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tissue in cancer cachexia (CC) using lipidomics and transcriptomics. Methods A random number table was used to divide 50 male
mice into control group, model group, APS low-, medium-and high-dose (200, 400, 800 mg/kg) groups, with 10 mice in each group.
CC model was constructed using abdominal sc CT-26 colorectal cancer cells. The treatment group was given 0.2 mL APS solution by
ig daily, while the control group and model group were given an equal volume of physiological saline by ig for four consecutive weeks.
The diameter of epididymal adipocytes was evaluated using hematoxylin-eosin (HE) staining; ELISA method was used to detect the
levels of tumor necrosis factor-a (TNF-a), interleukin-6 (IL-6), cyclic adenosine monophosphate (cAMP) in epididymal adipose tissue
and level of free fatty acids (FFA) in plasma. After effectiveness and significance verification, transcriptome and lipidomics sequencing
were performed on control group, model group and APS high-dose group to screen differentially expressed genes (DEGs) and
differentially expressed lipids (DELs), and enrichment analysis was performed; Western blotting was used to verify the expressions of
relevant proteins. Results High-dose APS significantly alleviated inflammatory infiltration in epididymal adipose tissue and reversed
adipocyte atrophy (P < 0.01), significantly reduced the levels of TNF-a, IL-6, cAMP in adipose tissue and level of FFA in plasma (P <
0.01, 0.001), indicating that high-dose APS inhibits inflammation and lipolysis reactions in adipocytes. The lipidomics results showed
that high-dose APS intervention reduced the expression levels of 66 DELs, including ceramides and their modifications,
triacylglycerols, etc. Metabolic pathway enrichment analysis showed that these DELs mainly involved glycerophospholipid
metabolism and sphingolipid metabolism pathways. The transcriptomic results showed that the phosphatidylinositol 3-kinase (PI3K)-
protein kinase B (Akt) pathway was repeatedly enriched in DEGs, indicating that this pathway may be the core pathway for APS to
function. In addition, the expressions of 18 DEGs was significantly down-regulated by APS, and the gene interaction network diagram
showed that these genes had complex interactions with Akt. Western blotting results confirmed that APS intervention reversed the
expression levels of Tribbles homologous protein 3 (TRIB3), phosphorylated Akt (p-Akt), phosphodiesterase 3B (PDE3B),
phosphorylated protein kinase A (p-PKA), phosphorylated hormone sensitive lipase (p-HSL) and adipose triglyceride lipase (ATGL)
(P <0.05,0.01,0.001). Conclusion APS may alleviate inflammation in adipose tissue, reduce the synthesis of sphingolipids such as
ceramides, regulate TRIB3-Akt axis, restore insulin resistance to lipolysis, promote lipid signaling, and improve the consumption of
CC adipose tissue.
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A, B-OPLS-DA score plot and permutation test plot in positive ion mode; C, D-OPLS-DA score plot and permutation test plot in negative ion mode; E-

expressions of top 15 DELs in model group vs control group; F-enrichment analysis plot of regulated lipid metabolic pathways; G-heatmap of regulated

lipid expression levels; APS-H-APS high-dose group, same as Figs. 4, 5.

3 APS X} CC/NRBERFALBERBBIFND (n=8)
Fig.3 Effect of APS on lipid metabolism in adipose tissue of CC mice (n = 8)
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enrichment analysis plots of 18 regulated genes; H-interaction relationship diagram between regulated genes and Akt.

4 APS X CC/MNRAERBAEEE RN (n=3)
Fig. 4 Effect of APS on gene transcription in adipose tissue of CC mice (n =3)
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Table 1 Transcriptional levels of 18 callback genes

- o TR 2] vt} B 2 APSE 7 H s A 2H
TR S s log2FC Pl sl logoFC Pl Hadh
ENSMUSG00000015944 Castor? 1.19 0.000 4 1 “127 0.000 3 l
ENSMUSG00000007655 Cavl -220 0.000 2 | 122 0.029 0 1
ENSMUSG00000025150 Chr2 ~1.61 0.000 3 | 1.19 0.0255 1
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1305 L, |FR T,
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Fig. 6 Mechanism of APS in improving adipose tissue wasting in CC
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