中草药  2016, Vol. 47 Issue (1): 26-31
0
  PDF    
紫苏叶化学成分研究
霍立娜, 王威 , 刘洋, 刘小红, 张丽, 程坤, 刘坤, 高华    
青岛大学药学院, 山东青岛 266021
摘要: 目的 研究紫苏Perilla frutescens干燥叶的化学成分。方法 采用大孔吸附树脂柱色谱、硅胶柱色谱、ODS柱色谱和制备HPLC等技术方法进行化学成分分离,根据理化性质和波谱数据鉴定化合物结构。结果 从紫苏叶水提取物正丁醇分离部位中分离得到17个化合物,分别鉴定为(+)-isololiolide(1)、dehydrovomifoliol(2)、(-)-loliolide(3)、野黄芩苷(4)、对羟基苯甲醛(5)、对羟基苯乙酮(6)、3-吲哚甲醛(7)、反式对羟基桂皮酸(8)、芹菜素(9)、木犀草素(10)、秦皮乙素(11)、咖啡酸(12)、迷迭香酸(13)、迷迭香酸甲酯(14)、sericoside(15)、咖啡酸乙烯酯(16)、黄芩素-7-甲醚(17)。结论 化合物1~2、6~815为首次从紫苏属植物中分离得到。
关键词: 唇形科     紫苏     秦皮乙素     迷迭香酸     野黄芩苷    
Chemical constituents from leaves of Perilla frutescens
HUO Li-na, WANG Wei, LIU Yang, LIU Xiao-hong, ZHANG Li, CHENG Kun, LIU Kun, GAO Hua    
School of Pharmacy, Qingdao University, Qingdao 266021, China
Abstract: Objective To investigate the chemical constituents from the aqueous extract of leaves of Perilla frutescens. Methods The compounds were isolated and purified by chromatography on macroporous resin, silica gel, ODS, and preparative HPLC. Their structures were elucidated on the basis of chemical and spectroscopic methods, including MS, 1D and 2D NMR spectral techniques. Results Seventeen compounds were isolated from the aqueous extract of leaves of P. frutescens, and were identified as(+)-isololiolide(1), dehydrovomifoliol(2),(-)-loliolide(3), scutellarin(4), p-hydroxybenzaldehyde(5), p-hydroxyacetophenone(6), 3-formylindole(7), trans-p-hydroxycinnamic acid(8), apigenin(9), luteolin(10), esculetin(11), caffeic acid(12), rosmarinic acid(13), methyl rosmarinate(14), sericoside(15), caffeic acid vinyl ester(16), and negletein(17). Conclusion Compounds 1-2, 6-8, and 15 are firstly isolated from the plants of Perilla Linn.
Key words: Lamiaceae     Perilla frutescens(L.) Britt.     esculetin     rosmarinic acid     scutellarin    

唇形科(Lamiaceae)紫苏属Perilla Linn. 植物紫苏Perilla frutescens (L.) Britt. 为一年生草本植物,在我国主产于江苏、湖北、广东、广西、河南、河北、山东、山西、浙江、四川等地。紫苏是传统的药食两用原料,《中国药典》2015年版一部收载其不同药用部位紫苏叶、紫苏梗和紫苏子。紫苏子作为富含ω-3不饱和脂肪酸的植物资源,对其化学成分和定量测定方法已进行了系统的研究[1,2,3,4]。紫苏叶味辛,性温,归肺、脾经,具有解表散寒、行气和胃的功能,用于风寒感冒、咳嗽呕吐、妊娠呕吐、鱼蟹中毒[5]。现代药理研究结果表明紫苏叶具有抗过敏[6]、抗肿瘤[7]、抗炎[8]、调血脂[9]、保肝[10]、减肥[11]等作用,已从中分离得到单萜、三萜、酚酸、黄酮和木脂素类化合物[12,13,14,15,16]。本实验采用大孔吸附树脂柱色谱、硅胶柱色谱、ODS柱色谱和制备HPLC等手段对紫苏叶水提取物正丁醇分离部位化学成分进行了研究,从中分离鉴定了17个化合物,分别为 (+)-isololiolide(1)、dehydrovomifoliol(2)、(−)-loliolide(3)、野黄芩苷(scutellarin,4)、对羟基苯甲醛(p-hydroxybenzaldehyde,5)、对羟基苯乙酮(p-hydroxyacetophenone,6)、3-吲哚甲醛(3-formylindole,7)、反式对羟基桂皮酸(trans-p-

hydroxylcinnamic acid,8)、芹菜素(apigenin,9)、木犀草素(luteolin,10)、秦皮乙素(esculetin,11)、咖啡酸(caffeic acid,12)、迷迭香酸(rosmarinic acid,13)、迷迭香酸甲酯(methyl rosmarinate,14)、sericoside(15)、咖啡酸乙烯酯(caffeic acid vinyl ester,16)、黄芩素-7-甲醚(negletein,17)。其中化合物126815为首次从紫苏属植物中分离得到。

1 仪器与材料

BRUKER AV-500型核磁共振波谱仪(德国布鲁克公司);BRUKER micro TOFQ飞行时间质谱仪(德国布鲁克公司);HORIBA SEPA-300型旋光仪(日本崛场制作所);Shimadzu LC-6AD制备液相色谱仪(日本岛津制作所);Shimadzu SPD-20A紫外检测器(日本岛津制作所);NP 7005C制备液相色谱输液泵(江苏汉邦科技有限公司);Shodex RI-102制备液相色谱示差折光检测器(日本昭光电工株式会社);Shimpack ODS色谱柱(250 mm×21.2 mm,10 μm,日本岛津制作所);Kromasil-Phenyl色谱柱(250 mm×10 mm,5 μm,瑞典阿克苏诺贝尔公司);Senshupack-Phenyl色谱柱(150 mm×8 mm,5 μm,日本Senshu科学株式会社);柱色谱用大孔吸附树脂HPD-600(河北沧州宝恩化工有限公司);柱色谱硅胶(200~300目,青岛海洋化工厂);柱色谱用ODS(日本YMC公司);薄层色谱用ODS板(RP18 F254,德国默克公司);色谱纯甲醇(美国天地公司);水为重蒸馏水;其他试剂均为分析纯。

紫苏干燥叶于2011年10月采集于吉林省长春市郊,经大连大学生命科学与技术学院冯宝民教授鉴定为唇形科植物紫苏Perilla frutescens (L.) Britt. 的干燥叶,标本(ZS20111001)存放于青岛大学药学院。

2 提取与分离

紫苏干燥叶4 kg,加35倍量水煎煮3次,每次2 h,分次滤过,合并滤液,浓缩至2 L,加80%乙醇调节醇浓度至60%,静置24 h,滤过,减压回收乙醇得提取物(PFLT)583 g。取提取物加水2 L使溶解,用正丁醇振摇提取4次,每次2 L,提取液合并,减压回收,得正丁醇分离部位(PFLTB)125 g和水分离部位(PFLTH)436 g。取正丁醇分离部位60 g经大孔吸附树脂HPD-600柱色谱,依次用水和20%、50%和70%乙醇洗脱得20%乙醇洗脱部位(PFLTB-20)14.3 g、50%乙醇洗脱部位(PFLTB-50)27.5 g和70%乙醇洗脱部位(PFLTB-70)8.0 g。

取PFLTB-20 4 g,经ODS柱色谱,以甲醇-水(3∶7、5∶5、10∶0)洗脱得8个分离组分Fr. PFLTB-20-1~PFLTB-20-8。Fr. PFLTB-20-2经制备HPLC(色谱柱Kromasil-Phenyl,流动相为甲醇-水20∶80)得化合物1(10.50 mg)和2(1.99 mg);Fr. PFLTB-20-3经制备HPLC(色谱柱Kromasil- Phenyl,流动相为甲醇-水20∶80)得化合物3(5.73 mg);Fr. PFLTB-20-4经制备HPLC(色谱柱Shimpack-ODS,流动相为甲醇-水30∶70)得化合物4(22.51 mg)。

取PFLTB-50 15 g,经硅胶柱色谱,以三氯甲烷- 甲醇(40∶1、19∶1、9∶1、8∶2)洗脱得6个分离组分Fr. PFLTB-50-1~PFLTB-50-6。Fr. PFLTB-50-1经ODS柱色谱,以甲醇-水(5∶5、10∶0)洗脱,结合制备HPLC(色谱柱Shimpack-ODS,流动相为甲醇-水40∶60)得化合物5(1.68 mg)和6(13.17 mg);Fr. PFLTB-50-2经ODS柱色谱,以甲醇-水(5∶5、10∶0)洗脱,结合制备HPLC(色谱柱Shimpack- ODS,流动相为甲醇-水40∶60)得化合物7(4.58 mg);Fr. PFLTB-50-3经ODS柱色谱,以甲醇-水(5∶5、10∶0)洗脱,结合制备HPLC(色谱柱Shimpack- ODS,流动相为甲醇-水35∶65)得化合物8(5.61 mg),制备HPLC(色谱柱Senshupack-Phenyl,流动相为甲醇-水40∶60)得化合物9(3.91 mg)和10(11.76 mg);Fr. PFLTB-50-4经ODS柱色谱,以甲醇-水(3∶7、5∶5、7∶3、10∶0)洗脱,结合制备HPLC(色谱柱Shimpack-ODS,流动相为甲醇-水20∶80)得化合物11(3.50 mg)和12(86.50 mg);Fr. PFLTB-50-5经ODS柱色谱,以甲醇-水(2∶8、5∶5、7∶3、10∶0)洗脱,结合制备HPLC(色谱柱Shimpack-ODS,流动相为甲醇-水30∶70)得化合物13(52.81 mg),制备HPLC(色谱柱Shimpack-ODS,流动相为甲醇-水48∶52)得化合物14(2.30 mg);Fr. PFLTB-50-6经ODS柱色谱,以甲醇-水(2∶8、5∶5、7∶3、10∶0)洗脱,结合制备HPLC(色谱柱Shimpack-ODS,流动相为甲醇-水48∶52)得化合物15(2.94 mg)。

取PFLTB-70 3 g,经ODS柱色谱,以甲醇-水(5∶5、10∶0)洗脱,结合制备HPLC(色谱柱Shimpack- ODS,流动相为甲醇-水55∶45)得化合物16(9.26 mg)和17(7.20 mg)。

3 结构鉴定

化合物1:白色粉末(甲醇),[α]25D +110.5° (c 0.5,MeOH),ESI-MS m/z: 197 [M+H]+,结合1H-和13C-NMR谱数据推测分子式为C11H16O31H-NMR (500 MHz,CD3OD) δ: 5.78 (1H,s,H-7),4.10 (1H,m,H-3),2.47 (1H,ddd,J = 11.7,4.0,2.2 Hz,H-4b),2.01 (1H, ddd,J = 12.7,4.1,2.2 Hz,H-2b),1.59 (3H,s,H-11),1.42 (1H,dd,J = 12.0,11.6 Hz,H-4a),1.31 (3H,s,H-10),1.29 (3H,s,H-9),1.29 (1H, overlap,H-2a);13C-NMR (125 MHz,CD3OD) δ: 183.9 (C-6),174.0 (C-8),113.7 (C-7),88.6 (C-5),65.3 (C-3),50.7 (C-2),48.5 (C-4),36.2 (C-1),30.3 (C-10),25.8 (C-11),25.3 (C-9)。以上数据与文献报道基本一致[17],故鉴定化合物1为 (+)-isololiolide。

化合物2:无色无定形粉末(甲醇),[α]25D +219° (c 0.1,CHCl3),ESI-MS m/z: 222 [M]+,结合1H- 和13C-NMR谱数据推测分子式为C13H18O31H-NMR (500 MHz,CD3OD) δ: 6.99 (1H,d,J = 15.8 Hz,H-7),6.44 (1H,d,J = 15.8 Hz,H-8),5.94 (1H,q,J = 1.2 Hz,H-4),2.59 (1H,d,J = 17.1 Hz,H-2a),2.30 (3H,s,H-10),2.28 (1H,d,J = 17.5 Hz,H-2b),1.90 (3H,d,J = 1.2 Hz,H-13), 1.06 (3H,s,H-11),1.02 (3H,s,H-12);13C-NMR (125 MHz,CD3OD) δ: 200.7 (C-9),200.4 (C-3),164.7 (C-5),148.3 (C-7),131.7 (C-8),128.0 (C-4), 80.0 (C-6),50.5 (C-2),42.6 (C-1),27.6 (C-10),24.7 (C-12),23.5 (C-11),19.2 (C-13)。以上数据与文献报道基本一致[18],故鉴定化合物2为dehydrovomifoliol。

化合物3:白色粉末(甲醇),[α]25D −94.3°(c 0.5,MeOH),ESI-MS m/z: 197 [M+H]+,结合1H-和13C-NMR谱数据推测分子式为C11H16O31H-NMR (500 MHz,CD3OD) δ: 5.74 (1H,s,H-7),4.22 (1H,m,H-3),2.42 (1H,dt,J = 13.8,2.6 Hz,H-4b),1.99 (1H,dt,J = 14.3,2.6 Hz,H-2b),1.76 (3H,s,H-11),1.75 (1H,dd,J = 13.5,4.0 Hz,H-4a),1.53 (1H,dd,J = 14.4,3.7 Hz,H-2a),1.46 (3H,s,H-9), 1.27 (3H,s,H-10);13C-NMR (125 MHz,CD3OD) δ: 185.7 (C-6),174.4 (C-8),113.3 (C-7),89.0 (C-5),67.2 (C-3),48.0 (C-2),46.4 (C-4),37.2 (C-1),31.0 (C-10),27.4 (C-11), 27.0 (C-9)。以上数据与文献报道基本一致[17],故鉴定化合物3为 (−)-loliolide。

化合物4:黄色针晶(甲醇),ESI-MS m/z: 463 [M+H]+,结合1H- 和13C-NMR谱数据推测分子式为C21H18O121H-NMR (500 MHz,DMSO-d6) δ: 12.72 (1H,s, 5-OH),10.36 (1H,s,6-OH),8.58 (1H,s,4′-OH),7.91 (2H,d,J = 8.8 Hz,H-2′,6′),6.98 (1H,s,H-8),6.93 (2H,d,J = 8.8 Hz,H-3′,5′), 6.79 (1H,s,H-3),5.19 (1H,d,J = 7.4 Hz,H-1″),4.01 (1H,d,J = 9.6 Hz,H-5″),3.38 (3H,m,H-2″,3″,4″);13C-NMR (125 MHz,DMSO-d6) δ: 182.3 (C-4),170.1 (C-6″),164.1 (C-7),161.2 (C-2),151.0 (C-9),149.0 (C-4′),146.8 (C-5),130.5 (C-6),128.4 (C-2′,6′),121.2 (C-1′),116.0 (C-3′,5′),105.8 (C-10),102.5 (C-3),100.1 (C-1″),93.6 (C-8),75.4 (C-5″),75.2 (C-3″),72.8 (C-2″),71.3 (C-4″)。以上数据与文献报道基本一致[19],故鉴定化合物4为野黄芩苷。

化合物5:类白色针晶(甲醇),ESI-MS m/z: 122 [M]+,结合1H-和13C-NMR谱数据推测分子式为C7H6O21H-NMR (500 MHz,CD3OD) δ: 9.76 (1H,s,CHO),7.77 (2H,d,J = 8.6 Hz,H-2,6),6.91 (2H,d,J = 8.6 Hz,H-3, 5);13C-NMR (125 MHz,CD3OD) δ: 192.8 (-CHO),165.4 (C-4),133.4 (C-2,6),130.2 (C-1),117.0 (C-3,5)。以上数据与文献报道基本一致[20],故鉴定化合物5为对羟基苯甲醛。

化合物6:白色无定形粉末(氯仿),ESI-MS m/z: 135 [M-H],结合1H- 和13C-NMR谱数据推测分子式为C8H8O21H-NMR (500 MHz,CD3OD) δ: 7.88 (2H,d,J = 8.8 Hz,H-2,6),6.84 (2H,d,J = 8.9 Hz,H-3,5),2.52 (3H,s,H-8);13C-NMR (125 MHz,CD3OD) δ: 199.5 (C-7),163.9 (C-4),132.1 (C-2,6),130.2 (C-1),116.2 (C-3,5),26.2 (C-8)。以上数据与文献报道基本一致[21],故鉴定化合物6为对羟基苯乙酮。

化合物7:淡黄色晶体(甲醇),ESI-MS m/z: 146 [M+H]+,结合1H- 和13C-NMR谱数据推测分子式为C9H7NO。1H-NMR (500 MHz,CD3OD) δ: 9.89 (1H,s,CHO),8.16 (1H,d,J = 7.4 Hz,H-4),8.09 (1H,s,H-2), 7.48 (1H,d,J = 7.9 Hz,H-7),7.26 (2H,m,H-5,6);13C-NMR (125 MHz,CD3OD) δ: 187.4 (3-CHO),139.6 (C-2),139.0 (C-9),125.8 (C-8),125.0 (C-6),123.6 (C-4),122.4 (C-5),120.2 (C-3),113.1 (C-7)。以上数据与文献报道基本一致[22],故鉴定化合物7为3-吲哚甲醛。

化合物8:白色针状结晶(丙酮),ESI-MS m/z: 163 [M-H],结合1H- 和13C-NMR谱数据推测分子式为C9H8O31H-NMR (500 MHz,CD3OD) δ: 7.59 (1H,d,J = 15.6 Hz,H-7),7.44 (2H,d,J = 8.4 Hz,H-2,6),6.80 (1H,d,J = 8.5 Hz,H-3,5),6.28 (1H,d,J = 15.8 Hz,H-8);13C-NMR (125 MHz,CD3OD) δ: 171.2 (C-9),161.1 (C-4),146.5 (C-7),131.0 (C-2,6),127.3 (C-1),116.8 (C-3,5),116.1 (C-8)。以上数据与文献报道基本一致[23],故鉴定化合物8为反式对羟基桂皮酸。

化合物9:黄色粉末(甲醇),盐酸-镁粉反应阳性,ESI-MS m/z: 270 [M]+,结合1H- 和13C-NMR谱数据推测分子式为C15H10O51H-NMR (500 MHz,DMSO-d6) δ: 12.92 (1H,s, 5-OH),7.88 (2H,d,J = 8.7 Hz,H-2′,6′),6.91 (2H,d,J = 8.7 Hz,H-3′,5′),6.70 (1H,s,H-3),6.41 (1H,brs,H-8),6.13 (1H,brs,H-6);13C-NMR (125 MHz,DMSO-d6) δ: 181.4 (C-4), 165.4 (C-7),163.5 (C-2),161.3 (C-5),161.3 (C-4′),157.4 (C-9),128.3 (C-2′, 6′),121.0 (C-1′),116.0 (C-3′,5′),103.2 (C-10),102.6 (C-3),99.2 (C-6), 94.0 (C-8)。以上数据与文献报道基本一致[24],故鉴定化合物9为芹菜素。

化合物10:黄色粉末(甲醇),盐酸-镁粉反应阳性,ESI-MS m/z: 285 [M-H],结合1H- 和13C-NMR谱数据推测分子式为C15H10O61H-NMR (500 MHz,DMSO-d6) δ: 12.95 (1H,s, 5-OH),7.40 (1H,dd,J = 8.1,2.2 Hz,H-6′),7.38 (1H,d,J = 2.2 Hz,H-2′),6.87 (1H,d,J = 8.1 Hz,H-5′),6.62 (1H,s,H-3),6.42 (1H, d,J = 1.8 Hz,H-8),6.16 (1H,d,J = 1.9 Hz,H-6);13C-NMR (125 MHz,DMSO-d6) δ: 181.5 (C-4), 164.5 (C-7),163.8 (C-2),161.4 (C-5),157.3 (C-9),150.0 (C-4′),145.8 (C-3′), 121.3 (C-6′),118.9 (C-1′),116.0 (C-5′),113.2 (C-2′),103.5 (C-10),102.7 (C-3),98.9 (C-6),93.8 (C-8)。以上数据与文献报道基本一致[19],故鉴定化合物10为木犀草素。

化合物11:淡黄色针晶(甲醇),ESI-MS m/z: 177 [M-H],结合1H- 和13C-NMR谱数据推测分子式为C9H6O41H-NMR (500 MHz,CD3OD) δ: 7.78 (1H,brs,H-4), 6.94 (1H,s,H-5),6.75 (1H,s,H-8),6.17 (1H,brs,H-3);13C-NMR (125 MHz,CD3OD) δ: 164.3 (C-2),152.1 (C-9),150.5 (C-7),146.1 (C-4),144.6 (C-6),113.0 (C-5),112.8 (C-3),112.4 (C-10),103.6 (C-8)。以上数据与文献报道基本一致[25],故鉴定化合物11秦皮乙素。

化合物12:白色结晶(甲醇),与三氯化铁-铁氰化钾水溶液反应显蓝色,ESI-MS m/z: 181 [M+H]+,结合1H- 和13C-NMR谱数据推测分子式为C9H8O41H-NMR (500 MHz,CD3OD) δ: 7.53 (1H,d,J = 15.8 Hz,H-7),7.04 (1H,d,J = 0.9 Hz,H-2),6.93 (1H,dd,J = 8.0,0.9 Hz,H-6),6.78 (1H,d,J = 8.0 Hz,H-5),6.22 (1H,d,J = 15.8 Hz,H-8);13C-NMR (125 MHz,CD3OD) δ: 171.2 (C-9),149.4 (C-4),147.0 (C-7),146.8 (C-3),127.8 (C-1),122.8 (C-6), 116.5 (C-5),115.6 (C-8),115.1 (C-2)。以上数据与文献报道基本一致[26],故鉴定化合物12为咖啡酸。

化合物13:淡黄色粉末(甲醇),ESI-MS m/z: 359 [M-H],结合1H- 和13C-NMR谱数据推测分子式为C18H16O81H-NMR (500 MHz,DMSO-d6) δ: 7.36 (1H,d,J = 15.8 Hz,H-7),7.03 (1H,d,J = 1.6 Hz,H-2),6.88 (1H,dd,J = 8.2,1.6 Hz,H-6),6.72 (1H,d,J = 8.1 Hz,H-5),6.66 (1H,d,J = 1.5 Hz,H-2′),6.58 (1H,d,J = 8.0 Hz,H-5′),6.47 (1H,dd,J = 8.0,1.6 Hz,H-6′),6.16 (1H,d,J = 15.9 Hz,H-8),4.83 (1H,dd,J = 10.0,3.0 Hz,H-8′),2.99 (1H,dd,J = 14.2,3.0 Hz,H-7′α),2.74 (1H, dd,J = 14.2,10.0 Hz,H-7′β);13C-NMR (125 MHz,DMSO-d6) δ: 172.3 (C-9′),166.3 (C-9),148.7 (C-4),146.1 (C-3),144.9 (C-3′), 144.2 (C-7),143.5 (C-4′),130.0 (C-1′),125.4 (C-1),120.5 (C-6),119.5 (C-6′), 116.6 (C-2′),115.9 (C-5),115.4 (C-5′), 115.1 (C-2),114.7 (C-8),76.2 (C-8′),37.3 (C-7′)。以上数据与文献报道基本一致[26],故鉴定化合物13为迷迭香酸。

化合物14:棕色粉末(甲醇),ESI-MS m/z: 374 [M]+,结合1H- 和13C-NMR谱数据推测分子式为C19H18O81H-NMR (500 MHz,CD3OD) δ: 7.56 (1H,d,J = 15.9 Hz,H-7),7.05 (1H,d,J = 2.0 Hz,H-2),6.96 (1H,dd,J = 8.2,2.0 Hz,H-6),6.78 (1H,d,J = 8.2 Hz,H-5),6.71 (1H,d,J = 2.0 Hz,H-2′),6.70 (1H,d,J = 8.2 Hz,H-5′),6.57 (1H,dd,J = 8.0,2.0 Hz,H-6′),6.26 (1H,d,J = 15.8 Hz,H-8),5.20 (1H,dd,J = 10.4,5.2 Hz,H-8′),3.70 (3H,s,-OCH3),3.04 (2H,m,H-7′);13C-NMR (125 MHz,CD3OD) δ: 172.2 (C-9′),168.3 (C-9),149.8 (C-4),148.0 (C-7),146.8 (C-3),146.2 (C-3′),145.4 (C-4′),128.8 (C-1′),127.6 (C-1),123.2 (C-6),121.8 (C-6′),117.6 (C-2′),116.5 (C-5), 116.3 (C-5′),115.3 (C-2),114.2 (C-8),74.7 (C-8′),52.7 (-OCH3), 37.9 (C-7′)。以上数据与文献报道基本一致[26],故鉴定化合物14为迷迭香酸甲酯。

化合物15:白色无定形粉末(甲醇),ESI-MS m/z: 689 [M+Na]+,结合1H- 和13C-NMR谱数据推测分子式为C36H58O111H-NMR (500 MHz,CD3OD) δ: 5.37 (1H,d,J = 8.2 Hz,H-1′),5.33 (1H,m,H-12),4.03 (1H,d,J = 11.2,H-23a),3.82 (1H,dd,J = 12.0,1.4 Hz,H-6′a),3.77 (1H,dd,J = 11.3,4.4 Hz,H-2),3.68 (1H,dd,J = 12.0,4.5 Hz,H-6′b),3.39 (1H,d,J = 11.2 Hz,H-23b),3.38~3.40 (1H,m,H-3′),3.34~3.35 (1H,m,H-4′),3.33~3.34 (1H,m,H-5′),3.30~3.32 (1H,m,H-2′),3.27 (1H,d,J = 3.6 Hz,H-19),3.05 (1H, d,J = 3.6 Hz,H-18),3.04 (1H,d,J = 10.5 Hz,H-3),2.30~2.36 (1H,m,H-16a),1.97~1.99 (1H,m,H-11),1.92 (1H, dd,J = 12.4,4.4 Hz,H-1a),1.77~1.79 (1H,m,H-9),1.77~1.79 (1H,m,H-21a),1.77~1.79 (1H,m,H-22a),1.67~1.73 (1H,m,H-16b),1.61~1.70 (1H,m,H-15a),1.61~1.70 (1H,m,H-22b),1.61~1.70 (1H,m,H-6a),1.40~1.50 (1H,m,H-6b),1.40~1.50 (1H,m,H-7a),1.31~1.33 (1H,m,H-7b),1.29 (3H,s,H-27),1.23 (3H,s,H-24),1.00~1.02 (2H,m,H-15b/21b),0.98 (3H,s,H-25),0.95 (3H,s,H-30),0.94~0.95 (1H,m,H-5),0.94 (3H,s,H-29),0.89 (1H,d,J = 12.4 Hz,H-1b),0.73 (3H,s,H-26);13C-NMR (125 MHz,CD3OD) δ: 178.6 (C-28),144.4 (C-13),124.7 (C-12),95.8 (C-1′),86.0 (C-3),82.4 (C-19), 78.7 (C-5′),78.4 (C-3′),74.0 (C-2′),71.1 (C-4′),69.6 (C-2),66.2 (C-23), 62.4 (C-6′),57.3 (C-5),49.5 (C-9),47.8 (C-1),47.1 (C-17),45.1 (C-18),44.4 (C-4),42.6 (C-14),40.9 (C-8),39.2 (C-10),36.0 (C-20),34.1 (C-7),33.3 (C-22),29.5 (C-21),29.4 (C-15),28.6 (C-29),28.4 (C-16),25.2 (C-11),25.2 (C-30),24.9 (C-27),23.7 (C-24),20.0 (C-6),17.7 (C-26),17.4 (C-25)。以上数据与文献报道一致[27],故鉴定化合物15为sericoside。

化合物16:黄色针晶(甲醇),ESI-MS m/z: 205 [M-H],结合1H- 和13C-NMR谱数据推测分子式为C11H10O41H-NMR (500 MHz,CD3OD) δ: 7.66 (1H,d,J = 15.8 Hz,H-7),7.39 (1H,dd,J = 14.1,6.4 Hz,H-10),7.07 (1H,d,J = 2.1 Hz,H-2),6.99 (1H,dd,J = 8.2,2.0 Hz,H-6),6.79 (1H,d,J = 8.1 Hz,H-5),6.28 (1H,d,J = 15.8 Hz,H-8),4.94 (1H,dd,J = 14.1,1.5 Hz,H-11a),4.61 (1H,dd,J = 6.2,1.4 Hz,H-11b);13C-NMR (125 MHz,CD3OD) δ: 165.9 (C-9),150.1 (C-4),148.7 (C-7),146.9 (C-3),142.6 (C-10),127.6 (C-1),123.4 (C-6),116.6 (C-5),115.3 (C-2),113.6 (C-8),97.7 (C-11)。以上数据与文献报道基本一致[26],故鉴定化合物16为咖啡酸乙烯酯。

化合物17:黄色针晶(甲醇),盐酸-镁粉反应阳性,ESI-MS m/z: 285 [M+H]+,结合1H-和13C-NMR谱数据推测分子式为C16H12O51H-NMR (500 MHz,DMSO-d6) δ: 12.50 (1H,brs, 5-OH),8.73 (1H,brs,6-OH),8.09 (2H,dd,J = 7.8,1.1 Hz,H-2′,6′), 7.58 (3H,m,H-3′,4′,5′),6.98 (1H,s,H-3),6.95 (1H,s,H-8),3.92 (3H,s,-OCH3);13C-NMR (125 MHz,DMSO-d6) δ: 182.3 (C-4), 163.1 (C-2),154.6 (C-7),149.8 (C-9),146.1 (C-5),131.9 (C-4′),130.8 (C-1′), 130.1 (C-6),129.1 (C-3′,5′),126.3 (C-2′,6′),105.3 (C-10),104.7 (C-3), 91.3 (C-8),56.3 (C-OCH3)。以上数据与文献报道基本一致[28],故鉴定化合物17为黄芩素-7-甲醚。

参考文献
[1] 王永奇,赵宇峰,李曼杰,等.紫苏的研究XI.紫苏子的化学成分[J].中草药, 1995, 26(5):236-238.
[2] 刘继华,王威,李曼杰,等.紫苏磷脂疏水侧链脂肪酸组成的分析[J].中草药, 1998, 29(11):743-744.
[3] 王威,李曼杰,刘继华,等.紫苏子质量标准规范化的研究II. α-亚麻酸乙酯的制备与鉴定[J].中草药, 1999, 30(4):267-268.
[4] 王威,闫喜英,李振宝,等.紫苏子中α-亚麻酸的气相色谱法测定[J].药物分析杂志, 2000, 20(5):316-318.
[5] 中国药典[S].一部. 2015.
[6] Makino T, Furuta Y, Wakushima H, et al. Anti-allergic effect of Perilla frutescens and its active constituents[J]. Phytother Res, 2003, 17(3):240-243.
[7] Kwak Y, Ju J. Inhibitory activities of Perilla frutescens britton leaf extract against the growth, migration, and adhesion of human cancer cells[J]. Nutr Res Pract, 2015, 9(1):11-16.
[8] Buchwald-Werner S, Fujii H, Schon C, et al. Investigation of a Perilla frutescens special extract anti-inflammatory and immune-modulatory properties[J]. Agro Food Ind Hi-Tech, 2012, 23(5):38-41.
[9] Feng L J, Yu C H, Ying K J, et al. Hypolipidemic and antioxidant effects of total flavonoids of Perilla frutescens leaves in hyperlipidemia rats induced by high-fat diet[J]. Food Res Int, 2011, 44(1):404-409.
[10] Yang S Y, Hong C O, Lee H, et al. Protective effect of extracts of Perilla frutescens treated with sucrose on tert-butyl hydroperoxide-induced oxidative hepatotoxicity in vitro and in vivo[J]. Food Chem, 2012, 133(2):337-343.
[11] Kim M J, Kim H K. Perilla leaf ameliorates obesity and dyslipidemia induced by high-fat diet[J]. Phytother Res, 2009, 23(12):1685-1690.
[12] Fujita T, Nakayama M. Monoterpene glucosides and other constituents from Perilla frutescens[J]. Phytochemistry, 1993, 34(6):1545-1548.
[13] Banno N, Akihisa T, Tokuda H, et al. Triterpene acids from the leaves of Perilla frutescens and their anti-inflammatory and antitumor-promoting effects[J]. Biosci Biotechnol Biochem, 2004, 68(1):85-90.
[14] Woo K W, Han J Y, Suh W S, et al. Two new chemical constituents from leaves of Perilla frutescens var. acuta[J]. Bull Korean Chem Soc, 2014, 35(7):2151-2153.
[15] Nakajima A, Yamamoto Y, Yoshinaka N, et al. A new flavanone and other flavonoids from green perilla laef extract inhibit nitric oxide production in interleukin 1-treated hepatocytes[J]. Biosci Biotechnol Biochem, 2015, 79(1):138-146.
[16] Ryu J H, Son H J, Lee S H, et al. Two neolignans from Perilla frutescens and their inhibition of nitric oxide synthase and tumor necrosis factor-alpha expression in murine macrophage cell line RAW 264. 7[J]. Bioorg Med Chem Lett, 2002, 12(4):649-651.
[17] Kimura J, Maki N. New loliolide derivatives from the brown alga Undaria pinnatifida[J]. J Nat Prod, 2002, 65(1):57-58.
[18] Park J H, Lee D G, Yeon S W, et al. Isolation of megastigmane sesquiterpenes from the silkworm(Bombyx mori L.) droppings and their promotion activity on HO-1 and SIRT1[J]. Arch Pharm Res, 2011, 34(4):533-542.
[19] 刘红丽,刘百联,王国才,等.小飞蓬化学成分研究[J].中药材, 2011, 34(5):718-720.
[20] 罗川,张万年.米邦塔仙人掌化学成分研究[J].中草药, 2011, 42(3):437-439.
[21] 冯美玲,王书芳,张兴贤.枸杞子的化学成分研究[J].中草药, 2013, 44(3):265-268.
[22] 张倩睿,梅之南,杨光忠,等.白花丹化学成分的研究[J].中药材, 2007, 30(5):558-560.
[23] 付琛,陈程,周光雄,等.阳春砂仁化学成分研究[J].中草药, 2011, 42(12):2410-2412.
[24] 邹忠杰,杨俊山,鞠建华,等.泥胡菜化学成分的研究[J].中草药, 2006, 37(9):1303-1304.
[25] 张丽媛,任灵芝,王腾华,等.抱石莲的化学成分研究[J].中草药, 2014, 45(20):2890-2894.
[26] 牛雪梅,黎胜红,纳智.疏花毛萼香茶菜的化学成分研究[J].中草药, 2003, 34(4):300-303.
[27] Beaudelaire K P, Remy B T, Massimo R, et al. Dimeric antioxidant and cytotoxic triterpenoid saponins from Terminalia ivorensis A. Chev.[J]. Phytochemistry, 2010, 71(17/18):2108-2115.
[28] Hyuk Y, Sunglock E, Jiye H, et al. 1H and 13C NMR data on hydroxy/methoxy flavonoids and the effects of substituents on chemical shifts[J]. Bull Korean Chem Soc, 2011, 32(6):2101-2104.