中草药  2016, Vol. 47 Issue (7): 1074-1078
0
  PDF    
姜黄化学成分研究
崔语涵1,2, 安潇1,2, 王海峰1,2, 冯宝民3, 陈刚1,2, 裴月湖1,2     
1. 沈阳药科大学中药学院, 辽宁 沈阳 110016;
2. 基于靶点的药物设计与研究教育部重点实验室, 辽宁 沈阳 110016;
3. 大连大学生命科学与技术学院, 辽宁 大连 116622
摘要: 目的 研究姜黄Curcuma longa根茎的化学成分。方法 采用硅胶柱色谱、Sephadex LH-20凝胶柱色谱和HPLC等方法进行分离纯化,并根据理化性质、NMR、MS等波谱数据鉴定化合物的结构。结果 从姜黄95%乙醇提取物的正丁醇部位分离得到13个化合物,分别鉴定为5-羟基没药酮(1)、环姜黄素(2)、环去甲氧基姜黄素(3)、异环去甲氧基姜黄素(4)、姜黄素(5)、去氧姜黄素(6)、阿魏酸甲酯(7)、香草醛(8)、对羟基苯甲酸(9)、4-(4-羟基苯基)-2-丁酮(10)、4-(4-羟基-3-甲氧基苯基)-2-丁酮(11)、4-(4-羟基苯基)-3-丁烯-2-酮(12)、4-(4-羟基-3-甲氧基苯基)-3-丁烯-2-酮(13)。结论 化合物1为未见文献报道的新化合物,命名为5-羟基没药酮;化合物4为首次从该植物中分离得到。
关键词: 姜黄     5-羟基没药酮     异环去甲氧基姜黄素     姜黄素     香草醛    
Chemical constituents from rhizomes of Curcuma longa
CUI Yu-han1,2, AN Xiao1,2, WANG Hai-feng1,2, FENG Bao-min3, CHEN Gang1,2, PEI Yue-hu1,2    
1. Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China;
2. Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China;
3. School of Life Sciences and Biotechnology, Dalian University, Dalian 116622, China
Abstract: Objective To study the chemical constituents in the rhizomes of Curcuma longa. Methods A variety of silica gel column chromatography, Sephadex LH-20 gel column chromatography, and HPLC methods were used for the separation and purification of chemical composition. Their structures were established on the basis of physicochemical property and spectral data. Results Thirteen compounds were obtained and identified as 5-hydroxyl-bisabolon-9-one(1), cyclocurcumin(2), demethoxyl cyclocurcumin(3), isodemethoxyl cyclocurcumin(4), curcumin(5), demethoxyl curcumin(6), methyl ferulate(7), vanillin(8), 4-hydroxyl benzoic aldehyde(9), 4-(4-hydroxyl phenyl)-2-butanone(10), 4-(4-hydroxyl-3-methoxyl phenyl)-2-butanone(11), 4-(4-hydroxyl phenyl)-3-buten-2-one(12), and 4-(4-hydroxyl-3-methoxyl phenyl)-3-buten-2-one(13). Conclusion Compound 1 is obtained as a new compound named 5-hydroxyl-bisabolon-9-one without reported in literature until now and compound 4 is first isolated from this plant.
Key words: Curcuma longa L.     5-hydroxyl-bisabolon-9-one     isodemethoxyl cyclocurcumin     curcumin     vanillin    

姜黄Curcummae Longae Rhizoma是姜科(Zingiberaceae)姜黄属Zingiber Boehmer植物姜黄Curcuma longa L. 的干燥根茎,为多年生草本植物。姜黄辛、苦、温,归脾、肝经,有破血行气、通经止痛的功效。姜黄既可当作药用,亦可当作着色剂、调味品及防腐剂。研究发现姜黄的药用部位含有多种结构类型的化学成分,倍半萜和二苯基庚酮类为主要的化学成分[1]。研究表明姜黄具有广泛的药理活性,包括抗肿瘤[2]、抗炎[3]、抗氧化[4]、抗病毒[5]、免疫调节[6]等。本实验对姜黄根茎95%的乙醇提取物的正丁醇萃取部分进行分离纯化,得到13个化合物,分别鉴定为5-羟基没药酮(5-hydroxyl- bisabolon-9-one,1)、环姜黄素(cyclocurcumin,2)、环去甲氧基姜黄素(demethoxyl cyclocurcumin,3)、异环去甲氧基姜黄素(isodemethoxyl cyclocurcumin,4)、姜黄素(curcumin,5)、去氧姜黄素(demethoxyl curcumin,6)、阿魏酸甲酯(methyl ferulate,7)、香草醛(vanillin,8)、对羟基苯甲醛(4-hydroxyl benzoic aldehyde,9)、4-(4-羟基苯基)-2-丁酮 [4-(4-hydroxyl phenyl)-2-butanone,10]、4-(4-羟基-3-甲氧基苯基)-2-丁酮 [4-(4-hydroxyl-3-methoxyl phenyl)-2-butanone,11]、4-(4-羟基苯基)-3-丁烯-2-酮[4-(4-hydroxyl phenyl)-3-buten-2-one,12]、4-(4-羟基-3-甲氧基苯基)-3-丁烯-2-酮[4-(4-hydroxyl-3- methoxyl phenyl)-3-buten-2-one,13]。其中化合物1为未见文献报道的新化合物,命名为5-羟基没药酮;化合物4为首次从该植物中分离得到。

1 仪器与材料

Bruker-ARX-400和Bruker-AV-600型核磁共振仪(TMS内标,瑞士Bruker公司);Shimadzu LC-10A分析型高效液相色谱仪和Shimadzu LC-8A型制备型高效液相色谱仪配Shimadzu SPD-10AT型紫外检测器(日本Shimadzu公司);Perkin-Elmer 241MC旋光仪;Bruker IFS-55红外光谱仪;Micro TOF-Q质谱仪(美国Bruker公司)。薄层色谱用硅胶和柱色谱用硅胶(青岛海洋化工有限公司);Sephadex LH-20(瑞士Pharmacia公司);普通色谱用分析纯试剂和高效液相用色谱纯试剂(山东禹王化工有限公司);氘代试剂(瑞士ARMAR公司)。

药材姜黄购于安徽省亳州市济人药业有限公司,经沈阳药科大学路金才教授鉴定为姜黄Curcuma longa L. 的干燥根茎,标本(20110829)保存于沈阳药科大学天然药物化学教研室。

2 提取与分离

8 kg的干燥姜黄根茎切片,粉碎,用95%乙醇加热回流提取,得到浸膏约500 g。将浸膏分散在水中,依次用石油醚、醋酸乙酯、正丁醇连续萃取,将各部分萃取液浓缩,分别得到石油醚萃取物约150 g(明显的油状物),醋酸乙酯浸膏350 g,正丁醇浸膏65 g。其中正丁醇萃取物经硅胶柱色谱,石油醚-丙酮(100:0→1:1)梯度洗脱,得到8个馏份Fr. 1~8。Fr. 1经硅胶柱色谱,石油醚-丙酮(100:0→1:1)梯度洗脱,得到3个馏份Fr. 1.1~1.3,Fr. 1.3经过Sephadex LH-20凝胶柱色谱洗脱,制备高效液相色谱洗脱得到化合物1(1.2 mg);Fr. 3经过硅胶柱色谱二氯甲烷-甲醇(100:0→1:1)梯度洗脱,得到3个馏份Fr. 3.1~3.3,Fr. 3.2经过Sephadex LH-20凝胶柱色谱洗脱,制备高效液相色谱洗脱得到化合物7(3.2 mg)、8(2.2 mg)、9(2.6 mg),Fr. 3.3经制备高效液相色谱洗脱得到化合物10(2.6 mg)、11(5.0 mg)、12(2.5 mg)、13(4.6 mg);Fr. 5中直接得到化合物5(15 g);Fr. 6经过硅胶柱色谱,二氯甲烷-甲醇(100:0→1:1)梯度洗脱,得到3个馏份Fr. 6.1~6.3,Fr. 6.1经重结晶得到得到化合物6(10.0 mg),Fr. 6.1经制备高效液相色谱洗脱得到化合物2(3.3 mg),Fr. 6.3经制备高效液相色谱洗脱得到化合物3(9.1 mg)和4(11.8 mg)。

3 结构鉴定

化合物1:无色油状物(甲醇),HR-ESI-MS m/z: 273.146 3 [M+Na]+ (计算值273.146 7) 给出分子式C15H22O3。[α]20D +37.1° (c 0.01,CH3OH)。1H-NMR (600 MHz,CDCl3) δ: 6.08 (1H,s,H-10),5.78 (1H,q,J = 1.2 Hz,H-3),4.36 (1H,t,J = 5.0 Hz,H-5),2.71 (1H,m,H-7),2.51 (1H,dt,J = 10.0,5.0 Hz,H-1),2.43 (1H,dd,J = 15.0,9.0 Hz,H-8a),2.32 (1H,dt,J = 15.0,7.8 Hz,H-8b),2.14 (1H,m,H-6a),2.12 (3H,brs,H-12),2.06 (1H,dt,J = 14.1,5.0 Hz,H-6b),0.90 (3H,brs,H-15),1.87 (3H,brs,H-13),2.02 (3H,d,J = 6.6 Hz,H-14);13C-NMR (150 MHz,CDCl3) δ: 45.9 (C-1),200.3 (C-2),127.3 (C-3),158.9 (C-4),67.2 (C-5),32.2 (C-6),27.7 (C-7),48.9 (C-8),200.1 (C-9),123.7 (C-10),155.8 (C-11),27.7 (C-12),21.0 (C-13),20.8 (C-14),17.1 (C-15)。以上碳氢信号通过HSQC谱进行了全归属。与bisabolon-9-one的碳谱数据[7]相比较,有3个位置有明显的差别:C-4 (Δδ +3.6),C-5 (Δδ +37.2) 和C-6 (Δδ +9.2),说明化合物1可能是bisabolon-9-one的羟基化衍生物。HMBC谱(图 1)中,氢信号δH 6.08 (1H,s,H-10) 与δC 200.1 (C-9)、27.7 (C-12) 相关证明了α,β-不饱和酮结构片段的存在,氢信号δH 4.36 (1H,t,J = 5.0 Hz,H-5) 与δC 127.3 (C-3) 相关,δH2.14 (1H,m,H-6a) 与δC200.3 (C-2) 相关推断出α,β-不饱和环酮的结构片段,同时δH 0.90 (3H,brs,H-15) 与δC 45.9 (C-1)、48.9 (C-8) 相关确证了侧链与α,β-不饱和环酮的连接位置在1位。H-6a、H-6b对H-5的偶合使得H-5裂分为三重峰,且偶合常数为Jae = Jee = 5.0 Hz,根据偶合常数与二面角的关系说明H-5处于平伏键;H-6b对H-1偶合,J = 10.0 Hz,说明H-6b与H-1处于直立键。NOESY谱中,未观察到H-5与H-1有相关,说明H-5与H-1位于环的两侧。根据以上信息,化合物1的结构见图 2。经检索为一个未见文献报道的新化合物,命名为为5-羟基没药酮。

图 1 化合物1的HMBC相关图 Fig.1 Key HMBC correlations of compound 1

图 2 化合物1的化学结构式 Fig.2 Structure of compound 1

化合物2:淡黄色粉末状固体(甲醇),10%硫酸乙醇溶液显色剂显棕色或红色。1H-NMR (300 MHz,DMSO-d6) δ: 7.23 (1H,brs,H-2″),7.20 (1H,d,J = 15.3 Hz,H-7),7.12 (1H,d,J = 1.5 Hz,H-2′),7.05 (1H,brd,J = 8.1 Hz,H-6″),6.95 (1H,dd,J = 7.8,1.5 Hz,H-6′),6.82 (1H,d,J = 8.1 Hz,H-5″),6.81 (1H,d,J = 15.3 Hz,H-6),6.74 (1H,d,J = 7.8 Hz,H-5′),5.55 (1H,s,H-4),5.45 (1H,dd,J = 13.5,3.0 Hz,H-1),3.80 (3H,s,4′-OH),3.79 (3H,s,4″-OH),3.00 (1H,dd,J = 16.8,13.5 Hz,H-2a),2.47 (1H,dd,J = 16.8,3.0 Hz,H-2b);13C-NMR (150 MHz,DMSO-d6) δ: 80.3 (C-1),42.3 (C-2),192.3 (C-3),104.9 (C-4),168.5 (C-5),119.8 (C-6),136.9 (C-7),129.5 (C-1′),111.3 (C-2′),148.0 (C-3′),147.5 (C-4′),115.8 (C-5′),121.1 (C-6′),126.7 (C-1″),111.1 (C-2″),148.1 (C-3″),148.8 (C-4″),118.8 (C-5″),123.2 (C-6″)。以上数据与文献报道基本一致[8],故鉴定化合物2为环姜黄素。

化合物3:淡黄色粉末状固体(甲醇-水54:46),254 nm紫外光下有吸收,10%硫酸乙醇溶液显色剂显棕色或红色。1H-NMR (300 MHz,DMSO-d6) δ: 7.36 (2H,d,J = 8.4 Hz,H-2′,6′),7.23 (1H,d,J = 1.5 Hz,H-2″),7.19 (1H,d,J = 15.9 Hz,H-7),7.06 (1H,dd,J = 9.6,1.5 Hz,H-6″),6.82 (2H,d,J = 8.4 Hz,H-3′,5′),6.77 (1H,d,J = 9.6 Hz,H-5″),6.76 (1H,d,J = 15.9 Hz,H-6),5.55 (1H,s,H-4),5.46 (1H,dd,J = 14.1,3.3 Hz,H-1),3.79 (3H,s,3″-OCH3);13C-NMR (150 MHz,DMSO-d6) δ: 80.2 (C-1),42.3 (C-2),192.2 (C-3),105.0 (C-4),168.4 (C-5),119.7 (C-6),136.5 (C-7),129.5 (C-1′),128.5 (C-2′,6′),115.3 (C-3′,5′),157.8 (C-4′),122.1 (C-1″),111.1 (C-2″),148.1 (C-3″),147.9 (C-4″),115.8 (C-5″),126.7 (C-6″)。以上数据与文献报道基本一致[8],故鉴定化合物3为环去甲氧基姜黄素。

化合物4:淡黄色粉末状固体(甲醇-水54:46),254 nm紫外光下有吸收,表现出与化合物3很接近的色谱保留行为。1H-NMR (300 MHz,DMSO-d6) δ: 7.21 (1H,d,J = 16.2 Hz,H-7),7.12 (1H,d,J = 2.4 Hz,H-2′),6.95 (1H,dd,J = 8.1,2.4 Hz,H-2′),6.81 (2H,d,J = 8.1 Hz,H-3″,5″),6.81 (1H,d,J = 8.1 Hz,H-5′),6.77 (2H,d,J = 8.1 Hz,H-2″,6″),6.71 (1H,d,J = 16.2 Hz,H-6),5.56 (1H,s,H-4),5.45 (1H,dd,J = 13.5,3.3 Hz,H-1),3.80 (3H,s,4′-OCH3),2.99 (1H,dd,J = 16.8,13.5 Hz,H-2a),2.48 (1H,overlapped,H-2b);13C-NMR (150 MHz,DMSO-d6) δ: 79.9 (C-1),42.2 (C-2),192.2 (C-3),104.9 (C-4),168.4 (C-5),118.8 (C-6),136.8 (C-7),129.0 (C-1′),111.1 (C-2′),148.7 (C-3′),147.9 (C-4′),119.7 (C-5′),115.3 (C-6′),126.7 (C-1″),129.6 (C-2″,6″),159.2 (C-4″),115.7 (C-3″,5″),55.7 (4′-OCH3)。结合文献报道[9],确定化合物4为异环去甲氧基姜黄素。该化合物为首次从植物中分离得到,并首次测定了氢谱和碳谱核磁数据。

化合物5:黄色粉末(二氯甲烷),溶液有强烈的紫外吸收且有荧光。1H-NMR (300 MHz,DMSO-d6) δ: 7.56 (2H,d,J = 15.9 Hz,H-1,6),7.33 (2H,d,J = 1.5 Hz,H-2′,2″),7.16 (2H,dd,J = 8.1,1.5 Hz,H-6′,6″),6.84 (2H,d,J = 8.1 Hz,H-5′,5″),6.76 (2H,d,J = 15.9 Hz,H-2,7),6.06 (1H,s,H-4),3.83 (6H,s,3′,3″-OCH3)。以上数据与文献报道基本一致[10],故鉴定化合物5为姜黄素。

化合物6:黄色针状结晶(丙酮),10%硫酸乙醇溶液显色剂显紫红色。1H-NMR (300 MHz,DMSO-d6) δ: 10.13 (1H,s,4′-OH),9.73 (1H,s,4′-OH),7.63 (1H,d,J = 9.0 Hz,H-5′),7.61 (1H,d,J = 15.9 Hz,H-1),7.59 (1H,d,J = 13.8 Hz,H-7),7.38 (1H,brs,H-2′),7.21 (1H,brd,J = 9.0 Hz,H-6′),6.88 (4H,d,J = 8.1 Hz,H-2″,3″,5″,6″),6.83 (1H,d,J = 13.8 Hz,H-6),6.75 (1H,d,J = 15.9 Hz,H-2),6.10 (1H,s,H-4),3.89 (3H,s,3′-OCH3)。以上数据与文献报道基本一致[11],故鉴定化合物6为去甲氧基姜黄素。

化合物7:白色无定形粉末(甲醇),254 nm紫外光下有吸收。1H-NMR (600 MHz,CDCl3) δ: 7.62 (1H,d,J = 16.2 Hz,H-3),7.07 (1H,dd,J = 8.4,1.8 Hz,H-6′),7.02 (1H,d,J = 1.8 Hz,H-2′),6.92 (1H,d,J = 8.4 Hz,H-5′),6.29 (1H,d,J = 16.2 Hz,H-2),5.91 (1H,s,4′-OH),3.93 (3H,s,3′-OCH3),3.73 (3H,s,1-OCH3)。以上数据与文献报道基本一致[12],故鉴定化合物7为阿魏酸甲酯。

化合物8:白色针状结晶(甲醇),254 nm紫外光下有吸收。1H-NMR (600 MHz,CDCl3) δ: 9.28 (1H,s,-CHO) 7.43 (1H,dd,J = 8.4,1.8 Hz,H-6),7.42 (1H,d,J = 1.8 Hz,H-2),7.04 (1H,d,J = 8.4 Hz,H-5),6.35 (1H,brs,4-OH),3.96 (3H,s,3-OCH3)。以上数据与文献报道基本一致[13],与市售试剂香草醛共薄层,Rf值一致,故鉴定化合物8为香草醛。

化合物9:白色针状结晶(甲醇)。1H-NMR (300 MHz,DMSO-d6) δ: 9.78 (1H,s,-CHO),9.11 (1H,s,4-OH),7.75 (2H,d,J = 8.7 Hz,H-2,6),6.93 (2H,d,J = 8.7 Hz,H-3,5)。以上数据与文献报道基本一致[14],故鉴定化合物9为对羟基苯甲醛。

化合物10:白色无定形粉末(甲醇),254 nm紫外灯下有暗斑。1H-NMR (300 MHz,CDCl3) δ: 7.05 (2H,d,J = 8.4 Hz,H-2′,6′),6.75 (2H,d,J = 8.4 Hz,H-3′,5′),2.83 (2H,m,H-4),2.73 (2H,m,H-3),2.13 (3H,s,H-1)。以上数据与文献报道基本一致[15],故鉴定化合物10是4-(4-羟基苯基)-2-丁酮。

化合物11:白色无定形粉末(甲醇),254 nm紫外灯下有暗斑。1H-NMR (300 MHz,CDCl3) δ: 6.82 (1H,d,J = 8.1 Hz,H-5′),6.69 (1H,d,J = 1.8 Hz,H-2′),6.66 (1H,dd,J = 8.1,1.8 Hz,H-6′),3.87 (3H,s,3′-OCH3),2.83 (2H,m,H-4),2.72 (2H,m,H-3),2.14 (3H,s,H-1)。以上数据与文献报道基本一致[16],故鉴定化合物11为4-(4-羟基-3-甲氧基苯基)-2-丁酮。

化合物12:白色针状结晶(甲醇),254 nm紫外灯下有暗斑。1H-NMR (300 MHz,CDCl3) δ: 7.48 (1H,d,J = 16.2 Hz,H-3),7.46 (2H,d,J = 8.7 Hz,H-2′,6′),6.87 (2H,d,J = 8.7 Hz,H-3′,5′),6.62 (1H,d,J = 16.2 Hz,H-4),2.38 (3H,s,H-1)。以上数据与文献报道基本一致[17],故鉴定化合物12为4-(4-羟基苯基)-3-丁烯-2-酮。

化合物13:淡黄色针状结晶(甲醇),254 nm紫外灯下有暗斑。1H-NMR (300 MHz,CDCl3) δ: 7.45 (1H,d,J = 16.2 Hz,H-4),7.09 (1H,dd,J = 1.8,8.1 Hz,H-6′),7.07 (1H,d,J = 1.8 Hz,H-2′),6.93 (1H,d,J = 8.1 Hz,H-5′),6.59 (1H,d,J = 16.2 Hz,H-3),6.03 (1H,brs,3′-OH),3.92 (3H,s,4′-OCH3),2.36 (3H,s,H-1)。以上数据与文献报道基本一致[17],故鉴定化合物13为4-(4-羟基-3-甲氧基苯基)-3-丁烯-2-酮。

参考文献
[1] Li S Y, Yuan W, Deng G R, et al. Chemical composition and product quality control of turmeric(Curcuma longa L.)[J]. Pharm Crops, 2011, 5(1):28-54.
[2] Wagner H K, Wolff P M. Natural Products and Plant Drugs with Pharmacological Biological or Therapeutical Activity[M]. New York:Springer Berlin Heidelberg, 1977.
[3] Jurenka J S. Anti-inflammatory properties of Curcumin, a major constituent of Curcuma longa:a review of preclinical and clinical research[J]. Altern Med Rev, 2009, 14(2):141-153.
[4] Sharma O P. Antioxidant activity of curcumin and related compounds[J]. Biochem Pharm, 1976, 25(15):1811-1812.
[5] Nunziatina D T, Cosimo P, Cinzia C, et al. Structure and in vitro antiviral activity of sesquiterpene glycosides from Calendula arvensis[J]. J Nat Prod, 1990, 53(4):830-835.
[6] Arnason J T, Isman M B, Philogene B J R, et al. Mode of action of the sesquiterpene lactone, tenulin, from Helenium amarum against herbivorous insects[J]. J Nat Prod, 1987, 50(4):690-695.
[7] 曾永篪, 梁键谋, 曲戈霞, 等. 姜黄的化学成分研究I:没药烷型倍半萜[J]. 中国药物化学杂志, 2007, 17(4):238-242.
[8] Kiuchi F, Goto Y, Sugimoto N, et al. Nematocidal activity of turmeric:synergistic action of curcuminoids[J]. Chem Pharm Bull, 1993, 41(9):1640-1643.
[9] Jiang J L, Jin X L, Zhang H, et al. Identification of antitumor constituents in curcuminoids from Curcuma longa L. based on the composition-activity relationship[J]. J Pharm Biomed Anal, 2012, 70(11):664-670.
[10] Ragasa C Y, Laguardiaand M A, Rideout J A, et al. Antimicrobial sesquiterpenoids and diarylheptanoid from Curcuma domestica[J]. Chem Res Commun, 2005, 18(1):21-24.
[11] Kiuchi F, Goto Y, Suqimoto N, et al. Nematocidal activity of turmeric:synergistic action of curcuminoids[J]. Chem Pharm Bull, 1993, 41(9):1640-1643.
[12] Kwon Y S, Kim C M. Antioxidant constituents from the stem of Sorghum bicolor[J]. Arch Pharm Res, 2003, 26(7):535-539.
[13] Vladimir P P, Dusica S, Sladjana B N, et al. Structural characterization of some vanilic Mannich bases:Experimental and theoretical study[J]. J Mol Struct, 2015, 1098(10):34-40.
[14] Vatcharin R, Nanthaphong K, Yaowapa S, et al. Cyclohexene, diketopiperazine, lactone and phenol derivatives from the sea fan-derived fungi Nigrospora sp. PSU-F11 and PSU-F12[J]. Arch Pharm Res, 2010, 33(3):375-380.
[15] Ayer W A, Singer P P. Phenolic metabolites of the bird's nest fungus Nidula niveo-tomentosa[J]. Phytochemistry, 1980, 19(12):2717-2721.
[16] Kumar V, Sharma A, Sinha A K, et al. Solid-supported green synthesis of substituted hydrocinnamic esters by focused microwave irradiation[J]. Helv Chim Acta, 2006, 89(3):483-495.
[17] Takao K,Bunta W,Shiro S,et al.Characterization of raspberry ketone/zingerone synthase,catalyzing the alpha,beta-hydrogenation of phenylbutenones in raspberry fruits[J].Biochem Bioph Res Co,2011,412(1): 104-108.