中草药  2015, Vol. 46 Issue (13): 1989-1995
0
  PDF    
中药成分影响阿尔茨海默病β-淀粉样蛋白靶点的研究进展
杜仕静1,2, 王蕾1,2, 苏萍1,2, 张文生1,2,3     
1. 北京师范大学 中药资源保护与利用北京市重点实验室, 北京 100875;
2. 北京师范大学 教育部天然药物工程研究中心, 北京 100875;
3. 云南省三七生物技术与制药工程研究中心, 云南昆明 650000
摘要:β-淀粉样蛋白(β-amyloid, Aβ)的异常沉积与阿尔茨海默病(Alzheimer's disease, AD)的发生、发展密切相关。以Aβ为靶点, 寻找治疗AD的潜在药物是目前研究的热点。中药具有毒副作用小、多靶点、多途径、多环节的作用特点。总结近10年来国内外文献, 就中药成分通过减少Aβ产生、促进Aβ清除、拮抗Aβ毒性等几个方面阐述其对AD中Aβ靶点的影响。以期为中药成分防治AD的进一步研究提供参考。
关键词阿尔茨海默病     β-淀粉样蛋白     中药     靶点     活性成分    
Research progress in effects of active component from Chinese materia medica
on β-amyloid in Alzheimer's disease
DU Shi-jing1,2, WANG Lei1,2, SU Ping1,2, ZHANG Wen-sheng1,2,3    
1. Beijing Key Laboratory of Protection and Utilization of Chinese Medicine Resources, Beijing Normal University, Beijing 100875, China;
2. Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal University, Beijing 100875, China;
3. Research Center of Sanqi Biotechnology and Pharmaceutical Engineering, Kunming 650000, China
Abstract: Abnormal deposit of β-amyloid (Aβ) is closely related with the genesis and development of Alzheimer's disease (AD). Based on Aβ for target, looking for potential therapeutic agents in the treatment of AD is a hotspot of current research. Chinese materia medica (CMM) has small toxic side effect, with multi-target, multi-channel, and multi-link effect of functions and characteristics. According to vast information from literatures in the last decade, the composition of CMM can reduce Aβ production, promote Aβ clearance, and antagonize its toxicity, thus easing the development of AD. This article summarizes and reviews the research progress on Aβ targeting CMM, in hopes of providing a reference for further study in the future prevention of AD.
Key words: Alzheimer's disease     β-amyloid     Chinese materia medica     target     active component    

阿尔茨海默病(Alzheimer’s disease,AD)是一种神经系统退行性疾病,临床表现为记忆力减退和认知功能障碍。AD的病因十分复杂,其发病机制尚不明确。其中以β-淀粉样蛋白(β-amyloid,Aβ)学说最受关注。该学说认为Aβ异常沉积是AD发病机制的核心环节,在AD的发生、发展过程中起着主导作用。

Aβ是由39~43个氨基酸组成的小分子多肽,经β淀粉样前体蛋白(β-amyloid precursor protein,APP)水解而来。在AD患者脑中过量的Aβ自聚集形成寡聚化Aβ,成为AD发生早期阶段的一个关键性事件。Aβ在胞质中大量聚集沉淀,诱发神经细胞多效应的级联毒性反应,并由此最终导致了AD的其他病理改变[1, 2]。在AD患者脑中,Aβ能通过多种方式造成神经递质不足,导致记忆功能障碍,认知能力下降[3]。同时,Aβ不仅自身能提供氧自由基,还可以诱导蛋白质、核酸以及脂质的过氧化,产生大量自由基,造成神经毒性[4]。此外,Aβ能通过线粒体途径诱发凋亡因子,最终引起细胞凋亡[5]。研究表明,以Aβ为靶点,有些中药活性成分具有调节Aβ代谢、缓解并逆转Aβ造成的损伤,发挥治疗AD的效果。

1 减少产生的中药成分

Aβ是经APP酶解得到的小分子多肽,APP先经β分泌酶(β-site amyloid precursor protein cleaving enzyme 1,BACE1)切割APP671和APP672之间的肽键,生成N末端片段β-APP和C末端片段β-CTF。β-CTF再经γ分泌酶切割在细胞外产生Aβ[6]。常见的Aβ有Aβ1-40和Aβ1-42,其中Aβ1-42更易寡聚化。Aβ寡聚体比Aβ可溶性纤维具有更大的神经毒性[7]。脑内Aβ主要通过细胞外降解,参与脑内Aβ降解的主要是胰岛素降解酶(insulin-degrading enzyme,IDE)和神经内肽酶(neprilysin,NEP)。另外,通过细胞内吞或通过血脑屏障将Aβ转运到外周血液系统等也是清除Aβ的方式。减少Aβ的生成、加速Aβ的清除,阻断Aβ的毒性反应,是保护神经细胞、缓解AD发生、发展的有效措施。

1.1 作用于APP的中药成分

APP是Aβ的前体蛋白[8],APP基因突变和过表达可造成Aβ在体内的过量产生。淫羊藿苷能够降低APPV717I转基因小鼠海马区APP的表达水平,减少Aβ的量[9]。Xia等[10]发现海风藤有效成分毕拨明宁碱/二氢毕拨明宁碱(1︰0.8)可以同时有效抑制SK-N-SH细胞中APP mRNA和蛋白的表达,从而减少Aβ的产生。黄连素ig APP突变小鼠,通过抑制糖原合成酶激酶(glycogen synthase kinase,GSK3)的活性,降低APP的磷酸化水平,并进一步通过AKT/GSK3β信号通路,减少β-CTF的生成,降低可溶性和非可溶性Aβ的产生[11]。未成熟的APP是在内质网上发生N-链接的糖基化,再经过高尔基体等后续加工才成熟。Zhang等[12]在多种稳转APP751的细胞上证明,姜黄素可以影响未成熟的APP在内质网的加工修饰,延缓APP的成熟,降低Aβ的水平。

1.2 作用于BACE1的中药成分

在正常情况下,APP经α分泌酶和γ分泌酶切割,不产生Aβ。只有少量的APP经β分泌酶和γ分泌酶的剪切产生Aβ。AD患者额颞皮层中BACE1的蛋白表达水平和活性都会升高,是引起Aβ过量产生的主要原因[13]。淫羊藿苷[9]、红景天苷[14]、人参皂苷Rg1[15]、姜黄素[16]、三七皂苷R1[17]、黄连素[17]、知母皂苷BII[18]等均能有效降低老年痴呆症模型大鼠或小鼠脑内BACE1的表达水平,从而减少Aβ的产生。过氧化物酶体增殖物激活受体γ(peroxisome proliferator-activated receptor,PPARγ)是BACE1基因启动子上高度保守结合位点之一,能调控BACE1的转录[19]。当PPARγ过表达时,BACE1基因启动子活性减弱;反之,BACE1启动子活性增强。在AD患者脑中,PPARγ蛋白表达水平减少,BACE1表达上升[19]。人参皂苷Rg1能够激活PPARγ,增强核内PPARγ对BACE1的调节活性,从而抑制BACE1的转录翻译,降低BACE1的mRNA和蛋白的表达水平,最终减少Aβ的生成[20]。金属离子可以通过多种机制上调BACE1的转录水平,Lin等[16]发现姜黄素可以和金属离子结合抑制BACE1 mRNA水平的上升。雌激素能够通过调节神经元中BACE1蛋白表达水平,降低AD患者神经细胞中Aβ水平[21]。三七皂苷R1是植物雌激素,具有类雌激素效应,能通过雌激素受体通路,降低BACE1蛋白表达水平[15]。Zhu等[17]进一步研究黄连素对BACE1的作用机制发现,黄连素通过激活细胞外信号调节激酶1/2(extracellular regulated kinase 1/2,ERK1/2)途径,下调BACE1的表达,从而减少Aβ的产生。此外,黄连素还能抑制三氯化铝致痴呆模型兔的海马区内BACE1的活性,从而减少Aβ的产生[22]

1.3 作用于α分泌酶和γ分泌酶的中药成分

由于α分泌酶的切割位点是Aβ序列所在的区域内,细胞膜上的APP经α分泌酶和γ分泌酶切割后得到的是无毒性可溶片段,不会生成Aβ。目前报道的作用于α分泌酶和γ分泌酶的中药成分相对较少。黄芩素可以通过γ-氨基丁酸A型受体途径增强α分泌酶的表达,激活APP的非淀粉样蛋白代谢途径,减少Aβ生成[23]。解整合素样金属蛋白酶10(a disintegrin and metalloproteases10,ADAM 10)是人脑中α分泌酶的主要类型,人参皂苷Rg1能够升高AD模型大鼠海马区ADAM 10的表达水平,从而增加α分泌酶的表达来减少Aβ的生成[15]。同时,人参皂苷Rg1能够提高α分泌酶的活性,增加胞外人可溶性淀粉酶前体蛋白α的分泌,从而减少Aβ的产生[24]。早老素2(presenilin-2,PS2)是γ分泌酶的组成部分之一,姜黄素可以使APP/PS1转基因小鼠脑中PS2合成下降,从而影响γ分泌酶的合成,减少Aβ的产生[25]。另外,实验证实人参皂苷Rg1也能降低γ分泌酶的活性,减少Aβ产生[26]

2 促进清除的中药成分 2.1 作用于IDE的中药成分

IDE在全身组织中广泛分布,尤以肝脏、肾脏、脑中表达丰富。IDE可分解含有β折叠结构的蛋白,如胰岛素和Aβ。IDE是脑内催化Aβ降解的关键酶,是调节大脑Aβ水平的重要因素之一[27]。姜黄素[25]、雷公藤甲素[28]、栀子苷、柚皮素和人参皂苷Rg1可提高痴呆模型大鼠海马内IDE的表达,减少Aβ的沉积[29, 30]。PPARγ能够与过氧化物酶体增长因子反应元件结合后上调IDE的表达,柚皮素和人参皂苷Rg1通过上调PPARγ,提高了IDE的表达,从而降低Aβ1-42的水平[30, 31]

2.2 作用于NEP的中药成分

NEP是锌依赖肽链内切酶,能够有效降解细胞外,尤其是突触附近沉积的单体和寡聚态的Aβ[32]。姜黄素能够提高APP/PS1转基因小鼠脑中NEP的表达量[25]。人参皂苷Rg3可以通过增强NEP基因和蛋白的表达,降低Aβ的累积[33]。在野生型N2a细胞和稳转人典型APP突变的N2a细胞上,发现NEP基因上的CpG岛被高甲基化。高甲基化的NEP启动子与NEP的表达降低有关。姜黄素可以通过CpG岛脱甲基化,恢复NEP基因,上调NEP表达[34]

3 拮抗毒性的中药成分

AD的病理研究中,在神经元和突触间,蓄积的短肽Aβ极易寡聚化,会产生神经毒性。Aβ的多效应神经毒性级联反应是AD发生、发展的核心。它能导致胆碱能神经功能损伤、诱发氧化应激、产生免疫炎症反应、诱导神经元凋亡等。因此,减缓Aβ的毒性效应,能有效改善AD的病理变化。随着研究的深入,发现越来越多的中药可以缓解并拮抗Aβ造成的神经损伤,达到治疗AD的目的。

3.1 作用于胆碱能系统的中药成分

中枢胆碱能系统与学习记忆密切相关,主要分布在基底前脑。神经递质主要是乙酰胆碱(acetylcholine,Ach)。Ach是由乙酰辅酶A和胆碱,经乙酰胆碱转移酶(choline acetyltransferase,ChAT)生成。Ach主要是在神经末梢中合成,生成后便转运到囊泡中,当神经冲动到达时,包裹着大量Ach的囊泡与突触前膜融合,将Ach释放到突触间隙,在突触后膜上有Ach的2种受体,毒蕈碱型受体(M受体)和烟碱型受体(N受体)。当Ach与突触后膜上的Ach受体结合后,就产生下游的神经信号的传导。这时突触间隙间的Ach被乙酰胆碱酯酶(acetylcholin esterase,AchE)迅速水解成胆碱和乙酸,终止突触信号传递。间隙中的胆碱作为Ach的原料,被胆碱能神经末梢回收再利用。

Aβ不仅能使AchE的降解能力下降,还可以促进神经元释放胆碱到细胞外,同时抑制细胞对高亲和力胆碱的摄取,从而减少促进记忆的神经递质Ach的合成[3],最终导致记忆功能障碍、认知能力下降。

目前,已经有多种中药成分能够作用于胆碱能神经系统,改善AD患者的学习记忆能力。其中,丹参酮[35]、双白术内酯[36]、淫羊藿苷[37]都能够降低AchE的表达,减少AchE的量,从而改善记忆。而灯盏细辛[38]、连翘酯苷[39]、丹参酮[40]、甘草苷[41]、肉苁蓉[42]、红景天苷[43]能有抑制AchE的活性,使得Ach的量上升,增强记忆功能。

淫羊藿苷可以抵抗Aβ造成的ChAT的表达量下降,增加Ach的量。核桃仁[44]和地黄[45]提取物可以抵抗Aβ引起AD模型鼠脑中ChAT的活性的下降,缓解Aβ造成的毒性损伤[37]。地黄提取物能升高前脑神经元M受体的密度,抵抗Aβ对胆碱能系统的损伤[45]。齐晓岚等[46]在研究肉苁蓉抗Aβ对神经细胞的毒性作用时发现,肉苁蓉能提高细胞N受体亚基α3和α7的蛋白表达水平,并能对抗Aβ引起的α3和α7受体亚单位蛋白质水平降低。

3.2 作用于自由基与氧化应激的中药成分

机体在进行物质和能量代谢的过程不可避免的会产生活性氧。这些活性氧主要包括活性氧自由基(reactive oxygen species,ROS)和活性氮自由基(reactive nitrogen species,RNS)。超氧化物歧化酶(superoxide dismutase,SOD)、过氧化氢酶(catalase,CAT)、谷胱甘肽过氧化物酶(glutathion peroxidase,GSH-Px)等是机体抗氧化酶,能够有效清除活性氧。当机体受到某种不利刺激时,体内的活性氧成分与抗氧化系统之间的平衡打破,将导致ROS和RNS在体内蓄积,产生氧化应激,最终引起组织氧化损伤。

在AD的发生、发展过程中,细胞外的Aβ能够通过多种方式使氧化应激升高,Aβ不仅自身能提供氧自由基水平,产生活性氧,还可以诱导蛋白质、核酸以及脂质的过氧化,产生大量自由基。氧化应激的加剧反过来又促使Aβ沉积,造成神经毒性。Aβ沉积与氧化损伤之间形成一个恶性循环,加速神经元损伤[4]

丙二醛(malondialdehyde,MDA)是机体代谢过程中产生的物质,被作为检测氧化应激的指标。生姜提取物[47]、知母皂苷[48]、丹参酮IIA[49]、石菖蒲提取物[50]、远志提取物[51]、人参皂苷Rb1[52]、红景天苷[43]都能缓解Aβ引起的MDA的升高。丹参酮IIA[53]、远志提取物[51]、甘草苷[41]、人参皂苷Rb1[52]、三七皂苷R1[54]、肉苁蓉提取物[55]、栀子苷[56]、姜黄素[57]、红景天苷[43]、大蒜提取物[58]能够降低ROS的量,减少Aβ诱导的氧化应激损伤。

机体内的抗氧化酶的量和活性也决定着自由基的水平。研究证实知母皂苷[48]、远志提取物[51]能提高SOD的活性;生姜提取物[47]、姜黄素[59]可上调CAT和SOD的表达;大黄酚[60]、天麻[61]可提高CAT和SOD的活性;丹参酮IIA[49]、石菖蒲提取物[50]、淫羊藿苷[37]、红景天苷[43]可提高SOD和GSH-Px的活性;蒺藜皂苷[62]能提高CAT和GSH-Px的活性。提示以上中药成分能通过提高抗氧化酶的活性,减少ROS的产生,抑制Aβ诱导的氧化应激损伤。进一步研究发现,藁本内酯是通过抑制PI3K/FOXO信号通路、上调其靶基因Mn-SOD与CAT的表达与活性,从而增强内源性抗氧化防御能力[63]。葛根素能够通过激活GSK-3β/Nrf2信号通路,减少ROS的产生,缓解Aβ诱导的氧化应激损伤[64]

3.3 抑制神经元凋亡的中药成分

神经元大量凋亡是AD一个显著的病理变化。Bcl-2是抑制凋亡基因,Bax是促凋亡基因,Bcl-2和Bax是一对互相拮抗的蛋白,当Bcl-2占优势时,细胞色素C不从线粒体释放;反之,则会进入到细胞质[65]。释放到胞质的细胞色素C激活caspase-9,再激活caspase-3,引起核固缩和凋亡的发生。Aβ能上调Bax的表达,抑制Bcl-2的表达,破坏Bax和Bcl-2的平衡,促使凋亡产生[66]。Aβ也能促使caspase-3的激活,引起细胞发生凋亡。

目前,已经发现有多种中药成分能抑制Aβ诱导的神经元凋亡。大黄提取物能增加Bcl-2表达,同时下调Bax表达[67];三七皂苷R1[54]和蛇床子素[68]可以影响Bcl-2/Bax的比率;人参皂苷Rb1[52]和红景天苷[69]不仅可以影响Bcl-2/Bax值,还可降低caspase-3活性,维持线粒体膜电位的稳定,拮抗Aβ毒性。黑水缬草提取物通过激活ERK1/2和Bcl-2信号,抑制Bax通路,从而上调Bcl-2/Bax值,减少Aβ对神经元的损害[70]。葛根素可以上调Bcl-2 mRNA和蛋白的表达,下调Bax mRNA表达,减少细胞色素C释放[71],降低caspase-9活性[72]及caspase-3活性[71]。石菖蒲中的β-细辛醚[73]通过激活CaMKII-α/p-CREB/Bcl-2通路来减少Bcl-2的表达,还能通过ASK1/c-JNK细胞内信号通路抑制Bax蛋白、Caspase-9蛋白和mRNA表达[74],拮抗Aβ毒性。地黄提取物能够抑制Bax表达,维持线粒体膜电位的稳定,减少细胞色素C释放,下调caspase-9、caspase-3的表达,降低caspase-9、caspase-3的活性[75]。丹参酮IIA[49]和远志皂苷[76]均能影响Bcl-2/Bax的比率,减少细胞色素C释放,降低caspase-3活性。栀子苷不仅可以恢复线粒体膜电位,还增强细胞色素C氧化酶活性,减轻线粒体功能障碍[56]。姜黄素不仅可以缓解Aβ诱导的线粒体膜电位去极化,减少细胞质中细胞色素C的量,还可以降低caspase-3的活性,使Aβ诱导活化的caspase-3前体蛋白减少,从而缓解Aβ诱导的神经元凋亡[59]

4 结语

AD作为人类健康的第4大杀手,严重威胁老年人的健康。Aβ在其中起着关键作用。在治疗AD上,中药具有多靶点、多方式、多环节的作用特点。随着研究的不断深入,越来越多的中药成分被发现具有抑制Aβ的产生、加速Aβ的清除、抑制Aβ积累的作用;同时,通过减轻胆碱能功能损伤、抗氧化应激、抑制神经元凋亡等途径拮抗Aβ对神经元的毒性,达到治疗AD的目的。

参考文献
[1] Harper J D, Wong S S, Lieber C M, et al. Observation of metastable Abeta amyloid protofibrils by atomic force microscopy [J]. Chem Biol, 1997, 4(2): 119-125.
[2] Walsh D M, Selkoe D J. Deciphering the molecular basis of memory failure in Alzheimer's disease [J]. Neuron, 2004, 44(1): 181-193.
[3] Parikh V, Bernard C S, Naughton S X, et al. Interactions between Abeta oligomers and presynaptic cholinergic signaling: age-dependent effects on attentional capacities [J]. Behav Brain Res, 2014, 274: 30-42.
[4] Shankar G M, Li S, Mehta T H, et al. Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory [J]. Nat Med, 2008, 14(8): 837-842.
[5] Laferla F M, Tinkle B T, Bieberich C J, et al. The Alzheimer's A beta peptide induces neurodegeneration and apoptotic cell death in transgenic mice [J]. Nat Genet, 1995, 9(1): 21-30.
[6] Vassar R, Bennett B D, Babu-Khan S, et al. Beta-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE [J]. Science, 1999, 286(5440): 735-741.
[7] Wagner S L, Munoz B. Modulation of amyloid beta protein precursor processing as a means of retarding progression of Alzheimer's disease [J]. J Clin Invest, 1999, 104(10): 1329-1332.
[8] Selkoe D J. Alzheimer's disease is a synaptic failure [J]. Science, 2002, 298(5594): 789-791.
[9] Zhang L, Shen C, Chu J, et al. Icariin decreases the expression of APP and BACE-1 and reduces the beta-amyloid burden in an APP transgenic mouse model of Alzheimer's disease [J]. Int J Biol Sci, 2014, 10(2): 181-191.
[10] Xia W, Zeng J P, Chen L B, et al. Inhibition of beta-amyloid precursor protein gene in SK-N-SH cells by piperlonguminine/dihydropiperlonguminine components separated from Chinese herbal medicine Futokadsura stem [J]. Chin J Physiol, 2007, 50(4): 157-163.
[11] Durairajan S S, Liu L F, Lu J H, et al. Berberine ameliorates beta-amyloid pathology, gliosis, and cognitive impairment in an Alzheimer's disease transgenic mouse model [J]. Neurobiol Aging, 2012, 33(12): 2903-2919.
[12] Zhang C, Browne A, Child D, et al. Curcumin decreases amyloid-beta peptide levels by attenuating the maturation of amyloid-beta precursor protein [J]. J Biol Chem, 2010, 285(37): 28472-28480.
[13] Holsinger R M, Mclean C A, Beyreuther K, et al. Increased expression of the amyloid precursor beta- secretase in Alzheimer's disease [J]. Ann Neurol, 2002, 51(6): 783-786.
[14] Li Q Y, Wang H M, Wang Z Q, et al. Salidroside attenuates hypoxia-induced abnormal processing of amyloid precursor protein by decreasing BACE1 expression in SH-SY5Y cells [J]. Neurosci Lett, 2010, 481(3): 154-158.
[15] Zhang X, Wang J, Xing Y, et al. Effects of ginsenoside Rg1 or 17beta-estradiol on a cognitively impaired, ovariectomized rat model of Alzheimer's disease [J]. Neuroscience, 2012, 220: 191-200.
[16] Lin R, Chen X, Li W, et al. Exposure to metal ions regulates mRNA levels of APP and BACE1 in PC12 cells: blockage by curcumin [J]. Neurosci Lett, 2008, 440(3): 344-347.
[17] Zhu F, Wu F, Ma Y, et al. Decrease in the production of beta-amyloid by berberine inhibition of the expression of beta-secretase in HEK293 cells [J]. BMC Neurosci, 2011, 12: 125-132.
[18] Huang J F, Shang L, Liu P, et al. Timosaponin-BII inhibits the up-regulation of BACE1 induced by ferric chloride in rat retina [J]. BMC Complement Altern Med, 2012, 12: 189-196.
[19] Christensen M A, Zhou W, Qing H, et al. Transcriptional regulation of BACE1, the beta-amyloid precursor protein beta-secretase, by Sp1 [J]. Mol Cell Biol, 2004, 24(2): 865-874.
[20] Chen L M, Lin Z Y, Zhu Y G, et al. Ginsenoside Rg1 attenuates beta-amyloid generation via suppressing PPARgamma-regulated BACE1 activity in N2a-APP695 cells [J]. Eur J Pharmacol, 2012, 675(1/3): 15-21.
[21] Nord L C, Sundqvist J, Andersson E, et al. Analysis of oestrogen regulation of alpha-, beta- and gamma- secretase gene and protein expression in cultured human neuronal and glial cells [J]. Neurodegener Dis, 2010, 7(6): 349-364.
[22] Panahi N, Mahmoudian M, Mortazavi P, et al. Effects of berberine on beta-secretase activity in a rabbit model of Alzheimer's disease [J]. Arch Med Sci, 2013, 9(1): 146-150.
[23] Zhang S Q, Obregon D, Ehrhart J, et al. Baicalein reduces beta-amyloid and promotes nonamyloidogenic amyloid precursor protein processing in an Alzheimer's disease transgenic mouse model [J]. J Neurosci Res, 2013, 91(9): 1239-1246.
[24] Shi C, Zheng D D, Fang L, et al. Ginsenoside Rg1 promotes nonamyloidgenic cleavage of APP via estrogen receptor signaling to MAPK/ERK and PI3K/Akt [J]. Biochim Biophys Acta, 2012, 1820(4): 453-460.
[25] Wang P, Su C, Li R, et al. Mechanisms and effects of curcumin on spatial learning and memory improvement in APPswe/PS1dE9 mice [J]. J Neurosci Res, 2014, 92(2): 218-231.
[26] Fang F, Chen X, Huang T, et al. Multi-faced neuroprotective effects of ginsenoside Rg1 in an Alzheimer mouse model [J]. Biochim Biophys Acta, 2012, 1822(2): 286-292.
[27] Kurochkin I V, Goto S. Alzheimer's beta-amyloid peptide specifically interacts with and is degraded by insulin degrading enzyme [J]. FEBS Lett, 1994, 345(1): 33-37.
[28] Cheng S, Leblanc K J, Li L. Triptolide preserves cognitive function and reduces neuropathology in a mouse model of Alzheimer's disease [J]. PLoS One, 2014, 9(9): e108845.
[29] Liu J, Zhang Y, Deng X, et al. Geniposide decreases the level of Abeta1-42 in the hippocampus of streptozotocin-induced diabetic rats [J]. Acta Biochim Biophys Sin, 2013, 45(9): 787-791.
[30] Quan Q, Wang J, Li X, et al. Ginsenoside Rg1 decreases Abeta(1-42)level by upregulating PPARgamma and IDE expression in the hippocampus of a rat model of Alzheimer's disease [J]. PLoS One, 2013, 8(3): e59155.
[31] 杨文青, 马晶, 余华荣. 柚皮素改善阿尔茨海默病模型大鼠的认知能力及其机制研究 [J]. 中草药, 2013, 44(6): 715-720.
[32] Kanemitsu H, Tomiyama T, Mori H. Human neprilysin is capable of degrading amyloid beta peptide not only in the monomeric form but also the pathological oligomeric form [J]. Neurosci Lett, 2003, 350(2): 113-116.
[33] Yang L, Hao J, Zhang J, et al. Ginsenoside Rg3 promotes beta-amyloid peptide degradation by enhancing gene expression of neprilysin [J]. J Pharm Pharmacol, 2009, 61(3): 375-380.
[34] Deng Y, Lu X, Wang L, et al. Curcumin inhibits the AKT/NF-kappaB signaling via CpG demethylation of the promoter and restoration of NEP in the N2a cell line [J]. AAPS J, 2014, 16(4): 649-657.
[35] 谢明, 成志. 丹参酮对阿尔茨海默病样大鼠海马内诱导型一氧化氮合酶mRNA和乙酰胆碱酯酶表达的影响 [J]. 中国现代医学杂志, 2008, 18(8): 1005-1007.
[36] 冯星, 王正濂, 林永成, 等. 双白术内酯对Aβ1-40致痴呆模型大鼠的作用 [J]. 中国药理学通报, 2009, 25(7): 949-951.
[37] 聂晶, 罗勇, 黄燮南, 等. 淫羊藿苷对淀粉样β蛋白片段25-35所致大鼠学习记忆障碍的改善作用 [J]. 中国药理学与毒理学杂志, 2008, 22(1): 31-37.
[38] 郭莉莉, 官志忠. 灯盏细辛提取物对痴呆大鼠学习记忆能力和胆碱酯酶活性的影响 [J]. 时珍国医国药, 2010, 21(10): 2436-2438.
[39] 李长禄, 王红梅, 王立为. 连翘酯苷对拟AD动物模型学习记忆的改善作用 [J]. 山东医药, 2012, 52(44): 4-7.
[40] Yin Y, Huang L, Liu Y, et al. Effect of tanshinone on the levels of nitric oxide synthase and acetylcholinesterase in the brain of Alzheimer's disease rat model [J]. Clin Invest Med, 2008, 31(5): E248-E257.
[41] 刘睿婷, 卞广兴, 邹莉波, 等. 甘草苷的神经保护及对胆碱酯酶的抑制作用 [J]. 中国新药杂志, 2008, 17(7): 574-577.
[42] Wu C R, Lin H C, Su M H. Reversal by aqueous extracts of Cistanche tubulosa from behavioral deficits in Alzheimer's disease-like rat model: relevance for amyloid deposition and central neurotransmitter function [J]. BMC Complement Altern Med, 2014, 14: 202-212.
[43] Zhang J, Zhen Y F, Pu-Bu-Ci-Ren, et al. Salidroside attenuates beta amyloid-induced cognitive deficits via modulating oxidative stress and inflammatory mediators in rat hippocampus [J]. Behav Brain Res, 2013, 244(3): 70-81.
[44] 周丽莎, 朱书秀, 望庐山. 核桃仁提取物对老年痴呆模型大鼠Ach、ChAT及AchE活性的影响 [J]. 中国医院药学杂志, 2011, 31(6): 446-449.
[45] Wang Z, Liu Q, Zhang R, et al. Catalpol ameliorates beta amyloid-induced degeneration of cholinergic neurons by elevating brain-derived neurotrophic factors [J]. Neuroscience, 2009, 163(4): 1363-1372.
[46] 齐晓岚, 顾然, 郝小燕, 等. 肉苁蓉对抗β-淀粉样肽神经细胞的毒性作用研究 [J]. 中国医院药学杂志, 2008, 28(6): 440-442.
[47] Zeng G F, Zhang Z Y, Lu L, et al. Protective effects of ginger root extract on Alzheimer disease-induced behavioral dysfunction in rats [J]. Rejuvenation Res, 2013, 16(2): 124-133.
[48] Ouyang S, Sun L S, Guo S L, et al. Effects of timosaponins on learning and memory abilities of rats with dementia induced by lateral cerebral ventricular injection of amyloid beta- peptide [J]. 第一军医大学学报, 2005, 25(2): 121-126.
[49] Liu T, Jin H, Sun Q R, et al. The neuroprotective effects of tanshinone IIA on beta-amyloid-induced toxicity in rat cortical neurons [J]. Neuropharmacology, 2010, 59(7/8): 595-604.
[50] Liu Z B, Niu W M, Yang X H, et al. Study on perfume stimulating olfaction with volatile oil of Acorus gramineus for treatment of the Alzheimer's disease rat [J]. J Tradit Chin Med, 2010, 30(4): 283-287.
[51] 詹海涛, 李海燕, 曾煦欣, 等. 香港远志提取物对拟阿尔茨海默病大鼠学习记忆的影响及机制 [J]. 中风与神经疾病杂志, 2012, 29(3): 243-245.
[52] Xie X, Wang H T, Li C L, et al. Ginsenoside Rb1 protects PC12 cells against beta-amyloid-induced cell injury [J]. Mol Med Rep, 2010, 3(4): 635-639.
[53] 蒋平, 陈鸣, 吕军, 等. 丹参酮ⅡA对阿尔茨海默病模型大鼠海马MMP-2、iNOS表达及自由基释放的影响 [J]. 第二军医大学学报, 2010, 31(4): 380-384.
[54] Ma B, Meng X, Wang J, et al. Notoginsenoside R1 attenuates amyloid-beta-induced damage in neurons by inhibiting reactive oxygen species and modulating MAPK activation [J]. Int Immunopharmacol, 2014, 22(1): 151-159.
[55] 尹刚, 龚道恺, 刘帮会, 等. 肉苁蓉多糖对阿尔茨海默病大鼠学习记忆及氧化应激影响的实验研究 [J]. 中风与神经疾病杂志, 2013, 30(6): 504-507.
[56] Lv C, Liu X, Liu H, et al. Geniposide attenuates mitochondrial dysfunction and memory deficits in APP/PS1 transgenic mice [J]. Curr Alzheimer Res, 2014, 11(6): 580-587.
[57] Hoppe J B, Frozza R L, Pires E N, et al. The curry spice curcumin attenuates beta-amyloid-induced toxicity through beta-catenin and PI3K signaling in rat organotypic hippocampal slice culture [J]. Neurol Res, 2013, 35(8): 857-866.
[58] Jeong J H, Jeong H R, Jo Y N, et al. Ameliorating effects of aged garlic extracts against Abeta-induced neurotoxicity and cognitive impairment [J]. BMC Complement Altern Med, 2013, 13: 268-278.
[59] Huang H C, Xu K, Jiang Z F. Curcumin-mediated neuroprotection against amyloid-beta-induced mitochondrial dysfunction involves the inhibition of GSK-3beta [J]. J Alzheimers Dis, 2012, 32(4): 981-996.
[60] 朱成琳, 张丹参, 宋金艳, 等. 大黄酚脂质体对阿尔采末病模型小鼠学习记忆的改善作用 [J]. 中国药理学通报, 2012, (7): 978-982.
[61] Zhao X, Zou Y, Xu H, et al. Gastrodin protect primary cultured rat hippocampal neurons against amyloid-beta peptide-induced neurotoxicity via ERK1/2-Nrf2 pathway [J]. Brain Res, 2012, 1482: 13-21.
[62] 张季, 严春临, 张丹参, 等. 蒺藜皂苷对老年痴呆小鼠脑组织中H2O2、CAT、GSH-Px含量及海马超微结构的影响 [J]. 中国老年学杂志, 2011, 31(12): 2258-2260.
[63] 杜俊蓉, 旷喜, 陈娅姝, 等. I3K/AKT信号通路在藁本内酯治疗老年性痴呆有效性中的作用 [J]. 中国药理学与毒理学杂志, 2012, (3): 421-422.
[64] Zou Y, Hong B, Fan L, et al. Protective effect of puerarin against beta-amyloid-induced oxidative stress in neuronal cultures from rat hippocampus: involvement of the GSK-3beta/Nrf2 signaling pathway [J]. Free Radic Res, 2013, 47(1): 55-63.
[65] Petit P X, Susin S A, Zamzami N, et al. Mitochondria and programmed cell death: back to the future [J]. FEBS Lett, 1996, 396(1): 7-13.
[66] Zhang Y, Mclaughlin R, Goodyer C, et al. Selective cytotoxicity of intracellular amyloid beta peptide1-42 through p53 and Bax in cultured primary human neurons [J]. J Cell Biol, 2002, 156(3): 519-529.
[67] Misiti F, Sampaolese B, Mezzogori D, et al. Protective effect of rhubarb derivatives on amyloid beta (1-42) peptide-induced apoptosis in IMR-32 cells: a case of nutrigenomic [J]. Brain Res Bull, 2006, 71(1/3): 29-36.
[68] 董晓华. 蛇床子素对AD大鼠学习记忆的影响及机制研究 [D]. 石家庄: 河北医科大学, 2012.
[69] Zhang L, Yu H, Zhao X, et al. Neuroprotective effects of salidroside against beta-amyloid-induced oxidative stress in SH-SY5Y human neuroblastoma cells [J]. Neurochem Int, 2010, 57(5): 547-555.
[70] Wang Q, Wang C, Shu Z, et al. Valeriana amurensis improves Amyloid-beta 1-42 induced cognitive deficit by enhancing cerebral cholinergic function and protecting the brain neurons from apoptosis in mice [J]. J Ethnopharmacol, 2014, 153(2): 318-325.
[71] Xing G, Dong M, Li X, et al. Neuroprotective effects of puerarin against beta-amyloid-induced neurotoxicity in PC12 cells via a PI3K-dependent signaling pathway [J]. Brain Res Bull, 2011, 85(3/4): 212-218.
[72] Li J, Wang G, Liu J, et al. Puerarin attenuates amyloid-beta-induced cognitive impairment through suppression of apoptosis in rat hippocampus in vivo [J]. Eur J Pharmacol, 2010, 649(1/3): 195-201.
[73] Wei G, Chen Y B, Chen D F, et al. beta-Asarone inhibits neuronal apoptosis via the CaMKII/CREB/Bcl-2 signaling pathway in an in vitro model and AbetaPP/PS1 mice [J]. J Alzheimers Dis, 2013, 33(3): 863-880.
[74] Liu J, Li C, Xing G, et al. Beta-asarone attenuates neuronal apoptosis induced by Beta amyloid in rat hippocampus [J]. Yakugaku Zasshi, 2010, 130(5): 737-746.
[75] Liu J, Li C, Xing G, et al. Beta-asarone attenuates neuronal apoptosis induced by Beta amyloid in rat hippocampus [J]. Yakugaku Zasshi, 2010, 130(5): 737-746.
[76] Liang J H, Du J, Xu L D, et al. Catalpol protects primary cultured cortical neurons induced by Abeta (1-42) through a mitochondrial-dependent caspase pathway [J]. Neurochem Int, 2009, 55(8): 741-746.
[77] 叶海燕, 陈勤. 远志皂苷对Aβ1-40诱导的AD大鼠学习记忆功能障碍的保护作用研究 [J]. 中国新药杂志, 2013, 22(22): 2674-2678.