2. 中国人民解放军第二军医大学药学院 生药学教研室, 上海 200433;
3. 中国科学院大学, 北京 100049
2. Department of Pharmacognosy, School of Pharmacy, Second Military Medical University of PLA, Shanghai 200433, China;
3. University of Chinese Academy of Sciences, Beijing 100049, China
唐古特白刺Nitraria tangutorum Bobr. 是蒺藜科(Zygophyllceae)白刺属Nitraria L. 的一种建群性落叶灌木,主要生长在荒漠或半荒漠地区。全球共有12个种,分布于亚洲、欧洲、非洲及澳洲[1],作为防风固沙的优势灌木,在生态环境保护中具有重要的作用。在我国,白刺属植物主要分布于青海、新疆、甘肃、宁夏、内蒙古等地,资源十分丰富,其中在青海省柴达木盆地分布最广[2]。唐古特白刺的果实具有健脾胃、滋补强壮、调经活血、催乳之功效,在民间常用于治疗脾胃虚弱、消化不良、神经衰弱、高血压、头晕、感冒、乳汁不下等症,经常在中、藏药复方中出现[3]。唐古特白刺叶与果实一样,具有滋补强身、调经活血的功能[4, 5, 6, 7]。在开发预防和治疗发病率很高的心脑血管疾病、神经科疾病及健脾补肾类天然药物的过程中发现唐古特白刺叶具有调节血糖、血脂、免疫和抗疲劳等功效[8]。因此唐古特白刺资源也在营养保健食品及食品新资源开发方面前景看好。目前对唐古特白刺果实的化学成分研究较多,主要为黄酮和生物碱类,而对唐古特白刺叶中的成分研究较少[9]。本实验从唐古特白刺叶中分离得到9个化合物,分别鉴定为4-氧代-β-紫罗兰醇-β-D-吡喃葡萄糖苷(4-oxo-β-ionol β-D-glycopyranoside,1)、(6R,9R)-3-氧代-α-紫罗兰醇-β-D-吡喃葡萄糖苷[(6R,9R)-3-oxo-α-ionol-β-D-glycopyranoside,2]、blumenyl C β-D-glucopyranoside(3)、blumenyl A β-D- glucopyranoside(4)、丁香树脂酚-4′-O-β-D-吡喃葡萄糖苷(syringaresinol-4′-O-β-D-glucopyranoside,5)、citrusin B(6)、nikoenoside(7)、2-苯乙基-O-β-D-吡喃葡萄糖苷(2-phenylethyl-β-D-glucopyranoside,8)和吲哚-3-乙基-β-D-吡喃葡萄糖苷(indole-3- ethyl-β-D-glucopyranoside,9)。化合物1~9均为该属植物中首次分离得到,其中,化合物9的13C-NMR数据也为首次报道。
1 仪器与材料Bruker AV600型核磁共振仪(Bruker公司);Agilent 1200高效液相色谱(Agilent公司);NP-7100型制备液相色谱(江苏汉邦科技有限公司);C18 HCE色谱柱(250 mm×20 mm,北京华普新创科技有限公司);柱色谱硅胶(100~200目),薄层用硅胶(青岛海洋化工厂);Fisher色谱级甲醇,其他试剂均为分析级(山东禹王化工厂)。
唐古特白刺叶于2014年8月釆于柴达木盆地腹地德令哈市,由中国科学院西北高原生物研究所梅丽娟研究员鉴定为唐古特白刺Nitraria tangutorum Bobr. 的叶。
2 提取与分离唐古特白刺叶5 kg,粉碎,过40目筛,95%的工业乙醇加热回流提取3次,每次3 h,料液比1:8,合并滤液,滤过,浓缩,得浸膏280 g。浸膏用水(1 L)混悬,用盐酸调剂pH值约为1,用醋酸乙酯(2 L)萃取,重复3次,除掉脂溶性成分,酸水溶液部分用氨水调节pH值至10左右,再用醋酸乙酯(2 L)萃取,重复3次,得醋酸乙酯萃取物7.1 g。取醋酸乙酯部位用15 g硅胶拌样上硅胶柱色谱(100~200目,500 g),以氯仿-甲醇-水(9:1:0.1→7:3:0.5)为洗脱系统梯度洗脱,得到4个部分Fr. 1~4,Fr. 3(2.3 g)以氯仿-甲醇-水(8:2:0.2)等度洗脱,得到7个部分Fr. 3A~3G。其中,Fr. 3B(210 mg)在制备液相色谱上进行分离,用乙腈-水(5%~15%,50 min)进行梯度洗脱得到5个组分,经HPLC进一步纯化得到化合物2(7 mg)、3(5 mg)、5(3 mg)、7(14 mg)和8(17 mg);Fr. 3C(170 mg)在制备液相色谱上进行分离,用乙腈-水(5%~15%,50 min)进行梯度洗脱得到3个组分,经HPLC进一步纯化得到化合物4(11 mg)、6(23 mg)和 9(30 mg)。Fr. 3F用10%的乙腈-水在制备液相色谱上等度洗脱并进一步纯化得到化合物1(13 mg)。
3 结构鉴定化合物1:白色粉末。1H-NMR (600 MHz,CD3OD) δ: 6.31 (1H,d,J = 16.3 Hz,H-7),5.77 (1H,dd,J = 16.3,6.3 Hz,H-8),4.50 (1H,d,J = 6.1 Hz,H-9),4.40 (1H,d,J = 7.8 Hz,H-1′),3.81 (1H,dd,J = 11.8,1.8 Hz,H-6′a),3.66 (1H,m,H-6′b),3.12~3.45 (4H,m,H-2′~5′),2.48 (1H,t,J = 6.8 Hz,H-3),1.85 (1H,t,J = 6.8 Hz,H-2),1.76 (3H,s,H-13),1.35 (3H,d,J = 6.4 Hz,H-10),1.18 (3H,s,H-12),1.17 (3H,s,H-11);13C-NMR (150 MHz,CD3OD) δ: 201.8 (C-4),163.7 (C-6),140.2 (C-8),130.5 (C-5),127.5 (C-7),102.7 (C-1′),78.1 (C-3′),78.0 (C-5′),77.2 (C-9),75.3 (C-2′),71.5 (C-4′),62.6 (C-6′),38.2 (C-2),36.6 (C-1),35.1 (C-3),27.7 (C-12),27.7 (C-11) 21.0 (C-10),13.7 (C-13)。以上数据与文献报道一致[10],故鉴定化合物1为4-氧代-β-紫罗兰醇-β-D-吡喃葡萄糖苷。
化合物2:白色粉末。1H-NMR (600 MHz,CD3OD) δ: 5.88 (1H,brs,H-4),5.77 (1H,dt,J = 13.0,6.5 Hz,H-7),5.66 (1H,m,H-8),4.40 (1H,m,H-9),4.35 (1H,d,J = 7.8 Hz,H-1′),3.82 (1H,dd,J = 11.8,2.1 Hz,H-6′a),3.66 (1H,dd,J = 11.8,5.4 Hz,H-6′b),3.14~3.37 (4H,m,H-2′~5′),2.67 (1H,d,J = 9.2 Hz,H-6),2.43 (1H,d,J = 16.8 Hz,H-2a),2.04 (1H,d,J = 16.8 Hz,H-2b),1.93 (3H,s,H-13),1.29 (3H,d,J = 6.4 Hz,H-10),1.03 (3H,s,H-11),1.00 (3H,s,H-12);13C-NMR (150 MHz,CD3OD) δ: 202.0 (C-3),165.9 (C-5),138.3 (C-8),128.8 (C-7),126.1 (C-4),102.5 (C-1′),78.1 (C-3′),78.0 (C-5′),77.0 (C-9),75.3 (C-2′),71.5 (C-4′),62.7 (C-6′),56.8 (C-6),37.1 (C-1),28.1 (C-12),23.8 (C-13),27.6 (C-11),21.0 (C-10)。以上数据与文献报道一致[11],故鉴定化合物2为(6R,9R)-3-氧代-α-紫罗兰醇-β-D-吡喃葡萄糖苷。
化合物3:白色粉末。1H-NMR (600 MHz,CD3OD) δ: 5.80 (1H,s,H-4),4.32 (1H,d,J = 7.7 Hz,H-1′),3.85 (2H,m,H-9,6a′),3.65 (1H,m,H-6a′),3.46~3.03 (5H,m,H-2′~5′,9),2.46 (1H,d,J = 17.3 Hz,H-2a),2.04 (4H,d,J = 4.1 Hz,H-13),1.18 (3H,d,J = 6.1 Hz,H-10),1.09 (3H,s,H-11),1.00 (3H,s,H-12);13C-NMR (150 MHz,CD3OD) δ: 202.4 (C-3),170.1 (C-5),125.4 (C-4),102.1 (C-1′),78.1 (C-3′),77.9 (C-5′),75.5 (C-9),75.1 (C-2′),71.8 (C-4′),62.9 (C-6′),52.4 (C-6),48.0 (C-2),37.8 (C-8),37.8 (C-1),29.0 (C-12),27.5 (C-11),26.8 (C-7),24.9 (C-13),19.9 (C-10)。以上数据与文献报道一致[12],故鉴定化合物3为blumenyl C β-D-glucopyranoside。
化合物4:白色粉末。1H-NMR (600 MHz,CD3OD) δ: 5.86 (3H,m,H-7,8,4),4.42 (1H,m,H-9),4.34 (1H,d,J = 7.8 Hz,H-1′),3.85 (1H,dd,J = 11.7,1.4 Hz,H-6′a),3.62 (1H,m,H-6′b),3.17~3.35 (4H,m,H-2′~5′),2.52 (1H,d,J = 16.9 Hz,H-2a),2.14 (1H,d,J = 16.9 Hz,H-2b),1.92 (3H,s,H-13),1.29 (3H,d,J = 6.4 Hz,H-10),1.03 (3H,s,H-12),1.03 (3H,s,H-11);13C-NMR (150 MHz,CD3OD) δ: 201.2 (C-3),167.2 (C-5),135.2 (C-7),131.5 (C-8),127.1 (C-4),102.7 (C-1′),79.9 (C-6),78.1 (C-3′),78.0 (C-5′),77.2 (C-9),75.1 (C-2′),71.6 (C-4′),62.8 (C-6′),50.7 (C-2),42.4 (C-1),24.7 (C-13),23.4 (C-12),21.5 (C-10),19.5 (C-11)。以上数据与文献报道一致[12],故鉴定化合物4为blumenyl A β-D-glucopyranoside。
化合物5:白色粉末。1H-NMR (600 MHz,CD3OD) δ: 6.72 (2H,s,H-2′,6′),6.66 (2H,s,H-2,6),6.32 (1H,dt,J = 11.3,5.0 Hz,H-7′),4.85 (1H,d,J = 7.2 Hz,H-1″),4.77 (1H,d,J = 3.6 Hz,H-7),4.72 (1H,d,J = 4.0 Hz,H-7′),4.29 (1H,dd,J = 15.8,9.5 Hz,H-9a),4.21 (1H,m,H-9′),3.91 (1H,m,H-9b),3.86 (6H,s,3,5-OCH3),3.86 (1H,m,H-6″b),3.81 (6H,s,3′,5′-OCH3),3.68 (1H,m,H-6″a),3.50~3.35 (4H,m,H-2′′~5′′),3.14 (1H,m,H-8);13C-NMR (150 MHz,CD3OD) δ: 137.5 (C-1),112.4 (C-2),150.4 (C-3),147.1 (C-4),117.6 (C-5),120.8 (C-6),73.9 (C-7),87.3 (C-8),61.5 (C-9),134.7 (C-1′),104.9 (C-2′),154.5 (C-3′),136.2 (C-4′),154.5 (C-5′),104.9 (C-6′),131.3 (C-7′),129.8 (C-8′),63.5 (C-9′),102.9 (C-1″),74.9 (C-2″),78.2 (C-3″),71.3 (C-4″),77.8 (C-5″),62.5 (C-6″),56.7 (2×-OCH3),56.6 (2×-OCH3)。以上数据与文献报道一致[13],故鉴定化合物5为丁香树脂酚-4′-O-β-D-吡喃葡萄糖苷。
化合物6:白色粉末。1H-NMR (600 MHz,CD3OD) δ: 7.12 (1H,d,J = 7.8 Hz,H-5),7.07 (1H,d,J = 1.9 Hz,H-2),6.91 (1H,dd,J = 7.8,1.9 Hz,H-6),6.73 (2H,s,H-2′,6′),6.54 (1H,d,J = 15.9 Hz,H-7′),6.32 (1H,dt,J = 11.3,5.0 Hz,H-8′),4.94 (1H,d,J = 5.2 Hz,H-7),4.85 (1H,d,J = 7.2 Hz,H-1″),4.23 (1H,m,H-8),4.21 (1H,m,H-9′),3.88 (1H,m,H-9b),3.86 (1H,m,H-6″b),3.84 (3H,s,-OCH3),3.81 (6H,s,2×-OCH3),3.68 (1H,m,H-6″a),3.56 (1H,dd,J = 12.1,3.5 Hz,H-9a),3.50~3.35 (4H,m,H-2″~5″);13C-NMR (150 MHz,CD3OD) δ: 154.5 (C-3′),154.5 (C-5′),150.4 (C-3),147.1 (C-4),137.5 (C-1),136.2 (C-4′),134.7 (C-1′),131.3 (C-7′),129.8 (C-8′),120.8 (C-6),117.6 (C-5),112.4 (C-2),104.9 (C-2′),104.9 (C-6′),102.9 (C-1″),87.3 (C-8),78.2 (C-3″),77.8 (C-5″),74.9 (C-2″),73.9 (C-7),71.3 (C-4″),63.5 (C-9′),62.5 (C-6″),61.5 (C-9),56.7 (-OCH3),56.6 (2×-OCH3)。以上数据与文献报道一致[14],故鉴定化合物6为citrusin B。
化合物7:白色粉末。1H-NMR (600 MHz,CD3OD) δ: 6.76 (2H,brs,H-2,6),4.84 (1H,d,J = 12.1 Hz,H-7a),4.64 (1H,d,J = 12.1 Hz,H-7b),4.32 (1H,J = 7.8 Hz,H-1′),3.89 (1H,dd,J = 11.9,1.7 Hz,H-6′a),3.83 (6H,s,3,5-OCH3),3.74 (3H,s,4-OCH3),3.62 (1H,dd,J = 11.9,5.7 Hz,H-6′b),3.40~3.20 (4H,m,H-2′~5′);13C-NMR (150 MHz,CD3OD) δ: 154.4 (C-3),154.4 (C-5),138.1 (C-4),135.1 (C-1),106.3 (C-2),106.3 (C-6),103.0 (C-1′),78.1 (C-3′),78.1 (C-5′),75.1 (C-2′),71.7 (C-7),71.5 (C-4′),62.9 (C-6′),60.8 (4-OCH3),56.6 (3,5-OCH3)。以上数据与文献报道一致[15],故鉴定化合物7为nikoenoside。
化合物8:白色粉末。1H-NMR (600 MHz,CD3OD) δ: 7.16~7.28 (5H,m,H-2,3,4,5,6),4.31 (1H,d,J = 7.8 Hz,H-l′),4.08 (1H,dd,J = 16.5,8.1 Hz,H-9),3.87 (1H,dd,J = 11.9,1.7 Hz,H-8),3.75 (1H,m,H-6′a),3.69 (1H,dd,J = 11.9,5.5 Hz,H-6′b),3.43~3.17 (4H,m,H-2′~5′),2.93 (2H,m,H-7);13C-NMR (150 MHz,CD3OD) δ: 139.8 (C-1),129.2 (C-2,6),129.9 (C-3,5),127.1 (C-4),104.2 (C-1′),77.9 (C-3′),77.7 (C-5′),74.9 (C-2′),71.5 (C-4′),71.4 (C-8),62.6 (C-6′),37.1 (C-7)。以上数据与文献报道一致[16],故鉴定化合物8为2-苯乙基-O-β-D-吡喃葡萄糖苷。
化合物9:白色粉末。1H-NMR (600 MHz,CD3OD) δ: 7.55 (1H,d,J = 7.9 Hz,H-4),7.31 (1H,d,J = 8.1 Hz,H-7),7.11 (1H,s,H-2),7.06 (1H,t,J = 7.5 Hz,H-6),6.98 (1H,t,J = 7.4 Hz,H-5),4.34 (1H,d,J = 7.8 Hz,H-1′),4.17 (1H,dt,J = 15.6,7.6 Hz,H-9a),3.88~3.81 (2H,m,H-9b,6′a),3.67 (1H,dd,J = 11.9,5.4 Hz,H-6′b),3.39~3.18 (4H,m,H-2′~5′),3.07 (2H,dt,J = 11.6,5.8 Hz,H-8);13C-NMR (150 MHz,CD3OD) δ: 137.9 (C-7a),127.4 (C-3a),123.6 (C-2),122.2 (C-6),119.4 (C-5),119.2 (C-4),112.5 (C-3),112.1 (C-7),104.4 (C-1′),78.1 (C-3′),78.0 (C-5′),75.2 (C-2′),71.5 (C-9),71.3 (C-4′),62.2 (C-6′),26.7 (C-8)。其中氢谱数据与文献报道一致[17],结合13C-NMR数据鉴定化合物9为吲哚-3-乙基-β-D-吡喃葡萄糖苷。
[1] | 潘晓云, 魏小平, 尉秋实, 等. 多倍化-白刺属的系统分类、进化特征及应用前景[J]. 植物学通报, 2003, 20(5):632-638. |
[2] | 阿布都·沙力克努尔巴衣, 潘晓玲. 白刺属植物的化学成分分析及系统学意义[J]. 新疆大学学报:自然科学版, 2003, 20(1):50-54. |
[3] | 王国强. 全国中草药汇编[M]. 北京:人民卫生出版社, 2014. |
[4] | 索有瑞, 汪汉卿. 青海柴达木盆地唐古特白刺果实的降血糖作用研究[J]. 食品科学, 2004, 25(7):164-167. |
[5] | 索有瑞, 王洪伦, 汪汉卿. 柴达木盆地唐古特白刺果实降血脂和抗氧化作用研究[J]. 天然产物研究与开发, 2004, 16(1):54-58. |
[6] | 索有瑞, 李玉林, 王洪伦, 等. 柴达木盆地唐古特白刺果实调节免疫、抗疲劳和耐寒冷作用研究[J]. 天然产物研究与开发, 2005, 17(6):717-721. |
[7] | 魏克强, 俞发荣, 连秀珍. 沙樱桃煎剂对肿瘤瘤体缩小和免疫功能增强的实验研究[J]. 中国临床康复, 2003, 7(17):2418-2419. |
[8] | 樊莲莲, 刘金荣, 赵文彬, 等. 唐古特白刺不同时期果实及叶所含黄酮的比较[J]. 中医药导报, 2007, 13(5):7-8. |
[9] | 刘利平, 燕玲. 白刺属植物化学成分的研究现状与发展趋势[J]. 内蒙古农业大学学报, 2009, 30(1):310-316. |
[10] | Pabst A, Barron D, Semon E, et al. 4-Oxo-β-ionol linalool glycosides from raspberry fruits[J]. Phytochemistry, 1992, 31(12):4187-4190. |
[11] | Pabst A, Barron D, Semon E, et al. Two diastereomeric 3-oxo-α-ionol β-D-glucosides from raspberry fruit[J]. Phytochemistry, 1992, 31(5):1649-1652. |
[12] | Buske A, Schmidt J, Porzel A, et al. Alkaloidal, megastigmane and lignan glucosides from Antidesma membranaceum(Euphorbiaceae)[J]. Eur J Org Chem, 2001, 18(9):3537-3543. |
[13] | Zeng C, Yu D Q. Lignan and acetylenic glycoside from Aster auriculatus[J]. Phytochemistry, 1998, 48(4):711-717. |
[14] | 林生, 张中晓, 沈云亨, 等. 菊叶千里光的一个新木脂素苷[J]. 中国中药杂志, 2011, 36(13):1755-1762. |
[15] | Morikawa O, Tao J, Ueda K, et al. Medicinal foodstuffs. XXXI. Structures of new aromatic constituents and inhibitors of degranulation in RBL-2H3 cells from a Japanese folk medicine, the stem bark of Acer nikoense[J]. Chem Pharm Bull, 2003, 51(1):62-67. |
[16] | Piao M S, Kim M R, Lee D G, et al. Antioxidative consitituents from Buddleia officinalis[J]. Arch Pharm Res, 2003, 26(6):453-457. |
[17] | Magnus V. Tryptophyl β-D-glucopyranoside:chemical synthesis, metabolism, and growth-promoting activity[J]. Carbohyd Res, 1979, 76(1):261-264. |