[关键词]
[摘要]
中药提取工艺放大是实现实验室研究向工业化生产转化的核心环节,随着中药产业的快速发展,中药提取工艺放大面临诸多关键问题,如多因素耦合导致的参数波动、动力学机制不明引起的跨尺度放大失稳以及传统放大理论失效导致的质量差异等。近年来,随着过程分析技术(process analytical technology,PAT)的快速发展,其在中药提取工艺放大中的应用日益受到关注。PAT通过实时监测和解析中药提取过程中的关键参数,通过优化提取工艺、建立精确模型、实现动态调控与反馈控制等手段,提高中药提取工艺放大的效率和稳定性,为工艺放大提供了有力的数据支持。通过对PAT在提取工艺放大中的应用进行综述,系统阐述了数据采集、过程建模和动态反馈技术的研究现状,分析了提取工艺放大目前面临的问题与挑战,以期为推动PAT在中药制造工业中的应用提供借鉴,助推中药行业智能化转型升级及高质量发展。
[Key word]
[Abstract]
The scale-up of traditional Chinese medicine (TCM) extraction processes is a crucial step in transitioning from laboratory research to industrial production. With the rapid development of the TCM industry, the scale-up of TCM extraction processes faces numerous key challenges, such as parameter fluctuations caused by multi-factor coupling, instability in cross-scale amplification due to unclear kinetic mechanisms, and quality variations resulting from the failure of traditional scaling-up theories. In recent years, with the rapid advancement of process analytical technology (PAT), its application in the scale-up of TCM extraction processes has garnered increasing attention. PAT enhances the efficiency and stability of TCM extraction process scale-up by real-time monitoring and analyzing key parameters during the extraction process, optimizing extraction techniques, establishing precise models, and implementing dynamic regulation and feedback control. This provides robust data support for process scale-up. This review summarizes the application of PAT in extraction process scale-up, systematically elaborates on the current research status of data acquisition, process modeling, and dynamic feedback techniques, and analyzes the current problems and challenges faced by extraction process scale-up. It aims to provide insights for promoting the application of PAT in the TCM manufacturing industry, therebyfacilitating the intelligent transformation, upgrading, and high-quality development of the TCM industry.
[中图分类号]
R284.1
[基金项目]
江西省自然科学基金项目(20252BAC240049);全国重点实验室自主部署重点研发计划项目(20243BCC31010);江西省教育厅科学技术研究项目(GJJ2400801);博士科研启动基金项目(2023WBZR007);江西中医药大学科技创新团队项目(CXTD22006)