中草药  2016, Vol. 47 Issue (1): 21-25
0
  PDF    
甘草地上部分化学成分研究
周彪, 万传星     
塔里木大学生命科学学院新疆生产建设兵团塔里木盆地生物资源保护利用重点实验室, 新疆阿拉尔 843300
摘要: 目的 研究甘草Glycyrrhiza uralensis地上部分的化学成分。方法 通过硅胶、凝胶等柱色谱及高效液相色谱技术进行分离纯化,根据理化性质和核磁数据对化合物进行结构鉴定。结果 从甘草地上部分乙醇提取物中分离得到12个化合物,分别鉴定为(2S)-3'-(2-hydroxy-3-methylbut-3-enyl)-4',5,7-trihydroxy-dihydroflavanone(1)、乔松素(2)、sigmoidin B(3)、licoflavanone(4)、6-异戊烯基柚皮素(5)、短叶松素(6)、高良姜素(7)、染料木素(8)、红车轴草素(9)、山柰酚-3-O-β-D-芸香糖苷(10)、芦丁(11)、α,α'-dihydro-3,5,3'-trihydroxy-4'-methoxy-5'-isopentenyl-stilbene(12)。结论 化合物1为新化合物,命名为羟甘草黄烷酮;化合物3、6、79是首次从甘草属植物中分离得到。
关键词: 甘草     羟甘草黄烷酮     短叶松素     高良姜素     红车轴草素    
Chemical constituents from aerial parts of Glycyrrhiza uralensis
ZHOU Biao, WAN Chuan-xing    
Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production & Construction Corps, College of Life Science, Tarim University, Alar 843300, China
Abstract: Objective To study the chemical constituents from the aerial parts of Glycyrrhiza uralensis. Methods The compounds were isolated and purified by silica gel, Sephadex LH-20 column chromatography, and HPLC. The structures of the compounds were identified on the basis of chemical and spectral methods. Results Twelve compounds were isolated from the ethanol extract of the the the aerial parts of G. uralensis and identified as(2S)-3'-(2-hydroxy-3-methylbut-3-enyl)-4',5,7-trihydroxy-dihydroflavanone(1), pinocembrin(2), sigmoidin B(3), licoflavanone(4), 6-prenylnaringenin(5), pinobanksin(6), galangin(7), genistein(8), pratensein(9), kaempferol-3-O-β-D-rutinoside(10), rutin(11), and α,α'-dihydro-3,5,3'-trihydroxy-4'-methoxy-5'-isopentenyl-stilbene(12). Conclusion Compound 1 is a new compound named hydroxylicoflavanone, and compounds 3, 6, 7, and 9 are isolated from this plant for the first time.
Key words: Glycyrrhiza uralensis Fisch.     hydroxylicoflavanone     pinobanksin     galangin     pratensein    

甘草为豆科(Leguminosae)植物甘草Glycyrrhiza uralensis Fisch.、胀果甘草G. inflate Bat. 或光果甘草G. glabra L. 的干燥根及根茎,甘草主要分布于新疆和内蒙古[1];具有补脾益气、散热解毒、祛痰止咳、缓急止痛、调和诸药等众多功效[2]。现代药理学研究表明,甘草具有抗溃疡、抗炎[3]、抗菌、抗氧化、抗病毒、抗癌、抗抑郁、保肝[4]、祛痰和增强免疫力等多种药理活性[5]。甘草主要活性成分是三萜皂苷和黄酮类化合物[6,7],而国内外对于甘草地上部分的化学成分报道较少。本实验从甘草地上部分90%乙醇提取物中分离得到12个化合物,分别鉴定为(2S)-3′-(2-hydroxy-3-methylbut-3-enyl)-4′,5,7- trihydroxydihydroflavanone(1)、乔松素(pinocembrin,2)、sigmoidin B(3)、licoflavanone(4)、6-异戊烯基柚皮素(6-prenylnaringenin,5)、短叶松素(pinobanksin,6)、高良姜素(galangin,7)、染料木素(genistein,8)、红车轴草素(pratensein,9)、山柰酚-3-O-β-D-芸香糖苷(kaempferol-3-O-β-D- rutinoside,10)、芦丁(rutin,11)、α,α′-dihydro- 3,5,3′-trihydroxy-4′-methoxy-5′-isopentenyl-stilbene (12)。其中化合物1为新化合物,命名为羟甘草黄烷酮。化合物3679是首次从甘草属植物中分离得到。

1 仪器与材料

旋转蒸发仪(Eyela公司),低温循环水式多用真空泵(郑州长城科工贸有限公司),CD测定仪,JASCOJ-815旋光测定仪,液相色谱仪(Waters公司),TU-1810型紫外可见分光光度仪(北京普析通用仪器有限责任公司),中压液相色谱仪(Brucker 公司),400 MHz和600 MHz核磁共振仪(Varian公司)。Micromass Auto specultima ETOF型质谱仪;Aglient 1100 Series LC-MSD-Trap-SL型质谱仪。Sephadex LH-20(Pharmacia公司);柱色谱硅胶(100~200、200~300目)为青岛海洋化工厂产品,所有试剂均为分析纯,购自天津市福晨化学试剂厂。

实验材料于2014年5月采于新疆阿拉尔市塔里木大学一号教学楼前,经塔里木大学植物科学学院黄文娟副教授鉴定为甘草Glycyrrhiza uralensis Fisch.。标本(20140601)现存于塔里木大学生物研发中心320室。

2 提取与分离

甘草地上部分13.5 kg,自然风干切成数小段,后用90%乙醇室温条件下浸泡7 d,减压浓缩回收溶剂后得浸膏552.7 g,乙醇浸膏用等量硅胶拌样后经硅胶柱色谱,三氯甲烷-甲醇溶剂系统(100∶1、10∶1、1∶1、1∶10、0∶1)梯度洗脱,按极性大小分为UA(36.8 g)、UB(74.4 g)、UC(134.6 g)、UD(77.2 g)和UE(83.1 g)。

组分UB经硅胶柱色谱,三氯甲烷-甲醇(50∶1、20∶1、10∶1、1∶1)梯度洗脱,按极性大小分为UBa(36.8 g)、UBb(74.4 g)、UBc(134.6 g)和UBd(77.2 g)。组分UBb经过制备液相分离得到化合物1(5.7 mg)、2(192.8 mg)、3(45.4 mg)和4(21.8 mg),组分UBc经硅胶柱(石油醚-丙酮2∶1)及制备液相(40%~70%甲醇)得化合物6(3.2 mg)、7(2.4 mg)和9(16.3 mg)。

组分UC经硅胶柱色谱,三氯甲烷-甲醇(10∶1→1∶1)梯度洗脱,按极性大小分为4个组分UCa(0.3 g)、UCb(3.7 g)、UCc(7.1 g)和UCd(56.5 g)。UCa经过凝聚柱(LH-20)分离得到化合物5(33.0 mg)。组分UCc再次过制备液相(40%~60%甲醇)分离得到化合物8(10.4 mg)和12(111.5 mg)。

组分UD经硅胶柱色谱,三氯甲烷-甲醇(1∶1→1∶10)梯度洗脱,按极性大小分为4个组分UDa(18.4 g)、UDb(25.7 g)、UDc(11.3 g)和UDd(8.6 g)。UDb经过凝聚柱(LH-20)分离得到化合物13(731.0 mg)。UDa再次过制备液相(40%~60%甲醇)分离得到化合物10(27.1 mg)和11(3.5 mg)。

3 结构鉴定

化合物1:白色粉末,HR-TOF-MS m/z: 355.119 0 [M-H](C20H19O6,计算值355.118 2),提示其相对分子质量为356。CD谱 (MeOH): Δε283 nm−3.2,Δε333 nm +0.6。1H-NMR谱(表 1)中显示有3个双重峰δ 5.44 (1H,dd,J = 13.0,3.0 Hz),3.19 (1H,dd,J = 17.0,13.0 Hz) 和2.72 (1H,dd,J = 17.0,3.0 Hz),提示是1个二氢黄酮的特征吸收峰;另外,对芳香区光谱进行分析可以确定其芳香质子的取代形式,在A环上,有1个间位耦合的吸收峰δH 5.96 (2H,d,J = 2.0 Hz),提示是A环上1,2,3,5取代;而在B环上有1个ABX系统信号δ 6.87 (1H,d,J = 8.4 Hz),7.32 (1H,d,J = 2.0 Hz), 7.27 (1H,dd,J = 8.4,2.0 Hz),提示B环上1′,3′,4′取代。另外,1H-NMR谱还显示有2个亚甲基质子δH 2.90 (2H,m),1个次甲基质子δH 4.41 (1H,t,J = 6.0 Hz),和H-4″的2个单峰4.78 (1H,s),4.97 (1H,s)。这些信号与文献比对提示有2-hydroxy-3-methyl-but-3-enyl基[8]存在。加之在HMBC谱(图 1)中显示H-1″ [δH 2.90 (2H,d,J = 7.2 Hz)] 与 C-2′ (δC 131.0) 和C-4′ (δC 157.4) 相关,说明2-hydroxy-3- methyl-but-3-enyl基的取代位置是在C-3′。通过1H-NMR中的2号位质子的J = 13.0,3.0 Hz,说明2号位质子处于直立键;此外,在CD谱中283 nm为负效应,333 nm为正效应,确定C-2的绝对构型为S构型。综上所述,鉴定化合物1的结构为 (2S)-3′-(2-hydroxy-3-methylbut-3-eny)-4′,5,7- trihydroxy-dihydroflavanone,为1个新化合物,命名为羟甘草黄烷酮。

表 1 化合物1的1H-NMR和13C-NMR数据 (400/100 MHz,CD3COCD3) Table 1 1H-NMR and 13C-NMR data of compound 1 (400/100 MHz,CD3COCD3)

图 1 化合物1的结构和主要的HMBC相关 Fig.1 Structure and key HMBC correlations of compound 1

化合物2:淡黄色粉末。1H-NMR (400 MHz,CD3COCD3) δ: 12.17 (1H,brs,5-OH),9.59 (1H,brs,7-OH),7.57~7.58 (2H,m,H-2′,6′),7.38~7.48 (3H,m,H-3′~5′),6.01 (1H,d,J = 2.0 Hz,H-8),5.97 (1H,d,J = 2.0 Hz,H-6),5.58 (1H,dd,J = 13.0,3.0 Hz,H-2),3.18 (1H,dd,J = 13.0,3.0 Hz,H-3a),2.80 (1H,dd, J = 17.0,3.0 Hz,H-3b);13C-NMR (100 MHz,CD3COCD3) δ: 196.8 (C-4),166.4 (C-7),164.1 (C-5),163.3 (C-9),140.0 (C-1′), 129.5 (C-3′,5′),129.4 (C-4′),127.3 (C-2′,6′),103.2 (C-10),97.0 (C-8), 95.9 (C-6),79.9 (C-2),43.6 (C-3)。以上数据与文献报道一致[9],故鉴定化合物2为乔松素。

化合物3:淡黄色粉末。1H-NMR (400 MHz,CD3COCD3) δ: 12.17 (1H,brs,5-OH),6.91 (1H,s,H-2′),6.80 (1H,s,H-5′),5.95 (2H,s,H-6,8),5.35 (1H,dd,J = 13.0,3.0 Hz,H-2),5.34 (1H,t,J = 7.0 Hz,H-2″),3.35 (1H,d,J = 7.0 Hz,H-1″),3.11 (1H,dd,J = 13.0,3.0 Hz,H-3a),2.71 (1H,dd,J = 17.0,3.0 Hz,H-3b),1.71 (6H, s,H-4″,5″);13C-NMR (100 MHz,CD3COCD3) δ: 196.3 (C-4),166.4 (C-7),164.3 (C-5),163.4 (C-9),144.4 (C-5′),143.4 (C-4′),131.6 (C-3″),129.7 (C-1′),128.2 (C-3′),122.6 (C-2″),119.1 (C-2′),111.2 (C-6′), 102.3 (C-10),95.9 (C-6),95.0 (C-8),79.2 (C-2),42.6 (C-3),28.2 (C-1″),25.0 (C-4″),17.0 (C-5″)。以上数据与文献报道一致[10],故鉴定化合物3为sigmoidin B。

化合物4:淡黄色粉末。1H-NMR (400 MHz,CD3COCD3) δ: 12.19 (1H,brs,5-OH),7.28 (1H,d,J = 2.0 Hz,H-2′), 7.21 (1H,dd,J = 8.0,2.0 Hz,H-6′),6.89 (1H,d,J = 8.0 Hz, H-5′),5.95 (2H,s,H-6,8),5.42 (1H,dd,J = 13.0,3.0 Hz,H-2),5.36 (1H,t,J = 7.0 Hz,H-2″),3.35 (1H,d,J = 7.0 Hz,H-1″),3.18 (1H,dd,J = 13.0,3.0 Hz,H-3a),2.71 (1H,dd,J = 17.0,3.0 Hz, H-3b),1.71 (6H,s,H-4″,5″);13C-NMR (100 MHz,CD3COCD3) δ: 197.3 (C-4),167.3 (C-7),165.3 (C-5),164.4 (C-9),156.2 (C-4′), 132.7 (C-3″),130.8 (C-1′),129.1 (C-2″),129.0 (C-3′),126.3 (C-2′),123.5 (C-6′),115.7 (C-5′),103.2 (C-10),96.8 (C-6),95.8 (C-8),80.1 (C-2),43.5 (C-3),29.1 (C-1″),25.9 (C-4″),17.9 (C-5″)。以上数据与文献报道一致[9],故鉴定化合物4为licoflavanone。

化合物5:淡黄色固体。1H-NMR (400 MHz,CD3COCD3) δ: 12.19 (1H,brs,5-OH),9.57 (1H,brs,7-OH),7.57 (2H,d,J = 7.0 Hz,H-2′,6′),7.38~7.47 (3H,m,H-3′~5′),6.05 (1H,s,H-6),5.58 (1H,dd,J = 13.0,3.0 Hz,H-2), 5.40 (1H,t,J = 7.0 Hz,H-2″),3.22 (1H,d,J = 7.0 Hz,H-1″), 3.13 (1H,dd,J = 13.0,3.0 Hz,H-3a),2.84 (1H,dd,J = 17.0, 3.0 Hz,H-3b),1.62 (3H,s,H-5″),1.61 (3H,s,H-4″);13C-NMR (100 MHz,CD3COCD3) δ: 197.0 (C-4),164.8 (C-7),162.3 (C-5),161.8 (C-9),140.2 (C-1′),131.3 (C-3″),129.5 (C-2′,6′),129.4 (C-4′),127.3 (C-3′,5′),123.5 (C-2″),109.2 (C-8),103.2 (C-10),95.4 (C-6),79.9 (C-2),43.8 (C-3),25.9 (C-5″),21.7 (C-1″),17.8 (C-4″)。以上数据与文献报道一致[9],故鉴定化合物5为6-异戊烯基柚皮素。

化合物6:淡黄色针状结晶(甲醇)。1H-NMR (400 MHz,CD3COCD3) δ: 11.71 (1H,brs,5-OH),7.28 (1H,d,J = 2.0 Hz,H-2′),7.21 (1H,dd,J = 8.0,2.0 Hz,H-6′),6.89 (1H,d,J = 8.0 Hz,H-5′), 6.02 (1H,d,J = 2.0 Hz,H-8),5.99 (1H,d,J = 2.0 Hz,H-6), 5.19 (1H,d,J = 11.7 Hz,H-2),4.68 (1H,d,J = 11.7 Hz,H-3);13C-NMR (100 MHz,CD3COCD3) δ: 197.1 (C-4),166.9 (C-7),164.0 (C-5),163.2 (C-9),137.5 (C-1′),128.8 (C-4′),128.3 (C-3′,5′),128.0 (C-2′,6′),100.7 (C-10),96.3 (C-6),95.3 (C-8),83.6 (C-2), 72.3 (C-3)。以上数据与文献报道一致[11],故鉴定化合物6为短叶松素。

化合物7:淡黄色粉末。1H-NMR (400 MHz,CD3COCD3) δ: 12.10 (1H,brs,7-OH),8.26 (2H,d,J = 7.0 Hz,H-2′,6′), 7.51~7.59 (3H,m, H-3′~5′),6.58 (1H, s,H-6),6.30 (1H,s,H-8),2.84 (2H,s,5,3-OH);13C-NMR (100 MHz,CD3COCD3) δ: 176.1 (C-4),164.4 (C-7),161.4 (C-5),157.2 (C-9),145.3 (C-2),137.1 (C-3),131.1 (C-10),130.1 (C-4′),128.6 (C-2′,6′),127.7 (C-3′,5′),103.5 (C-1′),98.4 (C-6),93.8 (C-8)。以上数据与文献报道一致[12],故鉴定化合物7为高良姜素。

化合物8:无色针状结晶(甲醇)。1H-NMR (400 MHz,CD3COCD3) δ: 13.03 (1H,brs,5-OH),8.16 (1H,brs,7-OH),7.46 (2H,d,J = 8.3 Hz,H-2′,6′),7.45 (1H,s,H-2),6.91 (2H,d,J = 8.3 Hz,H-3′,5′), 6.43 (1H,s,H-8),6.29 (1H,s,H-6);13C-NMR (100 MHz,CD3COCD3) δ: 181.7 (C-4),165.0 (C-4′),163.9 (C-7),158.4 (C-9),154.3 (C-2), 124.0 (C-1′),123.1 (C-3),116.0 (C-3′),106.2 (C-10),99.9 (C-6),94.5 (C-8)。以上数据与文献报道一致[13],故鉴定化合物8为染料木素。

化合物9:无色针状结晶(甲醇)。1H-NMR (400 MHz,CD3COCD3) δ: 13.06 (1H,brs,5-OH),8.22 (1H,brs,7-OH),7.82 (1H,s,H-2),7.25 (1H,d,J = 1.5 Hz,H-2′),7.08 (1H,d,J = 8.0 Hz,H-6′),6.88 (1H,d,J = 8.0 Hz,H-5′),6.42 (1H,d,J = 1.5 Hz,H-6),6.29 (1H,d,J = 1.5 Hz,H-8),3.89 (1H,s,4′-OCH3);13C-NMR (100 MHz,CD3COCD3) δ: 181.6 (C-4),163.9 (C-5),159.0 (C-9),154.6 (C-2),148.0 (C-4′),147.7 (C-3′),124.1 (C-3),123.4 (C-1′),122.7 (C-6′),115.7 (C-5′),113.6 (C-2′),99.9 (C-6),94.5 (C-8),56.3 (C-OCH3)。以上数据与文献报道一致[14],故鉴定化合物9为红车轴草素。

化合物10:黄色粉末。1H-NMR (400 MHz,CD3OD) δ: 8.04 (2H,d,J = 8.5 Hz,H-2′,6′),6.87 (2H,d,J = 8.5 Hz,H-3′, 5′),6.39 (1H,d,J = 1.4 Hz,H-8),6.20 (1H,d,J = 1.4 Hz, H-6),5.11 (1H,d,J = 6.7 Hz,H-1″),4.50 (1H,d,J = 1.1 Hz, H-1′′′);13C-NMR (100 MHz,CD3OD) δ: 178.0 (C-4),164.6 (C-7),161.6 (C-5),160.1 (C-4′),158.0 (C-9),157.1 (C-2),134.1 (C-3),130.9 (C-2′,6′),121.3 (C-1′),114.7 (C-3′,5′),104.2 (C-1″),103.1 (C-10),101.0 (C-1′′′),98.5 (C-6),93.4 (C-8),76.7 (C-3″),75.8 (C-5″),74.2 (C-2″),72.4 (C-4′′′),70.8 (C-4″),70.6 (C-2′′′),70.0 (C-3′′′),68.3 (C-5′′′),67.1 (C-6″), 16.5 (C-6′′′)。以上数据与文献报道一致[15],故鉴定化合物10为山柰酚-3-O-β-D-芸香糖苷。

化合物11:黄色粉末。1H-NMR (400 MHz,CD3OD) δ: 7.65 (1H,d,J = 2.1 Hz,H-2′),6.08 (1H,dd,J = 8.4,2.1 Hz, H-6′),6.85 (1H,d,J = 8.4 Hz,H-5′),6.38 (1H,d,J = 2.1 Hz,H-8), 6.19 (1H,d,J = 2.1 Hz,H-6),5.09 (1H,d,J = 7.5 Hz,H-1″), 4.51 (1H,d,J = 0.9 Hz,H-1′′′);13C-NMR (100 MHz,CD3OD) δ: 177.9 (C-4),164.6 (C-7),161.5 (C-5),157.9 (C-9),157.0 (C-2),148.4 (C-4′), 144.4 (C-3′),134.2 (C-3),122.1 (C-6′),121.6 (C-1′),116.2 (C-5′),114.6 (C-2′), 104.2 (C-10),103.3 (C-1″),101.0 (C-1′′′),98.5 (C-6),93.4 (C-8),76.7 (C-3″), 75.8 (C-5″),74.3 (C-2″),72.5 (C-4′′′),70.8 (C-4″),70.7 (C-2′′′),69.9 (C-3′′′), 68.3 (C-5′′′),67.1 (C-6″),16.5 (C-6′′′)。以上数据与文献报道一致[16],故鉴定化合物11为芦丁。

化合物12:橘黄色油状物。1H-NMR (400 MHz,CD3COCD3) δ: 8.03 (2H,s,3′,5′-OH),7.78 (1H,s,3-OH),6.62 (1H,d,J = 2.0 Hz,H-2),6.51 (1H,d,J = 2.0 Hz,H-6),6.22 (2H,d,J = 2.1 Hz,H-2′,6′),6.19 (1H,t,J = 2.0 Hz,H-4′),5.26 (1H,t,J = 7.2 Hz,H-8),3.73 (3H,brs,4′-OCH3),3.28 (1H,d,J = 7.2 Hz,H-7),2.71 (4H,brs,H-α,β),1.72 (3H,s,H-11),1.71 (3H,s,H-10);13C-NMR (100 MHz,CD3COCD3) δ: 159.3 (C-3′), 150.6 (C-3),145.1 (C-1′),144.8 (C-4),138.7 (C-1),135.5 (C-5),132.1 (C-9), 124.4 (C-8),121.3 (C-6),115.0 (C-2),107.7 (C-2′),101.1 (C-4′),60.7 (-OCH3), 38.6 (C-β),37.9 (C-α),29.1 (C-7),25.9 (C-11),17.9 (C-10)。以上数据与文献报道一致[9],故鉴定化合物12为α,α′-dihydro-3,5,3′-trihydroxy- 4′-methoxy-5′-isopentenyl-stilbene。

参考文献
[1] 刘洋洋,刘春生,曾斌芳,等.甘草种质资源研究进展[J].中草药, 2013, 44(24):3593-3598.
[2] 中国药典[S].一部. 2010.
[3] 张明发,沈雅琴.甘草及其活性成分抗炎与抗炎机制的研究进展[J].现代药物与临床, 2011, 26(4):261-268.
[4] 张明发,沈雅琴.甘草及其有效成分抗脂肪肝和抗肥胖的研究进展[J].药物评价研究, 2015, 38(4):439-447.
[5] Marjan N A, Hossein H. Review of pharmacological effects of Glycyrrhiza sp. and its bioactive compounds[J]. Phytother Res, 2008, 22(6):709-724.
[6] Wei S, Si L L, Ji S, et al. Uralsaponins M-Y, Antiviral triterpenoid saponins from the roots of Glycyrrhiza uralensis[J]. J Nat Prod, 2014, 77(7):1632-1643.
[7] Zhou B, Wan C X. Phenolic constituents from the aerial parts of Glycyrrhiza inflata and their antibacterial activities[J]. J Asian Nat Prod Res, 2015, 17(3):256-261.
[8] Long C, Derek T N, MinKyun N, et al. Isoprenylated flavonoids from the stem bark of Erythrina abyssinica[J]. J Nat Prod, 2007, 70(6):1039-1042.
[9] Daniela M B, Concetta R, Giuseppe R. New dihydrostilbene derivatives from the leaves of Glycyrrhiza glabra and evaluation of their antioxidant activity[J]. J Nat Prod, 2003, 66(4):477-480.
[10] Augustin E N, Kouam J, Voufo W T, et al. Further flavonoids from Erythrin species[J]. Phytochemistry, 1993, 32(4):1305-1311.
[11] Han M S, Lee I K, Kim Y S, et al. Flavonoids from propolis inhibit DNA single strand breakage by the fenton reaction[J]. J Korean Soc Appl Biol Chem, 2010, 53(4):512-515.
[12] Rajibul A L, Ismail S, Nayan R, et al. Antioxidant activity of Indian propolis and its chemical constituents[J]. Food Chem, 2010, 122(1):233-237.
[13] 王青,苗文娟,向诚,等.乌拉尔甘草中黄酮类化学成分的研究[J].中草药, 2014, 45(1):31-36.
[14] Ma X Q, Zheng C J, Zhang Y, et al. Antiosteoporotic flavonoids from Podocarpium podocarpum[J]. Phytochem Lett, 2013, 6(1):118-122.
[15] 付伟,雷永芳,周道年,等.中日金星蕨黄酮类成分的研究[J].中国药学杂志, 2010, 45(3):166-168.
[16] Wei X H, Yang S J, Liang N, et al. Chemical constituents of Caesalpinia decapetala(Roth) Alston[J]. Molecules, 2013, 18(1):1325-1336.