中草药  2014, Vol. 45 Issue (14): 1984-1988
0
  PDF    
绵枣儿化学成分研究
任福才1,2, 王丽霞2, 王飞2,3, 李宝才1     
1. 昆明理工大学生命科学与技术学院, 云南 昆明 650500;
2. 云南西力生物技术有限公司, 云南 昆明 650201;
3. 中国科学院昆明植物研究所 植物化学与西部资源持续利用国家重点实验室, 云南 昆明 650201
摘要目的 研究绵枣儿Scilla scilloides全草的化学成分。方法 利用硅胶柱色谱及制备液相等技术进行分离纯化,并利用波谱技术鉴定其结构。结果 从绵枣儿全草95%乙醇提取物中分离得到18个化合物,分别鉴定为绵枣儿素(1)、2-羟基- 7-O-甲基绵枣儿素(2)、4’-demethyleucomin(3)、5-羟基-7-甲氧基-3-(4-羟基苯亚甲基) 色原-4-酮(4)、4’-demethyl-3, 9-dihydroeucomin(5)、3’-hydroxy-3, 9-dihydroeucomin(6)、8-O-demethyl-7-O-methyl-3, 9-dihydropunctatin(7)、芹菜素(8)、木犀草素(9)、金圣草黄素(10)、3-脱氢-15-脱氧尤可甾醇(11)、15-脱氧尤可甾醇(12)、4-烯丙基儿茶酚(13)、norlichexanthone(14)、drimiopsin C(15)、6-阿魏酰梓醇(16)、梓苷(17)、黄金树苷(18)。结论 首次从绵枣儿属中分离得到环烯醚萜类化合物(1618);化合物4710和化合物1318为首次从该属植物中分离得到。
关键词绵枣儿     绵枣儿素     芹菜素     木犀草素     金圣草黄素     4-烯丙基儿茶酚     黄金树苷    
Chemical constituents from Scilla scilloides
REN Fu-cai1,2, WANG Li-xia2, WANG Fei2,3, LI Bao-cai1     
1. Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China;
2. BioBioPha Co., Ltd., Kunming 650201, China;
3. State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
Abstract: Objective To study the chemical constituents from Scilla scilloides. Methods The chemical constituents were isolated and purified by column chromatography and their structures were identified by spectral data. Results Eighteen compounds were isolated from S. scilloides. Their structures were identified as scillascillin (1), 2-hydroxy-7-O-methylscillascillin (2), 4'-demethyleucomin (3), 5-hydroxy-7-methoxy-3-(4-hydroxybenzylidene) chroman-4-one (4), 4'-demethyl-3, 9-dihydroeucomin (5), 3'-hydroxy-3, 9-dihydroeucomin (6), 8-O-demethyl-7-O-methyl-3, 9-dihydropunctatin (7), apigenin (8), luteolin (9), chrysoeriol (10), 3-dehydro-15-deoxoeucosterol (11), 15-deoxoeucosterol (12), 4-allylpyrocatechol (13), norlichexanthone (14), drimiopsin C (15), 6-feruloylcatalpol (16), catalposide (17), and specioside (18). Conclusion Iridoids (16-18) are isolated from the genus Scilla L. for the first time. Compounds 4, 7-10, and 13-18 are isolated from the plants of this genus for the first time.
Key words: Scilla scilloides (Lindl.) Druce     scillascillin     apigenin     luteolin     chrysoeriol     4-allylpyrocatechol     specioside    

绵枣儿Scilla scilloides (Lindl.) Druce为百合科(Liliaceae)绵枣属Scilla L. 植物,在较新的分类系统中将绵枣儿编于风信子科(Hyacinthaceae)[1]。而用作中药材的绵枣儿则是绵枣儿属多种植物的干燥鳞茎或全草,绵枣儿在我国古代医学著作中记载比较早,异名较多,如天蒜、地兰、地枣儿、催生草、独叶芹、药狗蒜、地枣等。绵枣儿在全球分布广泛,我国除新疆、西藏、青海、宁夏、贵州和海南外,其他各省均有分布,生长于山坡、草地、路旁或林缘[2]。绵枣儿的干燥鳞茎或全草,可以用作食物,也是一种传统的中药,主要用于治疗心力衰竭及某些心律失常,对心脏具有正性肌力作用,抑制肿瘤细胞等[3]。近些年对绵枣儿的研究较多,并且发现其提取物中化学成分显现出较大的生物活性,绵枣儿中的主要化学成分类型有高异黄酮、三萜及其糖苷、氧杂蒽醌、木脂素等[4,5,6]。为进一步研究该属植物化学成分,开发利用该属植物资源及明确其生物活性的物质基础,本实验对绵枣儿的化学成分进行了较系统的研究,从其全草95%乙醇提取物中共分离得到了18个化合物,分别鉴定为绵枣儿素(scillascillin,1)、2-羟基-7-O-甲基绵枣儿素(2-hydroxy-7-O-methylscillascillin,2)、4′-demethyl- eucomin(3)、5-羟基-7-甲氧基-3-(4-羟基苯亚甲基) 色原-4-酮 [5-hydroxy-7-methoxy-3-(4-hydroxy- benzylidene)chroman-4-one,4]、4′-demethyl-3,9- dihydroeucomin(5)、3′-hydroxy-3,9-dihydroeucomin(6)、8-O-demethyl-7-O-methyl-3,9-dihydropunctatin(7)、芹菜素(apigenin,8)、木犀草素(luteolin,9)、金圣草黄素(chrysoeriol,10)、3-脱氢-15-脱氧尤可甾醇(3-dehydro-15-deoxoeucosterol,11)、15-脱氧尤可甾醇(15-deoxoeucosterol,12)、4-烯丙基儿茶酚(4-allylpyrocatechol,13)、norlichexanthone(14)、drimiopsin C(15)、6-阿魏酰梓醇(6-feruloylcatalpol,16)、梓苷(catalposide,17)、黄金树苷(specioside,18)。化合物4710和化合物1318为首次从该属植物中分离得到;首次从绵枣儿属中分离得到环烯醚萜类化合物(1618)。

1 仪器与材料

Bruker AM—400 MHz和Bruker DRX—500 MHz核磁共振光谱仪;Bruker HCT Esquire 3000液相色谱/质谱联用仪;Büchi中压制备色谱系统(MPLC);Agilent 1200型高效液相色谱仪;Büchi旋转蒸发仪;SHB—3循环式多用真空泵(巩义市予华仪器有限责任公司);ZF—1型三用紫外仪(上海精科实业有限公司);柱色谱硅胶(80~100、200~300目,青岛美高集团有限公司),Sephadex LH-20(瑞典Amersham Biosciences公司),RP18(40~63 μm,德国Merck公司);MCI GEL(CHP 20P,日本三菱化学公司)。

绵枣儿全草2009年8月采于云南思茅,原植物由中国科学院昆明植物研究所陈渝研究员鉴定为百合科植物绵枣儿Scilla scilloides (Lindl.) Druce,样品标本(BBP0208)储存在云南西力生物技术有限公司。

2 提取与分离

干燥的绵枣儿全草粉末用95%工业乙醇室温提取3次,每次3 d,得到约1 936 g浸膏,经硅胶柱色谱分离,以石油醚-丙酮洗脱得10片段(Fr. 1~ 10),Fr. 3(石油醚-丙酮90∶10)经反复硅胶柱色谱(石油醚-丙酮95∶5)结合Sephadex LH-20(氯仿-甲醇1∶1)得到化合物1(323 mg)、3(45 mg)、4(12 mg);Fr. 4(石油醚-丙酮85∶15)经反复硅胶柱色谱(氯仿-甲醇100∶0→95∶5)、制备TLC结合Sephadex LH-20(氯仿-甲醇1∶1)得到化合物2(179 mg)、5(1 221 mg)、6(253 mg)、11(181 mg);Fr. 5(石油醚-丙酮80∶20)经硅胶柱色谱(石油醚-丙酮90∶10)、Sephadex LH-20(氯仿-甲醇1∶1洗脱)分离得到化合物化合物7(47 mg)、8(24 mg)、9(22 mg)、12(474 mg);Fr. 6(石油醚-丙酮70∶30)经硅胶柱色谱(氯仿-甲醇90∶10)、制备TLC、Sephadex LH-20(甲醇-氯仿1∶1)、重结晶分离得到化合物10(7 mg)、13(193 mg)、14(45 mg)、15(116 mg)。Fr. 7(石油醚-丙酮50∶50)组分经反复硅胶柱色谱(氯仿-甲醇85 ∶15)、Sephadex LH-20(甲醇-氯仿1∶1)、RP18色谱(水-甲醇85∶15)得化合物16(29 mg)、17(55 mg)、18(14 mg)。

3 结构鉴定

化合物1:白色粉末。1H-NMR (500 MHz,DMSO-d6) δ: 12.05 (1H,s,5-OH),10.98 (1H,brs,OH-7),6.86 (1H,s,H-2′),6.68 (1H,s,H-5′),5.93 (1H,d,J = 2.0 Hz,H-8),5.92 (2H,s,O-CH2-O),5.90 (1H,d,J = 2.0 Hz,H-6),4.61 (1H,d,J = 11.5 Hz,H-2a),4.51 (1H,d,J = 11.5 Hz,H-2b),3.31 (1H,d,J = 13.5 Hz,H-9a),3.02 (1H,d,J = 13.5 Hz,H-9b);13C-NMR (125 MHz,DMSO-d6) δ: 72.8 (C-2),52.8 (C-3),195.8 (C-4),100.9 (C-4a),163.9 (C-5),96.1 (C-6),166.7 (C-7),94.9 (C-8),163.0 (C-8a),35.2 (C-9),134.6 (C-1′),105.7 (C-2′),146.6 (C-3′),147.8 (C-4′),104.1 (C-5′),135.5 (C-6′),100.0 (O-CH2-O)。上述数据与文献报道一致[7],故鉴定化合物1为绵枣儿素。

化合物2:白色粉末。1H-NMR (500 MHz,DMSO-d6) δ: 11.92 (1H,s,5-OH),7.92 (1H,d,J = 5.5 Hz,2-OH),6.86 (1H,s,H-2′),6.47,6.66 (1H,s,H-5′),6.12 (1H,d,J = 2.5 Hz,H-6),6.08 (1H,d,J = 2.5 Hz,H-8),5.90 (2H,s,O-CH2-O),5.66 (1H,d,J = 5.5 Hz,H-2),3.80 (3H,s,OCH3),3.29,3.09 (2H,d,J = 13.5 Hz,H-9);13C-NMR (125 MHz,DMSO-d6) δ: 103.3 (C-2),57.8 (C-3),195.3 (C-4),100.5 (C-4a),163.4 (C-5),96.0 (C-6),166.8 (C-7),99.0 (C-8),159.7,159.8 (C-8a),31.1,36.5 (C-9),133.4 (C-1′),105.7 (C-2′),146.7 (C-3′),147.9 (C-4′),105.2 (C-5′),135.6 (C-6′),100.0 (O-CH2-O)。上述数据与文献报道一致[8],故鉴定化合物2为2-羟基-7-O-甲基绵枣儿素。

化合物3:黄色粉末。1H-NMR (500 MHz,DMSO-d6) δ: 12.85 (1H,s,5-OH),10.88 (1H,brs,7-OH),10.15 (1H,brs,4′-OH),7.66 (1H,s,H-9),7.31 (2H,d,J = 8.5 Hz,H-2′,6′),6.87 (2H,d,J = 8.5 Hz,H-3′,5′),5.89 (1H,d,J = 2.0 Hz,H-6),5.85 (1H,d,J = 2.0 Hz,H-8),5.33 (2H,d,J = 1.3 Hz,H-2);13C-NMR (125 MHz,DMSO-d6) δ: 67.2 (C-2),126.1 (C-3),184.3 (C-4),101.7 (C-4a),164.4 (C-5),96.2 (C-6),166.8 (C-7),94.8 (C-8),161.9 (C-8a),136.6 (C-9),124.7 (C-1′),132.8 (C-2′),115.8 (C-3′),159.4 (C-4′),115.8 (C-5′),132.8 (C-6′)。上述数据与文献报道一致[8],故鉴定化合物3为4′-demethyleucomin。

化合物4:黄色粉末。1H-NMR (500 MHz,DMSO-d6) δ: 12.83 (1H,s,5-OH),10.21 (1H,s,4′-OH),7.69 (1H,s,H-9),7.33 (2H,d,J = 8.5 Hz,H-2′,6′),6.87 (2H,d,J = 8.5 Hz,H-3′,5′),6.09 (1H,d,J = 2.0 Hz,H-6),6.05 (1H,d,J = 2.0 Hz,H-8),5.38 (2H,d,J = 1.0 Hz,H-2),3.78 (3H,s,-OCH3)。上述数据与文献报道一致[9],故鉴定化合物4为5-羟基-7-甲氧基-3-(4-羟基苯亚甲基) 色原-4-酮。

化合物5:白色粉末。1H-NMR (400 MHz,DMSO-d6) δ: 12.16 (1H,s,5-OH),10.78 (1H,brs,7-OH),9.27 (1H,brs,4′-OH),7.01 (2H,d,J = 8.5 Hz,H-2′,6′),6.68 (2H,d,J = 8.5 Hz,H-3′,5′),5.86 (1H,s,H-6),5.84 (1H,s,H-8),4.23 (1H,dd,J = 11.4,4.4 Hz,H-2a),4.05 (1H,dd,J = 11.4,7.9 Hz,H-2b),2.99 (1H,dd,J = 13.8,4.9 Hz,H-9a),2.93 (1H,dddd,J = 9.7,7.9,4.9,4.4 Hz,H-3),2.57 (1H,dd,J = 13.8,9.7 Hz,H-9b);13C-NMR (100 MHz,CD3COCD3) δ: 69.3 (C-2),46.2 (C-3),197.9 (C-4),101.7 (C-4a),164.8 (C-5),95.4 (C-6),168.2 (C-7),94.8 (C-8),163.7 (C-8a),31.8 (C-9),129.3 (C-1′),130.4 (C-2′),115.7 (C-3′),156.4 (C-4′),115.7 (C-5′),130.4 (C-6′)。上述数据与文献报道一致[10],故鉴定化合物5为4′-demethyl-3,9-dihydroeucomin。

化合物6:白色粉末。1H-NMR (500 MHz,DMSO-d6) δ: 12.16 (1H,s,5-OH),10.82 (1H,brs,7-OH),8.92 (1H,brs,3′-OH),6.82 (1H,d,J = 8.3 Hz,H-5′),6.64 (1H,brs,H-2′),6.59 (1H,brd,J = 8.3 Hz,H-6′),5.86 (1H,s,H-6),5.85 (1H,s,H-8),4.23 (1H,dd,J = 11.4,4.1 Hz,H-2a),4.06 (1H,dd,J = 11.4,8.0 Hz,H-2b),3.72 (3H,s,-OCH3),2.97 (1H,m,H-9a),2.94 (1H,m,H-3),2.54 (1H,m,H-9b);13C-NMR (125 MHz,DMSO-d6) δ: 68.9 (C-2),45.5 (C-3),197.7 (C-4),101.3 (C-4a),163.8 (C-5),95.9 (C-6),166.6 (C-7),94.7 (C-8),162.8 (C-8a),31.3 (C-9),130.6 (C-1′),116.3 (C-2′),146.3 (C-3′),146.4 (C-4′),112.4 (C-5′),119.6 (C-6′),55.7 (-OCH3)。上述数据与文献报道一致[11],故鉴定化合物6为3′-hydroxy-3,9-dihydroeucomin。

化合物7:白色粉末。1H-NMR (500 MHz,DMSO-d6) δ: 11.80 (1H,s,5-OH),9.29 (1H,s,4′-OH),8.22 (1H,s,8-OH),7.02 (2H,d,J = 8.4 Hz,H-2′,6′),6.68 (2H,d,J = 8.4 Hz,H-3′,5′),6.18 (1H,s,H-6),4.26 (1H,dd,J = 11.3,4.2 Hz,H-2a),4.09 (1H,dd,J = 11.4,7.7 Hz,H-2b),3.81 (3H,s,-OCH3),2.99 (1H,dd,J = 13.5,5.4 Hz,H-9a),2.95 (1H,dddd,J = 9.3,7.7,5.4,4.2 Hz,H-3),2.59 (1H,dd,J = 13.5,9.3 Hz,H-9b)。上述数据与文献报道一致[12],故鉴定化合物7为8-O-demethyl-7-O-methyl-3,9- dihydropunctatin。

化合物8:黄色针晶(甲醇)。1H-NMR (500 MHz,DMSO-d6) δ: 12.96 (1H,s,5-OH),10.85 (1H,brs,7-OH),10.37 (1H,brs,4′-OH),7.92 (2H,d,J = 8.4 Hz,H-2′,6′),6.91 (2H,d,J = 8.4 Hz,H-3′,5′),6.78 (1H,s,H-3),6.47 (1H,s,H-8),6.18 (1H,s,H-6);13C-NMR (125 MHz,DMSO-d6) δ: 163.8 (C-2),102.6 (C-3),181.8 (C-4),103.7 (C-4a),161.1 (C-5),98.8 (C-6),164.1 (C-7),94.0 (C-8),157.3 (C-8a),121.3 (C-1′),128.4 (C-2′),116.8 (C-3′),161.5 (C-4′),116.8 (C-5′),128.4 (C-6′)。上述数据与文献报道一致[13],故鉴定化合物8为芹菜素。

化合物9:黄色针晶(醋酸乙酯)。1H-NMR (500 MHz,DMSO-d6) δ: 12.97 (1H,s,5-OH),10.84 (1H,brs,7-OH),9.41,9.43 (各1H,brs,3′,4′-OH),7.40 (1H,dd,J = 8.3,2.0 Hz,H-6′),7.38 (1H,d,J = 2.0 Hz,H-2′),6.87 (1H,d,J = 8.3 Hz,H-5′),6.67 (1H,s,H-3),6.43 (1H,s,H-8),6.18 (1H,s,H-6);13C-NMR (125 MHz,DMSO-d6) δ: 164.0 (C-2),103.0 (C-3),181.7 (C-4),103.8 (C-4a),161.6 (C-5),98.9 (C-6),164.2 (C-7),93.9 (C-8),157.4 (C-8a),119.1 (C-1′),113.5 (C-2′),145.8 (C-3′),149.8 (C-4′),116.1 (C-5′),121.7 (C-6′)。上述数据与文献报道一致[14],故鉴定化合物9为木犀草素。

化合物10:黄色针晶(甲醇)。1H-NMR (400 MHz,DMSO-d6) δ: 12.96 (1H,s,5-OH),10.84 (1H,brs,7-OH),9.97 (1H,brs,4′-OH),7.55 (1H,dd,J = 8.5,2.1 Hz,H-6′),7.54 (1H,d,J = 2.0 Hz,H-2′),6.92 (1H,d,J = 8.5 Hz,H-5′),6.89 (1H,s,H-3),6.50 (1H,s,H-8),6.18 (1H,s,H-6);13C-NMR (100 MHz,DMSO-d6) δ: 163.6 (C-2),103.2 (C-3),181.8 (C-4),103.7 (C-4a),161.4 (C-5),98.8 (C-6),164.1 (C-7),94.0 (C-8),157.3 (C-8a),121.5 (C-1′),110.2 (C-2′),148.0 (C-3′),150.7 (C-4′),115.7 (C-5′),120.3 (C-6′),55.9 (-OCH3)。上述数据与文献报道一致[15],故鉴定化合物10为金圣草黄素。

化合物11:白色粉末。1H-NMR (500 MHz,C5D5N) δ: 0.93 (3H,s,H-18),1.03 (3H,d,J = 6.6 Hz,H-21),1.04 (3H,t,J = 7.3 Hz,H-26),1.28 (3H,s,H-19),1.48 (3H,s,H-30),1.50 (3H,s,H-32),1.40 (1H,t,J = 10.4 Hz,H-12a),1.48 (1H,overlapped,H-1α),1.57~1.82 (6H,overlapped,H-5,6,15,16a),1.91 (1H,m,H-1β),1.94~2.13 (6H,overlapped,H-7,11,12b),2.19 (1H,m,H-20),2.35~2.45 (2H,overlapped,H-2,16b),2.52 (2H,q,J = 7.3 Hz,H-25),2.86 (1H,td,J = 14.3,5.8 Hz,H-2β),3.85 (1H,d,J = 10.9 Hz,H-31),4.41 (1H,d,J = 10.9 Hz,H-31),4.62 (1H,dd,J = 10.4,7.4 Hz,H-23),6.23 (1H,brs,OH)。上述数据与文献报道一致[6],故鉴定化合物11为3-脱氢-15-脱氧尤可甾醇。

化合物12:白色粉末。1H-NMR (400 MHz,CDCl3) δ: 0.89 (3H,s,H-18),0.94 (3H,s,H-19),1.05 (3H,d,J = 7.2 Hz,H-21),1.06 (3H,t,J = 7.4 Hz,H-26),1.22 (3H,s,H-32),1.24 (3H,s,H-30),1.22 (2H,overlapped,H-1α,5),1.31~1.47 (3H,overlapped,H-12a,15),1.64 (2H,overlapped,H-6),1.70~1.86 (5H,overlapped,H-7,11,12b),1.91~2.12 (6H,overlapped,H-2,16,20),2.13~2.26 (2H,overlapped,H-22),2.55 (2H,q,J = 7.4 Hz,H-25),2.62 (1H,d,J = 3.9 Hz,3-OH),2.90 (1H,dd,J = 8.8,2.2 Hz,31-OH),3.34 (1H,t,J = 9.4 Hz,H-31),3.46 (1H,m,H-3),4.24 (1H,dd,J = 11.0,2.2 Hz,H-31),4.53 (1H,dd,J = 10.7,7.4 Hz,H-23)。上述数据与文献报道一致[6],故鉴定化合物12为15-脱氧尤可甾醇。

化合物13:无色油状物。1H-NMR (400 MHz,CDCl3) δ: 3.27 (2H,d,J = 6.6 Hz,H-1′),5.04 (1H,d,J = 9.9 Hz,H-3′),5.06 (1H,d,J = 16.7 Hz,H-3′),5.47 (2H,brs,-OH),5.93 (1H,ddt,J = 16.7,9.9,6.6 Hz,H-2′),6.63 (1H,dd,J = 8.1,1.8 Hz,H-5),6.72 (1H,d,J = 1.8 Hz,H-3),6.80 (1H,d,J = 8.1 Hz,H-3)。上述数据与文献报道一致[16],故鉴定化合物13为4-烯丙基儿茶酚。

化合物14:黄色粉末。1H-NMR (400 MHz,DMSO-d6) δ: 2.70 (3H,s,H-11),6.10 (1H,d,J = 2.0 Hz,H-2),6.25 (1H,d,J = 2.0 Hz,H-4),6.62 (1H,d,J = 1.8 Hz,H-7),6.63 (1H,d,J = 1.8 Hz,H-5)。上述数据与文献一致[17],故鉴定化合物14为norlichexanthone。

化合物15:黄色粉末。1H-NMR (500 MHz,DMSO-d6) δ: 2.70 (3H,s,H-11),3.71 (3H,s,OCH3),6.34 (1H,s,H-4),6.62 (2H,s,H-5,7),13.50 (1H,s,1-OH);13C-NMR (125 MHz,DMSO-d6) δ: 154.6 (C-1),130.6 (C-2),158.0 (C-3),93.3 (C-4),151.8 (C-4a),100.5 (C-5),163.0 (C-6),116.3 (C-7),142.8 (C-8),110.6 (C-8a),181.9 (C-9),102.4 (C-9a),159.0 (C-10a)。上述数据与文献报道一致[18],故鉴定化合物15为drimiopsin C。

化合物16:白色粉末。1H-NMR (400 MHz,CD3OD) δ: 5.16 (1H,d,J = 8.8 Hz,H-1),6.37 (1H,d,J = 5.9 Hz,H-3),4.98 (1H,dd,J = 6.0,4.0 Hz,H-4),2.60 (1H,m,H-5),5.02 (1H,d,J = 7.3 Hz,H-6),3.70 (1H,brs,H-7),2.60 (1H,m,H-9),3.83 (1H,d,J = 13.3 Hz,H-10a),4.17 (1H,d,J = 13.3 Hz,H-10b),3.89 (3H,s,-OCH3),4.79 (1H,d,J = 8.0 Hz,H-1′),3.20~3.44 (4H,m,H-2′,3′,4′,5′),3.65 (1H,dd,J = 11.9,6.3 Hz,H-6′a),3.92 (1H,dd,J = 11.9,2.0 Hz,H-6′b),7.21 (1H,d,J = 1.8 Hz,H-2″),7.10 (1H,dd,J = 8.2,1.8 Hz,H-5″),6.80 (1H,d,J = 8.2 Hz,H-6″),7.66 (1H,d,J = 15.9 Hz,H-7″),6.42 (1H,d,J = 15.9 Hz,H-8″)。上述数据与文献报道一致[19],故鉴定化合物16为6-阿魏酰梓醇。

化合物17:白色粉末。1H-NMR (500 MHz,CD3OD) δ: 5.19 (1H,d,J = 8.9 Hz,H-1),6.37 (1H,dd,J = 5.9,1.3 Hz,H-3),4.99 (1H,dd,J = 5.9,4.0 Hz,H-4),2.65 (1H,m,H-5),5.10 (1H,d,J = 7.3 Hz,H-6),3.74 (1H,brs,H-7),2.65 (1H,m,H-9),3.84 (1H,d,J = 13.1 Hz,H-10a),4.18 (1H,d,J = 13.1 Hz,H-10b),4.79 (1H,d,J = 7.9 Hz,H-1′),3.20~3.44 (4H,m,H-2′,3′,4′,5′),3.64 (1H,dd,J = 12.0,6.5 Hz,H-6′a),3.93 (1H,dd,J = 12.0,2.0 Hz,H-6′b),7.91 (2H,d,J = 8.2 Hz,H-2″,6″),6.84 (2H,d,J = 8.2 Hz,H-3″,5″);13C-NMR (125 MHz,CD3OD) δ: 95.1 (C-1),142.4 (C-3),102.9 (C-4),36.7 (C-5),81.6 (C-6),60.3 (C-7),66.9 (C-8),43.2 (C-9),61.3 (C-10),99.7 (C-1′),74.8 (C-2′),78.7 (C-3′),71.8 (C-4′),77.7 (C-5′),62.9 (C-6′),121.8 (C-1″),133.0 (C-2″),116.3 (C-3″),163.8 (C-4″),116.3 (C-5″),133.0 (C-6″),167.9 (C-7″)。上述数据与文献报道一致[20],故鉴定化合物17为梓苷。

化合物18:白色粉末。1H-NMR (400 MHz,CD3OD) δ: 5.17 (1H,d,J = 8.9 Hz,H-1),6.36 (1H,dd,J = 5.9,1.3 Hz,H-3),4.98 (1H,dd,J = 5.9,4.0 Hz,H-4),2.59 (1H,m,H-5),5.02 (1H,d,J = 7.3 Hz,H-6),3.69 (1H,brs,H-7),2.59 (1H,m,H-9),3.82 (1H,d,J = 13.1 Hz,H-10a),4.17 (1H,d,J = 13.1 Hz,H-10b),4.78 (1H,d,J = 7.9 Hz,H-1′),3.20~3.44 (4H,m,H-2′,3′,4′,5′),3.63 (1H,dd,J = 12.0,6.5 Hz,H-6′a),3.92 (1H,dd,J = 12.0,2.0 Hz,H-6′b),7.48 (2H,d,J = 8.2 Hz,H-2″,6″),6.80 (2H,d,J = 8.2 Hz,H-3″,5″) 7.67 (1H,d,J = 15.9 Hz,H-7″),6.38 (1H,d,J = 15.9 Hz,H-8″)。上述数据与文献报道一致[21],故鉴定化合物18为黄金树苷。

参考文献
[1] 丁开宇, 王 伟, 孙静贤, 等. Giemsa-C带揭示的绵枣儿多倍体复合体染色体变异 [J]. 武汉植物学研究, 2007, 25(5): 421-426.
[2] 邵建章, 张定成, 聂刘旺, 等. 绵枣儿两个不同居群的核型研究 [J]. 安徽师范大学学报: 自然科学版, 1995, 18(4): 40-44.
[3] 李 娜, 赵稳操, 申万祥, 等. 绵枣儿属药学研究概况 [J]. 安徽农业科学, 2011, 39(33): 20385-20386.
[4] Lee S M, Chun H K, Lee C H, et al. Eucosterol oligoglycosides isolated from Scilla scilloides and their anti-tumor activity [J]. Chem Pharm Bull, 2002, 50(9): 1245-1249.
[5] Ono M, Toyohisa D, Morishita T, et al. Three new nortriterpene glycosides and two new triterpene glycosides from the bulbs of Scilla scilloides [J]. Chem Pharm Bull, 2011, 59(11): 1348-1354.
[6] Sholichin M, Miyahara K, Kawasakiet T. Spirocyclic nortriterpenes from bulbs of Scilla scilloides II. New spirocyclic furanoid nortriterpenes and related tetranortriterpene spirolactones [J]. Heterocycles, 1982, 17(1): 251-257.
[7] Barone G, Corsaro M M, Lanzetta R, et al. Homoisoflavanones from Muscari neglectum [J]. Phytochemistry, 1988, 27(3): 921-923.
[8] Nishida Y, Eto M, Miyashita H, et al. A new homostilbene and two new homoisoflavones from the bulbs of Scilla scilloides [J]. Chem Pharm Bull, 2008, 56(7): 1022-1025.
[9] Silayo A, Ngadjui B T, Abegaz B M. Homoisoflavonoids and stilbenes from the bulbs of Scilla nervosa subsp. Rigidifolia [J]. Phytochemistry, 1999, 52(5): 947-955.
[10] Mutanyatta J, Matapa B G, Shushu D D, et al. Homoisoflavonoids and xanthones from the tubers of wild and in vitro regenerated Ledebouria graminifolia and cytotoxic activities of some of the homoisoflavonoids [J]. Phytochemistry, 2003, 62(5): 797-804.
[11] Adinolfi M, Barone G, Lanzetta R, et al. Three 3-benzyl-4-chromanones from Muscari comosum [J]. Phytochemistry, 1985, 24(3): 624-626.
[12] Borgonovo G, Caimi S, Morini G, et al. Taste-active compounds in a traditional Italian food: "Lampascioni" [J]. Chem Biodivers, 2008, 5(6): 1184-1194.
[13] 马俊利, 李金双. 金银忍冬叶的化学成分研究 [J]. 现代药物与临床, 2013, 28(4): 476-479.
[14] 徐小花, 钱士辉, 卞美广, 等. 构树叶的化学成分 [J]. 中国天然药物, 2007, 5(3): 190-192.
[15] Tai B H, Cuong N M, Huong T T, et al. Chrysoeriol isolated from the leaves of Eurya ciliata stimulates proliferation and differentiation of osteoblastic MC3T3- E1 cells [J]. J Asian Nat Prod Res, 2009, 11(9): 817-823.
[16] Rathee J S, Patro B S, Mula S, et al. Antioxidant activity of Piper betel leaf extract and its constituents [J]. J Agric Food Chem, 2006, 54(24): 9046-9054.
[17] Abdel-Lateff A, Klemke C, Konig G M, et al. Two new xanthone derivatives from the algicolous marine fungus Wardomyces anomalus [J]. J Nat Prod, 2003, 66(5): 706-708.
[18] Mulholland D A, Koorbanally C, Crouch N R, et al. Xanthones from Drimiopsis maculate [J]. J Nat Prod, 2004, 67(10): 1726-1728.
[19] Stuppner H, Wagner H. Minor iridoid and phenol glycosides of Picrorhiza kurrooa [J]. Planta Med, 1989, 55(5): 467-469.
[20] El-Naggar S F, Doskotch R W. Specioside: a new iridoid glycoside from Catalpa speciosa [J]. J Nat Prod, 1980, 43(4): 524-526.
[21] Kwak J H, Kim H J, Lee K H, et al. Antioxidative iridoid glycosides and phenolic compounds from Veronica peregrina [J]. Arch Pharm Res, 2009, 32(2): 207-213.