唇形科(Lamiaceae)紫苏属Perilla Linn. 植物紫苏Perilla frutescens (L.) Britt. 为一年生草本植物,在我国主产于江苏、湖北、广东、广西、河南、河北、山东、山西、浙江、四川等地。紫苏是传统的药食两用原料,《中国药典》2015年版一部收载其不同药用部位紫苏叶、紫苏梗和紫苏子。紫苏子作为富含ω-3不饱和脂肪酸的植物资源,对其化学成分和定量测定方法已进行了系统的研究[1,2,3,4]。紫苏叶味辛,性温,归肺、脾经,具有解表散寒、行气和胃的功能,用于风寒感冒、咳嗽呕吐、妊娠呕吐、鱼蟹中毒[5]。现代药理研究结果表明紫苏叶具有抗过敏[6]、抗肿瘤[7]、抗炎[8]、调血脂[9]、保肝[10]、减肥[11]等作用,已从中分离得到单萜、三萜、酚酸、黄酮和木脂素类化合物[12,13,14,15,16]。本实验采用大孔吸附树脂柱色谱、硅胶柱色谱、ODS柱色谱和制备HPLC等手段对紫苏叶水提取物正丁醇分离部位化学成分进行了研究,从中分离鉴定了17个化合物,分别为 (+)-isololiolide(1)、dehydrovomifoliol(2)、(−)-loliolide(3)、野黄芩苷(scutellarin,4)、对羟基苯甲醛(p-hydroxybenzaldehyde,5)、对羟基苯乙酮(p-hydroxyacetophenone,6)、3-吲哚甲醛(3-formylindole,7)、反式对羟基桂皮酸(trans-p-
hydroxylcinnamic acid,8)、芹菜素(apigenin,9)、木犀草素(luteolin,10)、秦皮乙素(esculetin,11)、咖啡酸(caffeic acid,12)、迷迭香酸(rosmarinic acid,13)、迷迭香酸甲酯(methyl rosmarinate,14)、sericoside(15)、咖啡酸乙烯酯(caffeic acid vinyl ester,16)、黄芩素-7-甲醚(negletein,17)。其中化合物1~2、6~8和15为首次从紫苏属植物中分离得到。
1 仪器与材料BRUKER AV-500型核磁共振波谱仪(德国布鲁克公司);BRUKER micro TOFQ飞行时间质谱仪(德国布鲁克公司);HORIBA SEPA-300型旋光仪(日本崛场制作所);Shimadzu LC-6AD制备液相色谱仪(日本岛津制作所);Shimadzu SPD-20A紫外检测器(日本岛津制作所);NP 7005C制备液相色谱输液泵(江苏汉邦科技有限公司);Shodex RI-102制备液相色谱示差折光检测器(日本昭光电工株式会社);Shimpack ODS色谱柱(250 mm×21.2 mm,10 μm,日本岛津制作所);Kromasil-Phenyl色谱柱(250 mm×10 mm,5 μm,瑞典阿克苏诺贝尔公司);Senshupack-Phenyl色谱柱(150 mm×8 mm,5 μm,日本Senshu科学株式会社);柱色谱用大孔吸附树脂HPD-600(河北沧州宝恩化工有限公司);柱色谱硅胶(200~300目,青岛海洋化工厂);柱色谱用ODS(日本YMC公司);薄层色谱用ODS板(RP18 F254,德国默克公司);色谱纯甲醇(美国天地公司);水为重蒸馏水;其他试剂均为分析纯。
紫苏干燥叶于2011年10月采集于吉林省长春市郊,经大连大学生命科学与技术学院冯宝民教授鉴定为唇形科植物紫苏Perilla frutescens (L.) Britt. 的干燥叶,标本(ZS20111001)存放于青岛大学药学院。
2 提取与分离紫苏干燥叶4 kg,加35倍量水煎煮3次,每次2 h,分次滤过,合并滤液,浓缩至2 L,加80%乙醇调节醇浓度至60%,静置24 h,滤过,减压回收乙醇得提取物(PFLT)583 g。取提取物加水2 L使溶解,用正丁醇振摇提取4次,每次2 L,提取液合并,减压回收,得正丁醇分离部位(PFLTB)125 g和水分离部位(PFLTH)436 g。取正丁醇分离部位60 g经大孔吸附树脂HPD-600柱色谱,依次用水和20%、50%和70%乙醇洗脱得20%乙醇洗脱部位(PFLTB-20)14.3 g、50%乙醇洗脱部位(PFLTB-50)27.5 g和70%乙醇洗脱部位(PFLTB-70)8.0 g。
取PFLTB-20 4 g,经ODS柱色谱,以甲醇-水(3∶7、5∶5、10∶0)洗脱得8个分离组分Fr. PFLTB-20-1~PFLTB-20-8。Fr. PFLTB-20-2经制备HPLC(色谱柱Kromasil-Phenyl,流动相为甲醇-水20∶80)得化合物1(10.50 mg)和2(1.99 mg);Fr. PFLTB-20-3经制备HPLC(色谱柱Kromasil- Phenyl,流动相为甲醇-水20∶80)得化合物3(5.73 mg);Fr. PFLTB-20-4经制备HPLC(色谱柱Shimpack-ODS,流动相为甲醇-水30∶70)得化合物4(22.51 mg)。
取PFLTB-50 15 g,经硅胶柱色谱,以三氯甲烷- 甲醇(40∶1、19∶1、9∶1、8∶2)洗脱得6个分离组分Fr. PFLTB-50-1~PFLTB-50-6。Fr. PFLTB-50-1经ODS柱色谱,以甲醇-水(5∶5、10∶0)洗脱,结合制备HPLC(色谱柱Shimpack-ODS,流动相为甲醇-水40∶60)得化合物5(1.68 mg)和6(13.17 mg);Fr. PFLTB-50-2经ODS柱色谱,以甲醇-水(5∶5、10∶0)洗脱,结合制备HPLC(色谱柱Shimpack- ODS,流动相为甲醇-水40∶60)得化合物7(4.58 mg);Fr. PFLTB-50-3经ODS柱色谱,以甲醇-水(5∶5、10∶0)洗脱,结合制备HPLC(色谱柱Shimpack- ODS,流动相为甲醇-水35∶65)得化合物8(5.61 mg),制备HPLC(色谱柱Senshupack-Phenyl,流动相为甲醇-水40∶60)得化合物9(3.91 mg)和10(11.76 mg);Fr. PFLTB-50-4经ODS柱色谱,以甲醇-水(3∶7、5∶5、7∶3、10∶0)洗脱,结合制备HPLC(色谱柱Shimpack-ODS,流动相为甲醇-水20∶80)得化合物11(3.50 mg)和12(86.50 mg);Fr. PFLTB-50-5经ODS柱色谱,以甲醇-水(2∶8、5∶5、7∶3、10∶0)洗脱,结合制备HPLC(色谱柱Shimpack-ODS,流动相为甲醇-水30∶70)得化合物13(52.81 mg),制备HPLC(色谱柱Shimpack-ODS,流动相为甲醇-水48∶52)得化合物14(2.30 mg);Fr. PFLTB-50-6经ODS柱色谱,以甲醇-水(2∶8、5∶5、7∶3、10∶0)洗脱,结合制备HPLC(色谱柱Shimpack-ODS,流动相为甲醇-水48∶52)得化合物15(2.94 mg)。
取PFLTB-70 3 g,经ODS柱色谱,以甲醇-水(5∶5、10∶0)洗脱,结合制备HPLC(色谱柱Shimpack- ODS,流动相为甲醇-水55∶45)得化合物16(9.26 mg)和17(7.20 mg)。
3 结构鉴定化合物1:白色粉末(甲醇),[α]25D +110.5° (c 0.5,MeOH),ESI-MS m/z: 197 [M+H]+,结合1H-和13C-NMR谱数据推测分子式为C11H16O3。1H-NMR (500 MHz,CD3OD) δ: 5.78 (1H,s,H-7),4.10 (1H,m,H-3),2.47 (1H,ddd,J = 11.7,4.0,2.2 Hz,H-4b),2.01 (1H, ddd,J = 12.7,4.1,2.2 Hz,H-2b),1.59 (3H,s,H-11),1.42 (1H,dd,J = 12.0,11.6 Hz,H-4a),1.31 (3H,s,H-10),1.29 (3H,s,H-9),1.29 (1H, overlap,H-2a);13C-NMR (125 MHz,CD3OD) δ: 183.9 (C-6),174.0 (C-8),113.7 (C-7),88.6 (C-5),65.3 (C-3),50.7 (C-2),48.5 (C-4),36.2 (C-1),30.3 (C-10),25.8 (C-11),25.3 (C-9)。以上数据与文献报道基本一致[17],故鉴定化合物1为 (+)-isololiolide。
化合物2:无色无定形粉末(甲醇),[α]25D +219° (c 0.1,CHCl3),ESI-MS m/z: 222 [M]+,结合1H- 和13C-NMR谱数据推测分子式为C13H18O3。1H-NMR (500 MHz,CD3OD) δ: 6.99 (1H,d,J = 15.8 Hz,H-7),6.44 (1H,d,J = 15.8 Hz,H-8),5.94 (1H,q,J = 1.2 Hz,H-4),2.59 (1H,d,J = 17.1 Hz,H-2a),2.30 (3H,s,H-10),2.28 (1H,d,J = 17.5 Hz,H-2b),1.90 (3H,d,J = 1.2 Hz,H-13), 1.06 (3H,s,H-11),1.02 (3H,s,H-12);13C-NMR (125 MHz,CD3OD) δ: 200.7 (C-9),200.4 (C-3),164.7 (C-5),148.3 (C-7),131.7 (C-8),128.0 (C-4), 80.0 (C-6),50.5 (C-2),42.6 (C-1),27.6 (C-10),24.7 (C-12),23.5 (C-11),19.2 (C-13)。以上数据与文献报道基本一致[18],故鉴定化合物2为dehydrovomifoliol。
化合物3:白色粉末(甲醇),[α]25D −94.3°(c 0.5,MeOH),ESI-MS m/z: 197 [M+H]+,结合1H-和13C-NMR谱数据推测分子式为C11H16O3。1H-NMR (500 MHz,CD3OD) δ: 5.74 (1H,s,H-7),4.22 (1H,m,H-3),2.42 (1H,dt,J = 13.8,2.6 Hz,H-4b),1.99 (1H,dt,J = 14.3,2.6 Hz,H-2b),1.76 (3H,s,H-11),1.75 (1H,dd,J = 13.5,4.0 Hz,H-4a),1.53 (1H,dd,J = 14.4,3.7 Hz,H-2a),1.46 (3H,s,H-9), 1.27 (3H,s,H-10);13C-NMR (125 MHz,CD3OD) δ: 185.7 (C-6),174.4 (C-8),113.3 (C-7),89.0 (C-5),67.2 (C-3),48.0 (C-2),46.4 (C-4),37.2 (C-1),31.0 (C-10),27.4 (C-11), 27.0 (C-9)。以上数据与文献报道基本一致[17],故鉴定化合物3为 (−)-loliolide。
化合物4:黄色针晶(甲醇),ESI-MS m/z: 463 [M+H]+,结合1H- 和13C-NMR谱数据推测分子式为C21H18O12。1H-NMR (500 MHz,DMSO-d6) δ: 12.72 (1H,s, 5-OH),10.36 (1H,s,6-OH),8.58 (1H,s,4′-OH),7.91 (2H,d,J = 8.8 Hz,H-2′,6′),6.98 (1H,s,H-8),6.93 (2H,d,J = 8.8 Hz,H-3′,5′), 6.79 (1H,s,H-3),5.19 (1H,d,J = 7.4 Hz,H-1″),4.01 (1H,d,J = 9.6 Hz,H-5″),3.38 (3H,m,H-2″,3″,4″);13C-NMR (125 MHz,DMSO-d6) δ: 182.3 (C-4),170.1 (C-6″),164.1 (C-7),161.2 (C-2),151.0 (C-9),149.0 (C-4′),146.8 (C-5),130.5 (C-6),128.4 (C-2′,6′),121.2 (C-1′),116.0 (C-3′,5′),105.8 (C-10),102.5 (C-3),100.1 (C-1″),93.6 (C-8),75.4 (C-5″),75.2 (C-3″),72.8 (C-2″),71.3 (C-4″)。以上数据与文献报道基本一致[19],故鉴定化合物4为野黄芩苷。
化合物5:类白色针晶(甲醇),ESI-MS m/z: 122 [M]+,结合1H-和13C-NMR谱数据推测分子式为C7H6O2。1H-NMR (500 MHz,CD3OD) δ: 9.76 (1H,s,CHO),7.77 (2H,d,J = 8.6 Hz,H-2,6),6.91 (2H,d,J = 8.6 Hz,H-3, 5);13C-NMR (125 MHz,CD3OD) δ: 192.8 (-CHO),165.4 (C-4),133.4 (C-2,6),130.2 (C-1),117.0 (C-3,5)。以上数据与文献报道基本一致[20],故鉴定化合物5为对羟基苯甲醛。
化合物6:白色无定形粉末(氯仿),ESI-MS m/z: 135 [M-H]−,结合1H- 和13C-NMR谱数据推测分子式为C8H8O2。1H-NMR (500 MHz,CD3OD) δ: 7.88 (2H,d,J = 8.8 Hz,H-2,6),6.84 (2H,d,J = 8.9 Hz,H-3,5),2.52 (3H,s,H-8);13C-NMR (125 MHz,CD3OD) δ: 199.5 (C-7),163.9 (C-4),132.1 (C-2,6),130.2 (C-1),116.2 (C-3,5),26.2 (C-8)。以上数据与文献报道基本一致[21],故鉴定化合物6为对羟基苯乙酮。
化合物7:淡黄色晶体(甲醇),ESI-MS m/z: 146 [M+H]+,结合1H- 和13C-NMR谱数据推测分子式为C9H7NO。1H-NMR (500 MHz,CD3OD) δ: 9.89 (1H,s,CHO),8.16 (1H,d,J = 7.4 Hz,H-4),8.09 (1H,s,H-2), 7.48 (1H,d,J = 7.9 Hz,H-7),7.26 (2H,m,H-5,6);13C-NMR (125 MHz,CD3OD) δ: 187.4 (3-CHO),139.6 (C-2),139.0 (C-9),125.8 (C-8),125.0 (C-6),123.6 (C-4),122.4 (C-5),120.2 (C-3),113.1 (C-7)。以上数据与文献报道基本一致[22],故鉴定化合物7为3-吲哚甲醛。
化合物8:白色针状结晶(丙酮),ESI-MS m/z: 163 [M-H]−,结合1H- 和13C-NMR谱数据推测分子式为C9H8O3。1H-NMR (500 MHz,CD3OD) δ: 7.59 (1H,d,J = 15.6 Hz,H-7),7.44 (2H,d,J = 8.4 Hz,H-2,6),6.80 (1H,d,J = 8.5 Hz,H-3,5),6.28 (1H,d,J = 15.8 Hz,H-8);13C-NMR (125 MHz,CD3OD) δ: 171.2 (C-9),161.1 (C-4),146.5 (C-7),131.0 (C-2,6),127.3 (C-1),116.8 (C-3,5),116.1 (C-8)。以上数据与文献报道基本一致[23],故鉴定化合物8为反式对羟基桂皮酸。
化合物9:黄色粉末(甲醇),盐酸-镁粉反应阳性,ESI-MS m/z: 270 [M]+,结合1H- 和13C-NMR谱数据推测分子式为C15H10O5。1H-NMR (500 MHz,DMSO-d6) δ: 12.92 (1H,s, 5-OH),7.88 (2H,d,J = 8.7 Hz,H-2′,6′),6.91 (2H,d,J = 8.7 Hz,H-3′,5′),6.70 (1H,s,H-3),6.41 (1H,brs,H-8),6.13 (1H,brs,H-6);13C-NMR (125 MHz,DMSO-d6) δ: 181.4 (C-4), 165.4 (C-7),163.5 (C-2),161.3 (C-5),161.3 (C-4′),157.4 (C-9),128.3 (C-2′, 6′),121.0 (C-1′),116.0 (C-3′,5′),103.2 (C-10),102.6 (C-3),99.2 (C-6), 94.0 (C-8)。以上数据与文献报道基本一致[24],故鉴定化合物9为芹菜素。
化合物10:黄色粉末(甲醇),盐酸-镁粉反应阳性,ESI-MS m/z: 285 [M-H]−,结合1H- 和13C-NMR谱数据推测分子式为C15H10O6。1H-NMR (500 MHz,DMSO-d6) δ: 12.95 (1H,s, 5-OH),7.40 (1H,dd,J = 8.1,2.2 Hz,H-6′),7.38 (1H,d,J = 2.2 Hz,H-2′),6.87 (1H,d,J = 8.1 Hz,H-5′),6.62 (1H,s,H-3),6.42 (1H, d,J = 1.8 Hz,H-8),6.16 (1H,d,J = 1.9 Hz,H-6);13C-NMR (125 MHz,DMSO-d6) δ: 181.5 (C-4), 164.5 (C-7),163.8 (C-2),161.4 (C-5),157.3 (C-9),150.0 (C-4′),145.8 (C-3′), 121.3 (C-6′),118.9 (C-1′),116.0 (C-5′),113.2 (C-2′),103.5 (C-10),102.7 (C-3),98.9 (C-6),93.8 (C-8)。以上数据与文献报道基本一致[19],故鉴定化合物10为木犀草素。
化合物11:淡黄色针晶(甲醇),ESI-MS m/z: 177 [M-H]−,结合1H- 和13C-NMR谱数据推测分子式为C9H6O4。1H-NMR (500 MHz,CD3OD) δ: 7.78 (1H,brs,H-4), 6.94 (1H,s,H-5),6.75 (1H,s,H-8),6.17 (1H,brs,H-3);13C-NMR (125 MHz,CD3OD) δ: 164.3 (C-2),152.1 (C-9),150.5 (C-7),146.1 (C-4),144.6 (C-6),113.0 (C-5),112.8 (C-3),112.4 (C-10),103.6 (C-8)。以上数据与文献报道基本一致[25],故鉴定化合物11秦皮乙素。
化合物12:白色结晶(甲醇),与三氯化铁-铁氰化钾水溶液反应显蓝色,ESI-MS m/z: 181 [M+H]+,结合1H- 和13C-NMR谱数据推测分子式为C9H8O4。1H-NMR (500 MHz,CD3OD) δ: 7.53 (1H,d,J = 15.8 Hz,H-7),7.04 (1H,d,J = 0.9 Hz,H-2),6.93 (1H,dd,J = 8.0,0.9 Hz,H-6),6.78 (1H,d,J = 8.0 Hz,H-5),6.22 (1H,d,J = 15.8 Hz,H-8);13C-NMR (125 MHz,CD3OD) δ: 171.2 (C-9),149.4 (C-4),147.0 (C-7),146.8 (C-3),127.8 (C-1),122.8 (C-6), 116.5 (C-5),115.6 (C-8),115.1 (C-2)。以上数据与文献报道基本一致[26],故鉴定化合物12为咖啡酸。
化合物13:淡黄色粉末(甲醇),ESI-MS m/z: 359 [M-H]−,结合1H- 和13C-NMR谱数据推测分子式为C18H16O8。1H-NMR (500 MHz,DMSO-d6) δ: 7.36 (1H,d,J = 15.8 Hz,H-7),7.03 (1H,d,J = 1.6 Hz,H-2),6.88 (1H,dd,J = 8.2,1.6 Hz,H-6),6.72 (1H,d,J = 8.1 Hz,H-5),6.66 (1H,d,J = 1.5 Hz,H-2′),6.58 (1H,d,J = 8.0 Hz,H-5′),6.47 (1H,dd,J = 8.0,1.6 Hz,H-6′),6.16 (1H,d,J = 15.9 Hz,H-8),4.83 (1H,dd,J = 10.0,3.0 Hz,H-8′),2.99 (1H,dd,J = 14.2,3.0 Hz,H-7′α),2.74 (1H, dd,J = 14.2,10.0 Hz,H-7′β);13C-NMR (125 MHz,DMSO-d6) δ: 172.3 (C-9′),166.3 (C-9),148.7 (C-4),146.1 (C-3),144.9 (C-3′), 144.2 (C-7),143.5 (C-4′),130.0 (C-1′),125.4 (C-1),120.5 (C-6),119.5 (C-6′), 116.6 (C-2′),115.9 (C-5),115.4 (C-5′), 115.1 (C-2),114.7 (C-8),76.2 (C-8′),37.3 (C-7′)。以上数据与文献报道基本一致[26],故鉴定化合物13为迷迭香酸。
化合物14:棕色粉末(甲醇),ESI-MS m/z: 374 [M]+,结合1H- 和13C-NMR谱数据推测分子式为C19H18O8。1H-NMR (500 MHz,CD3OD) δ: 7.56 (1H,d,J = 15.9 Hz,H-7),7.05 (1H,d,J = 2.0 Hz,H-2),6.96 (1H,dd,J = 8.2,2.0 Hz,H-6),6.78 (1H,d,J = 8.2 Hz,H-5),6.71 (1H,d,J = 2.0 Hz,H-2′),6.70 (1H,d,J = 8.2 Hz,H-5′),6.57 (1H,dd,J = 8.0,2.0 Hz,H-6′),6.26 (1H,d,J = 15.8 Hz,H-8),5.20 (1H,dd,J = 10.4,5.2 Hz,H-8′),3.70 (3H,s,-OCH3),3.04 (2H,m,H-7′);13C-NMR (125 MHz,CD3OD) δ: 172.2 (C-9′),168.3 (C-9),149.8 (C-4),148.0 (C-7),146.8 (C-3),146.2 (C-3′),145.4 (C-4′),128.8 (C-1′),127.6 (C-1),123.2 (C-6),121.8 (C-6′),117.6 (C-2′),116.5 (C-5), 116.3 (C-5′),115.3 (C-2),114.2 (C-8),74.7 (C-8′),52.7 (-OCH3), 37.9 (C-7′)。以上数据与文献报道基本一致[26],故鉴定化合物14为迷迭香酸甲酯。
化合物15:白色无定形粉末(甲醇),ESI-MS m/z: 689 [M+Na]+,结合1H- 和13C-NMR谱数据推测分子式为C36H58O11。1H-NMR (500 MHz,CD3OD) δ: 5.37 (1H,d,J = 8.2 Hz,H-1′),5.33 (1H,m,H-12),4.03 (1H,d,J = 11.2,H-23a),3.82 (1H,dd,J = 12.0,1.4 Hz,H-6′a),3.77 (1H,dd,J = 11.3,4.4 Hz,H-2),3.68 (1H,dd,J = 12.0,4.5 Hz,H-6′b),3.39 (1H,d,J = 11.2 Hz,H-23b),3.38~3.40 (1H,m,H-3′),3.34~3.35 (1H,m,H-4′),3.33~3.34 (1H,m,H-5′),3.30~3.32 (1H,m,H-2′),3.27 (1H,d,J = 3.6 Hz,H-19),3.05 (1H, d,J = 3.6 Hz,H-18),3.04 (1H,d,J = 10.5 Hz,H-3),2.30~2.36 (1H,m,H-16a),1.97~1.99 (1H,m,H-11),1.92 (1H, dd,J = 12.4,4.4 Hz,H-1a),1.77~1.79 (1H,m,H-9),1.77~1.79 (1H,m,H-21a),1.77~1.79 (1H,m,H-22a),1.67~1.73 (1H,m,H-16b),1.61~1.70 (1H,m,H-15a),1.61~1.70 (1H,m,H-22b),1.61~1.70 (1H,m,H-6a),1.40~1.50 (1H,m,H-6b),1.40~1.50 (1H,m,H-7a),1.31~1.33 (1H,m,H-7b),1.29 (3H,s,H-27),1.23 (3H,s,H-24),1.00~1.02 (2H,m,H-15b/21b),0.98 (3H,s,H-25),0.95 (3H,s,H-30),0.94~0.95 (1H,m,H-5),0.94 (3H,s,H-29),0.89 (1H,d,J = 12.4 Hz,H-1b),0.73 (3H,s,H-26);13C-NMR (125 MHz,CD3OD) δ: 178.6 (C-28),144.4 (C-13),124.7 (C-12),95.8 (C-1′),86.0 (C-3),82.4 (C-19), 78.7 (C-5′),78.4 (C-3′),74.0 (C-2′),71.1 (C-4′),69.6 (C-2),66.2 (C-23), 62.4 (C-6′),57.3 (C-5),49.5 (C-9),47.8 (C-1),47.1 (C-17),45.1 (C-18),44.4 (C-4),42.6 (C-14),40.9 (C-8),39.2 (C-10),36.0 (C-20),34.1 (C-7),33.3 (C-22),29.5 (C-21),29.4 (C-15),28.6 (C-29),28.4 (C-16),25.2 (C-11),25.2 (C-30),24.9 (C-27),23.7 (C-24),20.0 (C-6),17.7 (C-26),17.4 (C-25)。以上数据与文献报道一致[27],故鉴定化合物15为sericoside。
化合物16:黄色针晶(甲醇),ESI-MS m/z: 205 [M-H]−,结合1H- 和13C-NMR谱数据推测分子式为C11H10O4。1H-NMR (500 MHz,CD3OD) δ: 7.66 (1H,d,J = 15.8 Hz,H-7),7.39 (1H,dd,J = 14.1,6.4 Hz,H-10),7.07 (1H,d,J = 2.1 Hz,H-2),6.99 (1H,dd,J = 8.2,2.0 Hz,H-6),6.79 (1H,d,J = 8.1 Hz,H-5),6.28 (1H,d,J = 15.8 Hz,H-8),4.94 (1H,dd,J = 14.1,1.5 Hz,H-11a),4.61 (1H,dd,J = 6.2,1.4 Hz,H-11b);13C-NMR (125 MHz,CD3OD) δ: 165.9 (C-9),150.1 (C-4),148.7 (C-7),146.9 (C-3),142.6 (C-10),127.6 (C-1),123.4 (C-6),116.6 (C-5),115.3 (C-2),113.6 (C-8),97.7 (C-11)。以上数据与文献报道基本一致[26],故鉴定化合物16为咖啡酸乙烯酯。
化合物17:黄色针晶(甲醇),盐酸-镁粉反应阳性,ESI-MS m/z: 285 [M+H]+,结合1H-和13C-NMR谱数据推测分子式为C16H12O5。1H-NMR (500 MHz,DMSO-d6) δ: 12.50 (1H,brs, 5-OH),8.73 (1H,brs,6-OH),8.09 (2H,dd,J = 7.8,1.1 Hz,H-2′,6′), 7.58 (3H,m,H-3′,4′,5′),6.98 (1H,s,H-3),6.95 (1H,s,H-8),3.92 (3H,s,-OCH3);13C-NMR (125 MHz,DMSO-d6) δ: 182.3 (C-4), 163.1 (C-2),154.6 (C-7),149.8 (C-9),146.1 (C-5),131.9 (C-4′),130.8 (C-1′), 130.1 (C-6),129.1 (C-3′,5′),126.3 (C-2′,6′),105.3 (C-10),104.7 (C-3), 91.3 (C-8),56.3 (C-OCH3)。以上数据与文献报道基本一致[28],故鉴定化合物17为黄芩素-7-甲醚。
[1] | 王永奇,赵宇峰,李曼杰,等.紫苏的研究XI.紫苏子的化学成分[J].中草药, 1995, 26(5):236-238. |
[2] | 刘继华,王威,李曼杰,等.紫苏磷脂疏水侧链脂肪酸组成的分析[J].中草药, 1998, 29(11):743-744. |
[3] | 王威,李曼杰,刘继华,等.紫苏子质量标准规范化的研究II. α-亚麻酸乙酯的制备与鉴定[J].中草药, 1999, 30(4):267-268. |
[4] | 王威,闫喜英,李振宝,等.紫苏子中α-亚麻酸的气相色谱法测定[J].药物分析杂志, 2000, 20(5):316-318. |
[5] | 中国药典[S].一部. 2015. |
[6] | Makino T, Furuta Y, Wakushima H, et al. Anti-allergic effect of Perilla frutescens and its active constituents[J]. Phytother Res, 2003, 17(3):240-243. |
[7] | Kwak Y, Ju J. Inhibitory activities of Perilla frutescens britton leaf extract against the growth, migration, and adhesion of human cancer cells[J]. Nutr Res Pract, 2015, 9(1):11-16. |
[8] | Buchwald-Werner S, Fujii H, Schon C, et al. Investigation of a Perilla frutescens special extract anti-inflammatory and immune-modulatory properties[J]. Agro Food Ind Hi-Tech, 2012, 23(5):38-41. |
[9] | Feng L J, Yu C H, Ying K J, et al. Hypolipidemic and antioxidant effects of total flavonoids of Perilla frutescens leaves in hyperlipidemia rats induced by high-fat diet[J]. Food Res Int, 2011, 44(1):404-409. |
[10] | Yang S Y, Hong C O, Lee H, et al. Protective effect of extracts of Perilla frutescens treated with sucrose on tert-butyl hydroperoxide-induced oxidative hepatotoxicity in vitro and in vivo[J]. Food Chem, 2012, 133(2):337-343. |
[11] | Kim M J, Kim H K. Perilla leaf ameliorates obesity and dyslipidemia induced by high-fat diet[J]. Phytother Res, 2009, 23(12):1685-1690. |
[12] | Fujita T, Nakayama M. Monoterpene glucosides and other constituents from Perilla frutescens[J]. Phytochemistry, 1993, 34(6):1545-1548. |
[13] | Banno N, Akihisa T, Tokuda H, et al. Triterpene acids from the leaves of Perilla frutescens and their anti-inflammatory and antitumor-promoting effects[J]. Biosci Biotechnol Biochem, 2004, 68(1):85-90. |
[14] | Woo K W, Han J Y, Suh W S, et al. Two new chemical constituents from leaves of Perilla frutescens var. acuta[J]. Bull Korean Chem Soc, 2014, 35(7):2151-2153. |
[15] | Nakajima A, Yamamoto Y, Yoshinaka N, et al. A new flavanone and other flavonoids from green perilla laef extract inhibit nitric oxide production in interleukin 1-treated hepatocytes[J]. Biosci Biotechnol Biochem, 2015, 79(1):138-146. |
[16] | Ryu J H, Son H J, Lee S H, et al. Two neolignans from Perilla frutescens and their inhibition of nitric oxide synthase and tumor necrosis factor-alpha expression in murine macrophage cell line RAW 264. 7[J]. Bioorg Med Chem Lett, 2002, 12(4):649-651. |
[17] | Kimura J, Maki N. New loliolide derivatives from the brown alga Undaria pinnatifida[J]. J Nat Prod, 2002, 65(1):57-58. |
[18] | Park J H, Lee D G, Yeon S W, et al. Isolation of megastigmane sesquiterpenes from the silkworm(Bombyx mori L.) droppings and their promotion activity on HO-1 and SIRT1[J]. Arch Pharm Res, 2011, 34(4):533-542. |
[19] | 刘红丽,刘百联,王国才,等.小飞蓬化学成分研究[J].中药材, 2011, 34(5):718-720. |
[20] | 罗川,张万年.米邦塔仙人掌化学成分研究[J].中草药, 2011, 42(3):437-439. |
[21] | 冯美玲,王书芳,张兴贤.枸杞子的化学成分研究[J].中草药, 2013, 44(3):265-268. |
[22] | 张倩睿,梅之南,杨光忠,等.白花丹化学成分的研究[J].中药材, 2007, 30(5):558-560. |
[23] | 付琛,陈程,周光雄,等.阳春砂仁化学成分研究[J].中草药, 2011, 42(12):2410-2412. |
[24] | 邹忠杰,杨俊山,鞠建华,等.泥胡菜化学成分的研究[J].中草药, 2006, 37(9):1303-1304. |
[25] | 张丽媛,任灵芝,王腾华,等.抱石莲的化学成分研究[J].中草药, 2014, 45(20):2890-2894. |
[26] | 牛雪梅,黎胜红,纳智.疏花毛萼香茶菜的化学成分研究[J].中草药, 2003, 34(4):300-303. |
[27] | Beaudelaire K P, Remy B T, Massimo R, et al. Dimeric antioxidant and cytotoxic triterpenoid saponins from Terminalia ivorensis A. Chev.[J]. Phytochemistry, 2010, 71(17/18):2108-2115. |
[28] | Hyuk Y, Sunglock E, Jiye H, et al. 1H and 13C NMR data on hydroxy/methoxy flavonoids and the effects of substituents on chemical shifts[J]. Bull Korean Chem Soc, 2011, 32(6):2101-2104. |