2. 浙江省肿瘤医院 浙江省肿瘤研究所, 浙江 杭州 310022
2. Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou 310022, China
恶性肿瘤已取代心血管疾病成为人类健康的第一大杀手。多年来,尽管肿瘤的治疗已得到明显的改善,然而患者的预后和生存质量仍不尽人意。探寻肿瘤发病机制、寻找新的抗肿瘤方法是肿瘤学研究的热点。DNA甲基化、组蛋白修饰和染色质重塑及RNA分子干扰等[1]一些不涉及DNA序列改变的基因表达调控方式[2],即表观遗传调控在肿瘤发生发展中发挥重要作用[3]。表观遗传改变虽然不改变DNA序列,但同样可以被遗传到子代细胞和子代个体,影响个体发育和肿瘤的发生,导致细胞的恶性转化[4],促进上皮细胞向腺瘤细胞的转化[5],肿瘤特异性DNA甲基化检测可以区别不同肿瘤以及不同正常组织,揭示了肿瘤的异质性原因[6]。
表观遗传改变可以遗传,但是另一方面也可以通过饮食、环境尤其是药物的影响而改变,从而使异常的表观改变恢复正常,达到治疗肿瘤等疾病的目的。天然植物提取物的抗癌活性成分因其高效低毒的特性备受关注,但其抗肿瘤分子机制的研究还不够深入。植物提取物如茶多酚、染料木黄酮、姜黄色素、白藜芦醇、萝卜硫素、烯丙硫醇、番茄红素等可通过表观遗传调控激活抑癌基因,抑制癌基因的表达,诱导癌细胞凋亡等来发挥抑癌作用[7,8,9,10]。本文综述了以上这些常见的植物提取物表观遗传调控抗肿瘤的研究进展。
1 茶多酚茶是饮用最广泛的饮料之一。茶叶中含有的多酚类化合物能有效减少人们罹患疾病如肿瘤的风险。儿茶素是绿茶中最丰富的生物活性化合物,其成分包括:表儿茶素(EC)、表儿茶素没食子酸酯(ECG)、表没食子儿茶素(EGC)和表没食子儿茶素没食子酸酯(EGCG)[11]。EGCG占绿茶活性化合物的50%以上,是儿茶素成分中最有效成分之一,其抗癌特性被广泛研究,研究证明EGCG的摄入量与其抑癌作用呈正相关关系[12,13,14,15,16,17]。
EGCG可以通过诱导细胞凋亡、阻滞细胞周期、抑制氧化应激、抑制血管生成、调控信号转导和抑制癌细胞的增殖[8,18,19]等机制来发挥抗癌作用。Fang等[20]研究表明,EGCG可降低食管癌细胞株KYSE510 DNA甲基转移酶(DNMT)活性,促使抑癌基因去甲基化,如p16INK4a、视黄酸受体(RABβ)、O6-甲基鸟嘌呤-DNA-甲基转移酶(MGMT)和错配修复基因1(hMLH1),恢复它们的表达,从而抑制细胞增殖。Nandakumar等[21]也发现EGCG不仅降低了皮肤癌细胞株A431 DNA总体甲基化水平,也明显下调了DNMT的活性和DNMT1、DNMT3A、DNMT3B的mRNA和蛋白的表达水平,抑癌基因p16INK4a和p21/Cip1的mRNA和蛋白的恢复表达,细胞周期阻滞,生长抑制。
除此之外,EGCG也可以通过组蛋白修饰来发挥抗肿瘤作用。Ko等[22]对肺癌细胞株A549的研究发现,EGCG通过抑制组蛋白乙酰化酶p300/CBP的活性,降低Smad2和Smad3的乙酰化水平,从而阻断了转化生长因子(TGF-β1)调控的上皮间质转化(EMT)信号通路,抑制了肿瘤细胞的转移能力。也有报道EGCG可以抑制细胞周期。Thakur等[23]用人前列腺癌细胞株LNCaP研究发现,EGCG通过抑制组蛋白去乙酰化酶I(HDACsI)来促进p53 Lys373和Lys382位点的乙酰化,从而增强p53蛋白对p21/waf1和Bax基因启动子的结合能力,促进这些基因的转录,将分裂期细胞阻滞在G0/G1期。
Meeran等[24]研究发现EGCG及其前体化合物(pro-EGCG)联合使用能抑制乳腺癌细胞株MCF-7和MDA-MB-231的增殖,对正常乳腺细胞MCF10A无明显影响。此外,二者联合使用影响了乳腺癌细胞端粒酶亚基hTERT启动子区域DNA甲基化和组蛋白乙酰化,从而抑制了hTERT的转录。研究表明,EGCG可单独使用也可与其他表观遗传修饰化合物联合使用,如EGCG与组蛋白去乙酰化酶(HDAC)抑制剂合用,能有效抑制肿瘤。
2 白藜芦醇白藜芦醇存在于多种植物中,包括花生、桑椹、小红莓和蓝莓,但在葡萄皮中量最多。白藜芦醇通过对信号转导通路的影响控制细胞分裂、细胞生长、细胞凋亡、血管生成和肿瘤转移[25]。据报道,白藜芦醇对肝癌、皮肤癌、乳腺癌、前列腺癌、肺癌和结肠癌细胞均有抗增殖作用[26,27]。BALB/c小鼠实验表明白藜芦醇能减少腺癌细胞的转移从而增加小鼠的存活率[28]。
白藜芦醇能够防止肿瘤抑制基因BRCA1的表观沉默,Papoutsis等[29]用白藜芦醇处理MCF-7和MBD2细胞,前者部分恢复H3K9基因和DNMT1基因启动子的甲基化,后者部分恢复BRCA1基因启动子的甲基化。虽然白藜芦醇可抑制MCF-7细胞DNMT的活性,但其无法逆转MCF-7细胞RARβ2和MGMT启动子的甲基化[9,30,31]。
HDAC负责从组蛋白的赖氨酸残基去除乙酰基团。已发现至少18种HDAC同工酶分别被划分成不同亚类,它们与肿瘤的相关性不同,并且有着不同的抑制剂。III类HDACs(长寿蛋白sirtuin)的特定抑制剂SIRT-1不影响I类和II类HDAC的活性[32]。白藜芦醇通过模仿生理途径激发SIRT-1,从而促进SIRT-1下调III类HDACs的表达[33]。此外,白藜芦醇能通过抑制前列腺癌细胞中转移相关蛋白MTA1的表达,导致转移相关蛋白1-核小体重塑去乙酰化复合物(MTA1-NuRD)的稳定性降低,从而促进p53的乙酰化,促进癌细胞凋亡[34]。
3 大豆异黄酮(染料木黄酮)大豆异黄酮存在大豆、蚕豆、葛根中。研究表明,大豆异黄酮具有抗血管生成和抗癌活性,在不同类型的肿瘤中作为药物使用[35]。研究表明大豆异黄酮通过影响组蛋白乙酰化和(或)DNA甲基化来调节基因转录,从而表现出对宫颈癌、前列腺癌、结肠癌和食道癌的抑制作用[36,37]。
大豆异黄酮单独使用或与DNA甲基化抑制剂联合使用可以重激活因甲基化而沉默的基因[38]。神经母细胞瘤(NB)源于神经系统病变,常见于5岁以下儿童。大豆异黄酮通过降低基因启动子区域甲基化水平,增强了染色质解旋酶DNA结合蛋白5(CHD5)以及p53的表达量,有助于抑制肿瘤细胞的生长和NB微血管的形成。大豆异黄酮作为一种DNA甲基转移酶抑制剂显著降低DNMT3B的表达[39]。
对前列腺癌细胞的研究表明,大豆异黄酮通过改变组蛋白乙酰化和基因启动子甲基化的水平促进肿瘤抑制基因p16和p21的表达[10,40,41]。使用低浓度大豆异黄酮(3.125 μmol/L)处理乳腺癌细胞发现GSTP1基因启动子发生去甲基化[42]。Majid等[43]发现肾癌细胞株中BTG3基因启动子高甲基化而表达降低,用大豆异黄酮处理后,通过下调DNA甲基转移酶的活性、上调组蛋白乙酰基转移酶的活性使肾癌细胞BTG3转录水平升高。此外,大豆异黄酮还可以增加组蛋白H3和H4的乙酰化、促进RNA聚合酶II与BTG3启动子的结合。也有研究发现,大豆异黄酮和其他类黄酮物质可以调节多种癌细胞miRNA的表达[44]。
4 姜黄素姜黄素是一种多酚,来源于植物姜黄,其具有抗发炎、抗氧化、抗血管生成和抗癌活性[45,46]。Link等[47]用5-氮杂-2′-脱氧胞苷(5-Aza-CdR)和姜黄素处理结直肠癌细胞株HCT116、HT29和RKO,DNA启动子甲基化芯片实验结果表明,5-Aza-CdR显著降低全基因组甲基化水平,姜黄素虽不能降低全基因组甲基化水平,但能降低特定基因部分甲基化位点的甲基化水平,基因表达谱芯片结果同样验证了这一结论。姜黄素这一选择性去甲基化机制为临床用药的研制和开发提供了新思路。
姜黄素也作为组蛋白的修饰化合物HDAC和组蛋白乙酰转移酶(HAT)抑制剂,Collins等[48]发现姜黄素可以促进乳腺癌细胞MCF7中乙酰化组蛋白H3K18和H4K16总乙酰化水平,而H4K16乙酰化水平的降低与乳腺癌患者高分期、不良预后相关。此外,动物实验结果也同样证实姜黄素在包括肿瘤在内的多种疾病中有抑制HATs和HDACs的能力[49]。姜黄素介导的化学预防主要是通过激活核因子-κB(NF-κB)和PI3K/AKT信号转导通路,通常是诱导细胞周期阻滞和促进细胞凋亡[50]。姜黄素不仅可以影响DNA甲基化和组蛋白乙酰化,还可以改变一些肿瘤细胞株中miRNA的表达谱[51]。
5 大蒜有机硫化合物大蒜一直被用于预防疾病,具有抗菌、抗病毒和抗炎活性。已有大量细胞和动物实验研究大蒜提取物的防癌、抗癌作用,结果表明,大蒜有抑制细胞周期进程、诱导细胞凋亡、抑制血管生成和修饰组蛋白的作用[52]。大蒜中有效成分主要是有机硫化合物,包括S-烯丙基半胱氨酸(SAC)、S-烯丙基硫基半胱氨酸(SAMC)、二烯丙基硫醚(DAS)、二烯丙基二硫醚(DADS)等,其代谢产物之一烯丙基硫醇是组蛋白去乙酰化酶的竞争性抑制剂[53]。Nian等[53]研究发现,大蒜有机硫化合物烯丙基硫醇和其他提取物能抑制组蛋白去乙酰化酶,并促进Sp3对p21/WAF1启动子的黏附,提高p21蛋白的表达量从而抑制细胞周期。也有研究表明,DADS可以发挥类似组蛋白去乙酰化酶抑制剂的作用,诱导乳腺癌细胞的凋亡[54]。
6 其他生物活性成分除上述的生物活性成分外,其他植物活性物质也可通过表观遗传调控来发挥抗肿瘤作用,如萝卜硫素[55]、山竹醇[48]、雷公藤内酯[56]、叶酸[57]等在肿瘤化学预防和治疗中有直接或间接的表观遗传调控靶点。
7 结语与展望植物天然活性成分因其表观遗传修饰作用在各种肿瘤的治疗中有很大的潜力,但也有其缺点,有些特异性较低(DNA甲基化相关药物)或者其靶标酶的底物特异性较低(组蛋白去乙酰化酶相关药物)等[58,59]。DNA甲基化修饰和组蛋白乙酰化修饰是植物活性成分参与表观调控的2种主要的有效方式,因此针对其面临的缺陷,今后的表观药物研究要向定向的或者靶向调控的药物研究转变,以提高药物的肿瘤特异性,提高疗效,降低副作用。肿瘤的发生是一个多步骤的复杂过程,植物提取物如EGCG能通过不同分子靶点,抑制不同信号通路来预防和治疗肿瘤,多种活性成分联合应用可能会更有效。但应用于临床还需要进行一些临床实验研究,如给药剂量、给药途径、器官特异性以及给药受试者的生物利用度。今后的研究重点包括植物提取物的表观遗传修饰机制及其临床适用性研究。
[1] | Herceg Z. Epigenetics and cancer: towards an evaluation of the impact of environmental and dietary factors [J]. Mutagenesis, 2007, 22(2): 91-103. |
[2] | Holliday R. Mechanisms for the control of gene activity during development [J]. Biol Rev Cambridge Philos Soc, 1990, 65(4): 431-471. |
[3] | Issa J P. Cancer prevention: epigenetics steps up to the plate [J]. Cancer Prev Res (Phila), 2008, 1(4): 219-222. |
[4] | Stefanska B, Karlic H, Varga F, et al. Epigenetic mechanisms in anti-cancer actions of bioactive food components-the implications in cancer prevention [J]. Br J Pharmacol, 2012, 167(2): 279-297. |
[5] | Khare S, Verma M. Epigenetics of colon cancer [J]. Methods Mol Biol, 2012, 863: 177-185. |
[6] | Hansen K D, Timp W, Bravo H C, et al. Increased methylation variation in epigenetic domains across cancer types [J]. Nat Genet, 2011, 43(8): 768-775. |
[7] | Landis-Piwowar K R, Milacic V, Dou Q P. Relationship between the methylation status of dietary flavonoids and their growth-inhibitory and apoptosis-inducing activities in human cancer cells [J]. J Cell Biochem, 2008, 105(2): 514-523. |
[8] | Li Y, Tollefsbol T O. Impact on DNA methylation in cancer prevention and therapy by bioactive dietary components [J]. Curr Med Chem, 2010, 17(20): 2141-2151. |
[9] | Paluszczak J, Krajka-Kuzniak V, Baer-Dubowska W. The effect of dietary polyphenols on the epigenetic regulation of gene expression in MCF7 breast cancer cells [J]. Toxicol Lett, 2010, 192(2): 119-125. |
[10] | Majid S, Kikuno N, Nelles J, et al. Genistein induces the p21WAF1/CIP1 and p16INK4a tumor suppressor genes in prostate cancer cells by epigenetic mechanisms involving active chromatin modification [J]. Cancer Res, 2008, 68(8): 2736-2744. |
[11] | Graham H N. Green tea composition, consumption, and polyphenol chemistry [J]. Prev Med, 1992, 21(3): 334-350. |
[12] | Lin J K, Liang Y C, Lin-Shiau S Y, et al. Cancer chemoprevention by tea polyphenols through mitotic signal transduction blockade [J]. Biochem Pharmacol, 1999, 58(6): 911-915. |
[13] | Shanmugam M K, Kannaiyan R, Sethi G. Targeting cell signaling and apoptotic pathways by dietary agents: role in the prevention and treatment of cancer [J]. Nutr Cancer, 2011, 63(2): 161-173. |
[14] | Chen P N, Chu S C, Kuo W H, et al. Epigallocatechin-3 gallate inhibits invasion, epithelial-mesenchymal transition, and tumor growth in oral cancer cells [J]. J Agric Food Chem, 2011, 59(8): 3836-3844. |
[15] | Tu S H, Ku C Y, Ho C T, et al. Tea polyphenol (?)-epigallocatechin-3-gallate inhibits nicotine-and estrogen-induced alpha 9-nicotinic acetylcholine receptor upregulation in human breast cancer cells [J]. Mol Nutr Food Res, 2011, 55(3): 455-466. |
[16] | Kürbitz C, Heise D, Redmer T, et al. Epicatechin gallate and catechin gallate are superior to epigallocatechin gallate in growth suppression and anti-inflammatory activities in pancreatic tumor cells [J]. Cancer Sci, 2011, 102(4): 728-734. |
[17] | 仉燕崃, 李 楠, 韩国柱, 等. 表没食子儿茶素没食子酸酯的研究进展 [J]. 中草药, 2006, 37(2): 303-306. |
[18] | Farabegoli F, Papi A, Bartolini G, et al. (?)- Epigallocatechin-3-gallate downregulates Pg-P and BCRP in a tamoxifen resistant MCF-7 cell line [J]. Phytomedicine, 2010, 17(5): 356-362. |
[19] | Balasubramanian S, Adhikary G, Eckert R L. The Bmi-1 polycomb protein antagonizes the (?)-epigallocatechin- 3-gallate-dependent suppression of skin cancer cell survival [J]. Carcinogenesis, 2010, 31(3): 496-503. |
[20] | Fang M Z, Wang Y, Ai N, et al. Tea polyphenol (?)-epigallocatechin-3-gallate inhibits DNA methyl- transferase and reactivates methylation-silenced genes in cancer cell lines [J]. Cancer Res, 2003, 63(22): 7563- 7570. |
[21] | Nandakumar V, Vaid M, Katiyar S K. (?)- Epigallocatechin-3-gallate reactivates silenced tumor suppressor genes, Cip1/p21 and p16INK4a, by reducing DNA methylation and increasing histones acetylation in human skin cancer cells [J]. Carcinogenesis, 2011, 32(4): 537-544. |
[22] | Ko H, So Y, Jeon H, et al. TGF-β1-induced epithelial-mesenchymal transition and acetylation of Smad2 and Smad3 are negatively regulated by EGCG in human A549 lung cancer cells [J]. Cancer Lett, 2013, 335(1): 205-213. |
[23] | Thakur V S, Gupta K, Gupta S. Green tea polyphenols increase p53 transcriptional activity and acetylation by suppressing class I histone deacetylases [J]. Int J Oncol, 2012, 41(1): 353-361. |
[24] | Meeran S M, Patel S N, Chan T H, et al. A novel prodrug of epigallocatechin-3-gallate: differential epigenetic hTERT repression in human breast cancer cells [J]. Cancer Prev Res (Phila), 2011, 4(8): 1243-1254. |
[25] | Bishayee A, Waghray A, Barnes K F, et al. Suppression of the inflammatory cascade is implicated in resveratrol chemoprevention of experimental hepatocarcinogenesis [J]. Pharm Res, 2010, 27(6): 1080-1091. |
[26] | Vanamala J, Reddivari L, Radhakrishnan S, et al. Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways [J]. BMC Cancer, 2010, 10: 238-251. |
[27] | Liu P L, Tsai J R, Charles A L, et al. Resveratrol inhibits human lung adenocarcinoma cell metastasis by suppressing heme oxygenase 1-mediated nuclear factor-kappaB pathway and subsequently downregulating expression of matrix metalloproteinases [J]. Mol Nutr Food Res, 2010(Suppl 2): 196-204. |
[28] | Weng Y L, Liao H F, Li A F, et al. Oral administration of resveratrol in suppression of pulmonary metastasis of BALB/c mice challenged with CT26 colorectal adenocarcinoma cells [J]. Mol Nutr Food Res, 2010, 54(2): 259-267. |
[29] | Papoutsis A J, Lamore S D, Wondrak G T, et al. Resveratrol prevents epigenetic silencing of BRCA-1 by the aromatic hydrocarbon receptor in human breast cancer cells [J]. J Nutr, 2010, 140(9): 1607-1614. |
[30] | Stefanska B, Rudnicka K, Bednarek A, et al. Hypomethylation and induction of retinoic acid receptor beta 2 by concurrent action of adenosine analogues and natural compounds in breast cancer cells [J]. Eur J Pharmacol, 2010, 638(1/3): 47-53. |
[31] | Paluszczak J, Krajka-Ku?niak V, Ma?ecka Z, et al. Frequent gene hypermethylation in laryngeal cancer cell lines and the resistance to demethylation induction by plant polyphenols [J]. Toxicol In Vitro, 2011, 25(1): 213-221. |
[32] | Pruitt K, Zinn R L, Ohm J E, et al. Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation [J]. PLoS Genet, 2006, 2(3): e40. |
[33] | Borra M T, Smith B C, Denu J M. Mechanism of human SIRT1 activation by resveratrol [J]. J Biol Chem, 2005, 280(17): 17187-17195. |
[34] | Kai L, Samuel S K, Levenson A S. Resveratrol enhances p53 acetylation and apoptosis in prostate cancer by inhibiting MTA1/NuRD complex [J]. Int J Cancer, 2010, 126(7): 1538-1548. |
[35] | Barnes S. Effect of genistein on in vitro and in vivo models of cancer [J]. J Nutr, 1995, 125(Suppl 3): 777-783. |
[36] | Vardi A, Bosviel R, Rabiau N, et al. Soy phytoestrogens modify DNA methylation of GSTP1, RASSF1A, EPH2 and BRCA1 promoter in prostate cancer cells [J]. In Vivo, 2010, 24(4): 393-400. |
[37] | Lattrich C, Lubig J, Springwald A, et al. Additive effects of trastuzumab and genistein on human breast cancer cells [J]. Anticancer Drugs, 2011, 22(3): 253-261. |
[38] | Raynal N J, Charbonneau M, Momparler L F, et al. Synergistic effect of 5-Aza-2'-deoxycytidine and genistein in combination against leukemia [J]. Oncol Res, 2008, 17(5): 223-230. |
[39] | Li H, Xu W, Huang Y, et al. Genistein demethylates the promoter of CHD5 and inhibits neuroblastoma growth in vivo [J]. Int J Mol Med, 2012, 30(5): 1081-1086. |
[40] | Kikuno N, Shiina H, Urakami S, et al. Genistein mediated histone acetylation and demethylation activates tumor suppressor genes in prostate cancer cells [J]. Int J Cancer, 2008, 123(3): 552-560. |
[41] | Majid S, Dar A A, Shahryari V, et al. Genistein reverses hypermethylation and induces active histone modifications in tumor suppressor gene B-Cell translocation gene 3 in prostate cancer [J]. Cancer, 2010, 116(1): 66-76. |
[42] | King-Batoon A, Leszczynska J M, Klein C B. Modulation of gene methylation by genistein or lycopene in breast cancer cells [J]. Environ Mol Mutagen, 2008, 49(1): 36-45. |
[43] | Majid S, Dar A A, Ahmad A E, et al. BTG3 tumor suppressor gene promoter demethylation, histone modification and cell cycle arrest by genistein in renal cancer [J]. Carcinogenesis, 2009, 30(4): 662-670. |
[44] | Li Y, Vanden Boom T G, Kong D, et al. Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine- resistant pancreatic cancer cells [J]. Cancer Res, 2009, 69(16): 6704-6712. |
[45] | 李小江, 贾英杰, 张文治, 等. 姜黄素对A549细胞亚群SP及NON-SP细胞凋亡的诱导作用 [J]. 中草药, 2013, 44(18): 2581-2584. |
[46] | 狄建彬, 顾振纶, 赵笑东, 等. 姜黄素的抗氧化和抗炎作用研究进展 [J]. 中草药, 2010, 41(5): 附18-附21. |
[47] | Link A, Balaguer F, Shen Y, et al. Curcumin modulates DNA methylation in colorectal cancer cells [J]. PLoS One, 2013, 8(2): e57709. |
[48] | Collins H M, Abdelghany M K, Messmer M, et al. Differential effects of garcinol and curcumin on histone and p53 modifications in tumour cells [J]. BMC Cancer, 2013, 13: 37-47. |
[49] | Morimoto T, Sunagawa Y, Kawamura T, et al. The dietary compound curcumin inhibits p300 histone acetyl- transferase activity and prevents heart failure in rats [J]. J Clin Invest, 2008, 118(3): 868-878. |
[50] | Reuter S, Eifes S, Dicato M, et al. Modulation of anti-apoptotic and survival pathways by curcumin as a strategy to induce apoptosis in cancer cells [J]. Biochem Pharmacol, 2008, 76(11): 1340-1351. |
[51] | Ali S, Ahmad A, Banerjee S, et al. Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF [J]. Cancer Res, 2010, 70(9): 3606-3617. |
[52] | Nian H, Delage B, Ho E, et al. Modulation of histone deacetylase activity by dietary isothiocyanates and allyl sulfides: studies with sulforaphane and garlic organosulfur compounds [J]. Environ Mol Mutagen, 2009, 50(3): 213-221. |
[53] | Nian H, Delage B, Pinto J T, et al. Allyl mercaptan, a garlic-derived organosulfur compound, inhibits histone deacetylase and enhances Sp3 binding on the P21WAF1 promoter [J]. Carcinogenesis, 2008, 29(9): 1816-1824. |
[54] | Altonsy M O, Habib T N, Andrews S C. Diallyl disulfide-induced apoptosis in a breast-cancer cell line (MCF-7) may be caused by inhibition of histone deacetylation [J]. Nutr Cancer, 2012, 64(8): 1251-1260. |
[55] | Rajendran P, Kidane A I, Yu T W, et al. HDAC turnover, CtIP acetylation and dysregulated DNA damage signaling in colon cancer cells treated with sulforaphane and related dietary isothiocyanates [J]. Epigenetics, 2013, 8(6): 612-623. |
[56] | Zhou Z L, Yang Y X, Ding J, et al. Triptolide: structural modifications, structure-activity relationships, bioactivities, clinical development and mechanisms [J]. Nat Prod Rep, 2012, 29(4): 457-475. |
[57] | Gao S, Ding L H, Wang J W, et al. Diet folate, DNA methylation and polymorphisms in methylenetetra- hydrofolate reductase in association with the susceptibility to gastric cancer [J]. Asian Pac J Cancer Prev, 2013, 14(1): 299-302. |
[58] | Rius M, Lyko F. Epigenetic cancer therapy: rationales, targets and drugs [J]. Oncogene, 2012, 31(39): 4257-4265. |
[59] | Mund C, Lyko F. Epigenetic cancer therapy: Proof of concept and remaining challenges [J]. Bioessays, 2010, 32(11): 949-957. |