistry, 1991, 30(1):343-346.
[17] Shen D Y, Chan Y Y, Huang S H, et al. Constituents of the roots of Clausena lansium and their potential anti-inflammatory activity[J]. J Nat Prod, 2014, 77(5):1215-1223.
[18] Wisanu M, Surat L. Antitumoral alkaloids from Clausena lansium[J]. Heterocycles, 2010, 81(5):1261-1269.
[19] Sriphana U, Thongsri Y, Prariyachatigul C, et al. Clauraila E from the roots of Clausena harmandiana and antifungal activity against pythium insidiosum[J]. Arch Pharm Res, 2013, 36(9):1078-1083.
[20] 张晶, 孙桂波, 斯建勇, 等. 生附子的化学成分研究[J]. 药学学报, 2014, 49(8):1150-1154.