[关键词]
[摘要]
目的 建立管花肉苁蓉Cistanche tubulosa组织培养体系,并考察干旱胁迫对其中苯乙醇苷类成分含量的影响。方法 通过液质联用技术分析管花肉苁蓉愈伤组织与悬浮培养体系中的主要化学成分,绘制其生长曲线,并通过渗透压调节剂(NaCl、甘露醇和PEG6000)模拟干旱胁迫环境,考察组织培养体系中松果菊苷和毛蕊花糖苷含量的变化。结果 管花肉苁蓉愈伤组织与悬浮培养细胞均能生成松果菊苷和毛蕊花糖苷;绘制管花肉苁蓉愈伤组织生长曲线,确定30 d为最佳继代时间;NaCl和甘露醇所诱导的干旱胁迫不利于愈伤组织细胞的生长及其苯乙醇苷类成分的积累,而6% PEG6000能显著促进悬浮细胞中苯乙醇苷类化合物的生成,诱导15 d后,松果菊苷和毛蕊花糖苷的生物量分别为(1.07±0.10)g/L和(0.12±0.01)g/L,分别可达细胞干质量的20.94%和2.27%,为对照组的1.29倍和1.19倍。结论 PEG6000介导的干旱胁迫对管花肉苁蓉悬浮细胞中松果菊苷和毛蕊花糖苷的积累有明显促进作用。
[Key word]
[Abstract]
Objective To establish the plant tissue culture system of Cistanche tubulosa, and determine the effect of drought stress on accumulation of two respective phenylethanoid glycosides in it. Methods The major chemical constituents of C. tubulosa by tissue culture were analyzed by HPLC-UV and HR-MS. The cell growth curves were also determined. In addition, the effects of drought stress on the phenylethanoid glycosides (echinacoside and acteoside) content in the tissue culture system of C. tubulosa were also studied by using NaCl, mannitol and PEG6000 as osmotic regulators, respectively. Results Chemical constituents analyses revealed that callus and suspension cultures of C. tubulosa could produce the respective phenylethanoid glycosides of echinacoside and acteoside as in wild plant; Cell growth curves indicated that 30 d were the optimum culture period of callus culture; The cell growth rate and the accumulation of echinacoside and acteoside were mostly inhibited when the callus cells were under drought stress induced by NaCl or mannitol. Meanwhile, the accumulation of echinacoside and acteoside in cell suspension culture of C. tubulosa could be effectively enhanced by treatment with PEG6000. The maximum biomass of echinacoside and acteoside could reach to (1.07 ±0.10) g/L and (0.12 ±0.01) g/L 15 d after induction, respectively. And their contents were 20.94% and 2.27% separately based on the cell dry weight (DW) after 15 d of treatment with 6% PEG6000, which were 1.29 and 1.19 fold higher than the control group. Conclusion Drought stress induced by PEG6000 could effectively enhance the accumulation of echinacoside and acteoside in cell suspension culture of C. tubulosa.
[中图分类号]
R282.21
[基金项目]
中国科协青年人才托举项目(CACM-2018-QNRC1-02);北京中医药大学杰出青年人才资助项目(2018-JYB-XJQ006)