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摘  要：目的  探索卓尼柴胡多糖（Zhuoni Radix Bupleuri polysaccharide，ZRBP）的理化特性和降血糖潜力，为卓尼柴胡的

精深开发提供一定的研究基础和理论支撑。方法  经水提醇沉、Sevag 法除蛋白后得到卓尼柴胡粗多糖（crude Zhuoni Radix 

Bupleuri polysaccharide，C-ZRBP），Sephadex G-200 柱色谱分离后得到卓尼柴胡多糖（Zhuoni Radix Bupleuri polysaccharide，

ZRBP）；并通过 HPLC、FT-IR、单糖组成分析、甲基化实验、刚果红实验、扫描电子显微镜（scanning electron microscope，

SEM）、热重分析（thermogravimetric analysis，TGA）对 ZRBP 的理化特性进行研究；通过 α-淀粉酶和 α-葡萄糖苷酶的抑制

实验及 HepG2-IR 模型对 ZRBP 降血糖潜力进行评价。结果  ZRBP 的平均相对分子质量为 1.52×106，糖质量分数为（95.87±

0.26）%；主要单糖组成为甘露糖∶鼠李糖∶半乳糖醛酸∶葡萄糖∶半乳糖∶阿拉伯糖（3.43∶1.37∶1.62∶79.77∶7.90∶

4.97）；其骨架结构主要由→5)-Araf-(1→、→4)-Glcp-(1→、→6)-Manp-(1→、→6)-Galp-(1→和→3)-Rhap-(1→组成；可能有螺

旋结构，表观形貌呈多网孔片状，热稳定性良好。ZRBP 对 α-淀粉酶和 α-葡萄糖苷酶均有抑制作用，抑制效果与质量浓度成

正相关，半数抑制浓度（half maximal inhibitory concentration，IC50）分别为 19.825、1.064 mg/mL；当 ZRBP 质量浓度达到

75 μg/mL 时，对 HepG2-IR 模型的胰岛素抵抗具有显著的改善作用（P＜0.05），且改善效果显著优于其他浓度（P＜0.05）。

结论  ZRBP 具有降血糖活性开发的潜力，为卓尼柴胡及其多糖资源的开发利用提供参考和研究基础。 
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Abstract: Objective  To explore the physicochemical properties and hypoglycemic potential of Zhuoni Radix Bupleuri polysaccharide 

(ZRBP), providing a research foundation and theoretical support for the in-depth development and utilization of Zhuoni Radix Bupleuri. 

Methods  Crude Zhuoni Radix Bupleuri polysaccharide (C-ZRBP) was obtained via water extraction, alcohol precipitation, and 

protein removal using the Sevag method. ZRBP was isolated via Sephadex G-200 column chromatography. The physicochemical 

properties of ZRBP were analyzed using HPLC, FT-IR, monosaccharide composition analysis, methylation analysis, Congo red assay, 
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scanning electron microscope (SEM), and thermogravimetric analysis (TGA). The hypoglycemic potential was evaluated through α-

amylase and α-glucosidase inhibition assays, as well as an insulin-resistant HepG2 (HepG2-IR) cell model experiment. Results  The 

average molecular weight of ZRBP is 1.52 × 106, with a carbohydrate content of (95.87 ± 0.26)%. Its monosaccharide composition ratio 

was determined as mannose-rhamnose-galacturonic acid-glucose-galactose-arabinose 3.43︰1.37︰1.62︰79.77︰ 7.90︰ 4.97. The 

backbone structure of ZRBP was mainly composed of →5)-Araf-(1→, →4)-Glcp-(1→, →6)-Manp-(1→, →6)-Galp-(1→, and →3)-

Rhap-(1→. ZRBP exhibited a helical structure, a porous flake-like morphology, and good thermal stability. It inhibited both α-amylase 

and α-glucosidase in a concentration-dependent manner, with half maximal inhibitory concentration (IC₅₀) values of 19.825 mg/mL 

and 1.064 mg/mL, respectively. At 75 μg/mL, ZRBP significantly ameliorated insulin resistance in the HepG2-IR model (P < 0.05), 

and the effect was significantly better than other concentrations (P < 0.05). Conclusion  ZRBP demonstrates promising hypoglycemic 

activity and development potential, offering valuable insights and a foundational basis for the exploitation of Zhuoni Radix Bupleuri 

and its polysaccharide resources. 

Key words: Bupleurum chinense DC.; Zhuoni Radix Bupleuri; polysaccharide; isolation and purification; physicochemical characterization; 

hypoglycemic activity 

 

柴 胡 Radix Bupleuri 为 伞形科植物柴胡

Bupleurum chinense DC. 或 狭 叶 柴 胡 B. 

scorzonerifolium Willd.的干燥根。柴胡属植物种类

繁多、分布广泛，在我国已有 2 000 多年的应用历

史，涉及 1 900 多种处方[1]。柴胡根据产地的不同有

南、北之分，北柴胡因其突出的品质和药理活性成

为药用主流。柴胡药用价值极高，具有解热、抗菌、

增强免疫力、抗抑郁、抗癌、糖尿病治疗等多种功

效[2-3]。柴胡多糖作为主要的功能成分，在糖代谢调

节和降血糖等方面表现出一定的生物活性[4-6]。大量

研究表明，多糖可以通过调节关键代谢酶的活性和

胰岛素信号通路来改善糖代谢紊乱和降低胰岛素

抵抗[7]。多糖可对 α-淀粉酶和 α-葡萄糖苷酶产生抑

制活性，可能与多糖分子中的羧酸基团及羟基有

关，这些基团可与消化酶相互作用，改变酶的极性

和分子构象，最终导致酶活性丧失[8]。Song 等[9]对

乌头多糖的研究显示，经小鼠口服淀粉耐受性试验

验证，乌头多糖可显著提高淀粉耐受性，这一结果

表明乌头多糖可抑制 α-糖苷酶的活性。此外，多糖

还可通过上调磷脂酰肌醇 3-激酶/蛋白激酶 B 信号

通路（phosphatidylinositol 3-kinase/protein kinase B，

PI3K/Akt）信号通路中的葡萄糖转运蛋白 4（glucose 

transporter 4，GLUT4）蛋白的表达量，来增加葡萄

糖的摄取，进而发挥多糖的降血糖潜力[10-11]。多糖

也可以调节丝裂原活化蛋白激酶（mitogen-activated 

protein kinase，MAPK）信号通路，抑制胰腺细胞凋

亡，提高胰岛素水平[12]。有研究表明，桑葚多糖可

通过下调 MAPK 信号通路中的磷酸化 c-Jun 氨基末

端激酶（phosphorylated c-Jun N-terminal kinase，p-

JNK ）、 磷 酸 化 p38 丝 裂 原 活 化 蛋 白 激 酶

（ phosphorylated p38 mitogen-activated protein 

kinase，p-p38）和半胱氨酸天冬氨酸特异性蛋白酶

3（cysteine-dependent aspartate-specific protease-3，

Caspase-3）蛋白的表达水平来抑制胰岛细胞凋亡，

进而发挥降糖功效。卓尼柴胡 Zhuoni Radix Bupleuri

因其产地地理位置优越，有效成分含量高，历史人

文底蕴深厚，2021 年入选国家地理标志农产品（证

书编号 AGI103440，质量控制技术规范编号

AGI2021-01-3440），是“北柴胡”中的佳品，陇原

大地上孕育出的瑰宝[13]。目前关于柴胡多糖降血

糖、抗糖尿病活性的系统性研究还不充足[14]，而对

卓尼柴胡多糖降血糖潜力研究及开发应用的相关

研究报道更为稀少。因此，本实验以卓尼柴胡根部

为原料，制备卓尼柴胡多糖，并对其理化特性及其

降血糖活性潜力进行综合评价，以期为卓尼柴胡及

其多糖的深加工探索新方向，为卓尼柴胡资源的充

分开发利用提供研究基础和理论支持。 

1  材料与仪器 

1.1  材料 

卓尼柴胡经兰州理工大学生命科学与工程学

院李善家教授鉴定为柴胡 Bupleurum chinense DC.

的根；无水乙醇分析纯，国药集团化学试剂有限公

司；浓硫酸分析纯，白银良友化学试剂有限公司；

Sephadex-G200、半乳糖醛酸（批号 G8120，质量分

数 97.00%）、葡萄糖（批号 G8150，质量分数≥

99.80%）、半乳糖（批号 IG0540，质量分数≥

98.00%）、甘露糖（批号 G8370，质量分数≥

99.00%）、鼠李糖（批号 G8560，质量分数≥

98.00%）、木糖（批号 G8360，质量分数≥99.00%）、

阿拉伯糖（批号 D8120，质量分数≥99.00%）、岩藻
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糖（批号 F8410，质量分数≥98.00%）、PMP（批号

P9930，质量分数≥99.00%）、α-葡萄糖苷酶（批号

G8823，100 U）、葡萄糖检测试剂盒（批号 BC8322），

北京索莱宝科技有限公司；刚果红（优级纯），上海

中秦化学试剂有限公司；三氟乙酸（trifluoroacetic 

acid，TFA，批号 T6508，质量分数≥99.00%）、1-

苯基 -3-甲基 -5-吡唑啉酮（ 3-methyl-1-phenyl-2-

pyrazolin-5-one，PMP，批号 M70800，质量分数≥

99.00%），默克西格玛奥德里奇上海贸易有限公司；

盐酸二甲双胍（批号 M813341，质量分数≥

97.00%），上海麦克林生化科技有限公司。 

1.2  仪器 

T2602 型双光束紫外可见分光光度计上海佑科

仪器仪表有限公司；FlexA-200HT 型酶联免疫分析

仪杭州奥盛仪器有限公司；K2025 型高效液相色谱

仪山东悟空仪器有限公司；Spectrum 100 型傅里叶

变换红外光谱仪珀金埃尔默企业管理（上海）有限

公司；EM-30AX 型扫描电子显微镜库塞姆中国；TGA 

1000 型热重分析仪北京精微高博仪器有限公司。 

2  方法 

2.1  卓尼柴胡粗多糖（crude Zhuoni Radix Bupleuri 

polysaccharide，C-ZRBP）制备 

取新采收的卓尼柴胡根部，经干燥、粉碎、过

100 目筛后备用。水提法制备粗多糖，以 1∶25 的

料液比于 85 ℃恒温磁力搅拌水浴锅内浸提 1 h，提

取 3 次。将多糖提取液减压浓缩后加入 4 倍体积的

无水乙醇，4 ℃静置 24 h 后 3 900 r/min 离心 15 min

获得粗多糖沉淀，冷冻干燥后得到 C-ZRBP 

2.2  C-ZRBP 纯化 

C-ZRBP 加适量蒸馏水复溶后转移至分液漏

斗，加入 4 倍体积的 Sevag 试剂并剧烈振荡 30 min，

静置等待蛋白变性沉淀，从分液漏斗底出口放出蛋

白沉淀。多次重复上述工作，直至多糖溶液的全波

长（190～400 nm）扫描图谱中 260、280 nm 处无吸

收，且考马斯亮蓝染色法检测蛋白含量为 0 或极少

量（待测粗多糖溶液需稀释后检测，并根据稀释倍

数计算原溶液中蛋白含量）。将除蛋白后的粗多糖

冷冻干燥，采用葡聚糖凝胶 Sephadex G-200 进行柱

色谱分离纯化，苯酚-硫酸法测定收集器各收集管中

洗脱液中糖含量，并以管号为横坐标，吸光度为纵

坐标，绘制洗脱曲线。根据洗脱曲线收集洗脱液，

冷冻干燥后得到卓尼柴胡多糖（Zhuoni Radix 

Bupleuri polysaccharide，ZRBP）。 

2.3  ZRBP 的纯度鉴定及相对分子质量测定 

精确称取制备的 ZRBP 配制成 5.0 mg/mL 水溶

液备用。以梯度质量浓度的葡萄糖溶液为标准溶

液，ZRBP 溶液（5.0 mg/mL）为待测样品，采用苯

酚-硫酸法测定 ZRBP 的糖含量。精确称取制备的

ZRBP 配制成 1.0 mg/mL 水溶液备用。以梯度浓度

的半乳糖醛酸溶液为标准溶液，ZRBP 溶液（1.0 

mg/mL）为待测样品，采用间羟基联苯法测定 ZRBP

的糖醛酸含量。 

ZRBP 溶液（5.0 mg/mL）过 0.22 μm 滤膜后用

于 HPLC 分析（TSK-gel G4000-PWXl，300 mm×

7.8 mm；样品质量浓度范围 1～5 mg/mL；进样量 20 

μL；柱温 30 ℃；检测器：示差折光检测器，检测

温度 35 ℃；流动相水），以葡聚糖 T-10、T-40、T-

70、T-110、T-500 和 T-2000 为标准品，根据标品的

保留时间，绘制相对分子质量对数（lgMW）-保留时

间（tR）的标准曲线。根据 ZRBP 的糖含量结合液

相图谱进行纯度鉴定，根据 ZRBP 的出峰时间和

lgMW-tR 标准曲线计算相对分子质量。 

2.4  ZRBP 的理化特性分析 

2.4.1  单糖组成分析   参照颜军等 [15]方法进行

PMP 衍生化。取 10 mg/mL ZRBP 溶液 1 mL 于玻璃

螺口螺口尖底离心管内，加入 4 mol/L TFA 1 mL，

封口后 110 ℃水解 8 h。冷却后转移至 25 mL 旋蒸

瓶，加入 400 µL 甲醇使之溶解，减压旋蒸至干，反

复加入甲醇旋蒸 6 次以除尽 TFA 残留。加入 1 mL

蒸馏水，溶解后得到 ZRBP 水解液备用。 

样品衍生化：分别吸取 10 mg/mL 混合单糖标

准品溶液 50 µL 和 ZRBP 水解液于具塞试管中，各

加入 1.2 mol/L NaOH 溶液 50 µL，混匀，再加入 0.5 

mol/L PMP 甲醇溶液 100 µL，混匀。70 ℃反应 100 

min 后冷却至室温，加入 0.3 mol/L HCl 100 µL，补

水 1.7 mL（终体积为 2 mL），再加入 2 mL 氯仿萃

取，取上层水相，反复萃取至下层有机相为澄清透

明，取上层水相，过 0.22 µm 微孔滤膜后进行 HPLC

分析 [色谱柱：Agilent ZORBAX Eclipse XDB-C18，

250 mm×4.6 mm，5 µm；流动相为 0.02 mol/L 磷酸

盐缓冲液（pH 6.7）-乙腈（83∶17）；检测波长 250 

nm；进样体积 10 µL；柱温 30 ℃；流动相体积流

量 1 mL/min]。 

2.4.2  甲基化分析  取 10 mg 完全干燥的 ZRBP 溶

解于 2 mL DMSO。在氮气的保护下，加入 25 mg 

NaH，于 18～20 ℃的黑暗条件下超声反应 30 min
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后加入 1 mL 碘甲烷作为甲基供体，在相同条件下

甲基化反应 1 h。加入 0.5 mL 水结束甲基化反应，

加入 2 mL 氯仿萃取甲基化产物。吸取氯仿层，氮

气吹干后，重复上述甲基化过程 5 次以上。然后将

甲基化样品于 2 mL TFA（2 mol/L）中 110 ℃水解

3 h。水解完成后，N2吹干，样品经甲醇重溶后再次

用 N2 吹干，与 25 mg NaBH4混合后加入 2 mL 去离

子水溶解，在室温下反应 2 h 后用乙酸调节 pH 为

5.0，N2 吹干得到反应物。反应物中加入 3 mL 甲醇

和 1 滴乙酸进行溶解，溶解后再次氮气吹干。重复

该溶解-吹干的实验操作 5 次，最后 2 次只用甲醇溶

解不加乙酸，最终氮气吹干的样品用于乙酰化反

应。吡啶-乙酸酐（1∶1）的混合溶液作为乙酰化试

剂。于上述氮气吹干的产物中加入 2 mL 的乙酰化

试剂，100 ℃油浴反应 1 h 后，反应样品氮气吹干，

加氯仿溶解，过膜后用于 GC-MS 分析（色谱柱：

HP-5MS，30 m×0.25 mm×0.25 μm；程序升温：初

始 100 ℃，保持 2 min，然后以 5 ℃/min 升到

240 ℃，保持 2 min，再以 10 ℃/min 升到 320 ℃，

保持 2 min；载气为 He 气，纯度 99.999%；传输线

温度 280 ℃，离子阱温度 220 ℃；扫描方式全扫描；

扫描范围 m/z 43～500；检索谱库：NIST05）。 

2.4.3  傅里叶变换红外光谱分析  采用溴化钾压

片法进行傅里叶变换红外光谱（FT-IR）实验[16]。将

1 mg 的 ZRBP 与 150 mg 溴化钾混合、研磨、压片

后进行红外吸收光谱 4 000～400 cm−1 扫描，分辨率

4 cm−1。 

2.4.4  刚果红实验  取 2 mL 1 mg/mL 的 ZRBP 溶

液与 2 mL 80 μmol/L 的刚果红溶液充分的混合，加

入适量 1 mol/L NaOH，调节溶液的氢氧化钠终浓度

分别为 0.0、0.1、0.2、0.3、0.4、0.5 mol/L。混匀后

静置 10 min，400～600 nm 内扫描，以最大吸收波

长作为纵坐标（Y），NaOH 溶液的终浓度为横坐标

（X），绘制曲线。用蒸馏水代替多糖溶液作为空白对

照。 

2.4.5  扫描电子显微镜分析  取适量 ZRBP 样品粘

着于样品台上，样品台置于离子溅射仪中镀上一层

导电金粉。分别选用 200、1 000、2 000、5 000 倍

观察、拍照，每个样品拍照重复 3 次，排除样品干

扰及系统误差[17]。 

2.4.6  热重分析  参照Kumar等[18]的方法对ZRBP

进行热重分析，待测样品用量 5 mg，氮气体积流量

50 mL/min，升温速率 10 ℃/min，温度范围 30～

600 ℃，扫描速度 1 ℃/min。 

2.5  ZRBP 的降血糖潜力研究 

2.5.1  ZRBP 对 α-淀粉酶和 α-葡萄糖苷酶的抑制率

测定   

（1）ZRBP 对 α-淀粉酶抑制率测定：采用 DNS

法[19]，蒸馏水配制 5、10、15、20、25 mg/mL 的 ZRBP

溶液备用；以磷酸盐缓冲液（0.2 mol/L，pH 6.5）配

制 2 U/mL 的 α-淀粉酶溶液和 5%的可溶性淀粉溶

液备用。分别取不同浓度的 0.3 mL ZRBP 溶液和 0.3 

mL α-淀粉酶溶液于试管内，37 ℃反应 15 min 后加

入 0.3 mL 可溶性淀粉溶液，37 ℃反应 15 min 后加

入 1 mL DNS 试剂终止反应，100 ℃煮沸 15 min，

冷却，定容至 10 mL，于 540 nm 波长处测量吸光度

A1；以蒸馏水代替 ZRBP 溶液，重复上述实验，测

得的吸光度记为 A0；以磷酸钠缓冲液代替 α-葡萄糖

苷酶溶液，重复上述实验，测得的吸光度记为 A2；

以蒸馏水和磷酸钠缓冲液分别取代 ZRBP 和 α-葡萄

糖苷酶溶液，重复上述实验，测得的吸光度记为 A3；

阿卡波糖作阳性对照，每个浓度设置 3 组平行，根

据公式计算 ZRBP 对 α-淀粉酶的抑制率。 

抑制率＝1－(A1－A2)/(A0－A3)  

（2）ZRBP 对 α-葡萄糖苷酶抑制率测定：基于

4-硝基苯基-α-D-吡喃葡萄糖苷（4-nitrophenyl-alpha-

D-glucopyranoside，PNPG）和 α-葡萄糖苷酶建立酶- 

抑制剂的筛选模型[20]。配制 0.125、0.250、0.500、

1.000、2.000、4.000 mg/mL 的 ZRBP 溶液备用；用

磷酸盐缓冲液（0.1 mol/L，pH 6.8）配制 5 mmol/L

的 PNPG 溶液和 0.1 U/mL 的 α-葡萄糖苷酶溶液备

用。分别取梯度浓度的 ZRBP 溶液 20 μL 和 40 μL 

α-葡萄糖苷酶溶液混合于 96 孔板，37 ℃恒温孵育

10 min，加入 40 μL 的 PNPG 溶液引发反应后 37 ℃

孵育 30 min，加入 0.2 mol/L 100 μL 碳酸钠终止反

应，410 nm 波长下测定吸光度值 A1′；以蒸馏水代

替 ZRBP 溶液，重复上述实验，测定的吸光度记为

A0′；以磷酸钠缓冲液代替 α-葡萄糖苷酶溶液，重复

上述实验，测定的吸光度记为 A2′；以蒸馏水和磷酸

钠缓冲液分别取代 ZRBP 和 α-葡萄糖苷酶溶液，重

复上述实验，测定的吸光度记为 A3′；阿卡波糖作阳

性对照，每个质量浓度设置 3 组平行，根据公式计

算 ZRBP 对 α-葡萄糖苷酶的抑制率。 

抑制率＝1－(A1′－A2′)/(A0′－A3′)  

2.5.2  ZRBP 对 HepG2-IR 模型细胞葡萄糖消耗量

的影响  将实验用的 HepG2 细胞复苏、传代培养
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后，取对数生长期细胞用于后续实验。 

（1）CCK-8 法检测细胞活力：取对数期 HepG2

接种于 96 孔板中，每孔 100 μL，细胞贴壁后，加

入 100 μL ZRBP 溶液（0、62.5、125.0、250.0、500.0 

μg/mL）进行干预，在培养箱中分别孵育 12、24、

36、48 h，后将培养液倒掉，每孔加入 10 μL CCK-

8 检测液，37 ℃避光反应 2 h 后轻轻混合 1 min，

使用酶标仪在 450 nm 处测定吸光度值[21]。空白（无

细胞组）吸光度值记为 A0；含有 HepG2 细胞和被

测样品组吸光度值记为 A1；对照（只含有 HepG2 细

胞）组的吸光度值记为 A2。同样的方法，取对数期

HepG2 接种于 96 孔板中，待细胞贴壁后，加入 100 

μL 棕榈酸（0、0.2、0.4、0.6、0.8 mmol/L）处理 24 

h，根据公式计算不同浓度棕榈酸对 HepG2 细胞存

活率的影响。 

细胞存活率＝(A1－A0)/(A2－A0) 

（2）HepG2-IR 模型构建：选择处于对数生长期

的 HepG2 细胞，参照张伟 [22]的实验方法构建

HepG2-IR 模型。取对数期 HepG2 接种于 96 孔板

中，每孔 100 μL，细胞贴壁后，移除培养液，生理

盐水洗涤 2～3 次，分别加入含 0、0.2、0.4、0.6、

0.8 mmol/L 棕榈酸的培养液，每组设置 3 组平行，

分别培养 12、24、36、48 h。按试剂盒说明书，以

葡萄糖消耗量为指标，计算各组在不同培养时间的

葡萄糖消耗量，确定棕榈酸造模的最佳诱导浓度和

时间。 

（3）ZRBP 对 HepG2-IR 模型细胞葡萄糖消耗

量的影响：在建好的 HepG2-IR 模型基础上，将含

棕榈酸培养液弃掉，生理盐水洗涤 2 次后，分别加

入 200 µL 含 ZRBP（25、50、75、100 μg/mL）的培

养液作为给药组；加入 200 µL（1 mg/mL）含盐酸

二甲双胍培养液作为阳性对照组；加入 200 µL 普

通培养液作为模型组；正常培养的 HepG2 细胞作为

对照组；培养 24 h 后测定各组的葡萄糖消耗量。 

2.6  数据分析 

每组实验重复 3 次，实验数据采用  sx  表示。

实验数据处理使用 IBM SPSS Statistics 27.0.1 统计

分析，用方差分析和邓肯多极差检验（P＜0.05）进

行显著性检验，使用 OriginPro 2021 软件和 Design 

Expert12 绘图。 

3  结果与分析 

3.1  ZRBP 的分离纯化 

C-ZRBP 的全波长扫描图谱见图 1，C-ZRBP 在

260、280 nm 处没有吸收峰，表明 C-ZRBP 中没有

蛋白、多肽及核酸存在；且考马斯亮蓝染色结果表

明 C-ZRBP 中蛋白质量分数为（0.83±0.12）%，几

乎不含蛋白，除蛋白完成。C-ZRBP 经 Sephadex G-

200 色谱柱分离为 2 个组分，如图 2 所示，有 A、B 2

个组分，根据在研究初期对 2 个主要组分进行了初步

的糖苷酶抑制活性分析，结果显示组分 A 的活性更

好，故选择 A 组分多糖作为研究对象，记为卓尼柴胡

多糖（Zhuoni Radix Bupleuri polysaccharide，ZRBP）。 

 

图 1  C-ZRBP 的全波长扫描图谱 

Fig. 1  Full-wavelength scan spectrum of C-ZRBP 

 

A-ZRBP；B-非课题研究物质。 

A-ZRBP; B-substance not involved in this project. 

图 2  C-ZRBP 柱色谱洗脱曲线 

Fig. 2  Elution profile of C-ZRBP column chromatography 

3.2  ZRBP 纯度鉴定 

以干燥至恒定质量的葡萄糖为标准物质，通过

苯酚-硫酸法绘制的糖含量-吸光度标准曲线为 y＝

10.563 x＋0.132 1，R2＝0.999 4。根据样品吸光度和

糖含量标准曲线计算 ZRBP 糖质量分数为（95.87±

0.26）%。以干燥至恒定质量的半乳糖醛酸为标准物

质，通过间羟基联苯法绘制的糖醛酸含量-吸光度标

准曲线为 y＝8.719 6 x－0.009 7，R2＝0.998 2。根据

样品吸光度和糖醛酸质量分数标准曲线计算 ZRBP
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糖醛酸质量分数为（2.52±0.15）%。如图 3 所示，

ZRBP 液相图谱呈单一峰，表明 ZRBP 为相对分子

质量分布较为均一的多糖。综上所述，ZRBP 为相

对分子质量分布较为均一的酸性杂多糖。根据葡聚

糖标品的相对分子质量对数（lgMW）和保留时间（t）

绘制的标准曲线为 lgMW＝−0.296 9 t＋8.899 4，R2＝

0.994 2。由图 3 可知 ZRBP 的保留时间为 9.157 min，

计算 ZRBP 的平均相对分子质量为 1.52×106，该结 

 

图 3  ZRBP 的 HPLC 色谱图 

Fig. 3  HPLC chromatogram of ZRBP 

果与文献报道相符合[23-25]。 

3.3  ZRBP 的理化特性分析 

3.3.1  单糖组成分析  由图 4 可知，ZRBP 的单糖

组成为甘露糖∶鼠李糖∶半乳糖醛酸∶葡萄糖∶

半乳糖∶阿拉伯糖＝3.43∶1.37∶1.62∶79.77∶

7.90∶4.97。与红外光谱分析结果 ZRBP 是包含糖

醛酸的酸性杂多糖相符合。 

3.3.2  甲基化分析  甲基化的分析结果如表 1 所

示，GC-MS 的分析结果表明从甲基化处理后的

ZRBP 水解产物中找到了 11 种甲基化糖，分别是

2,3,5-Me3-Araf、2,3,5-Me2-Araf、2,3,4,6-Me4-Glcp、

2,3,6-Me3-Glcp、 2,3,6-Me3-Glcp、 2,3-Me2-Glcp、

2,3,4,6-Me4-Galp、2,3,6-Me3-Galp、2,3,4,6-Me4-Manp、

2,4-Me2-Manp、2,4-Me2-Rhap，对应的 ZRBP 中糖残

基的连接方式分别为 Araf-(1→、→5)-Araf-(1→、

Glcp-(1→、→4)-Glcp-(1→、→6)-Glcp-(1→、→4,6)- 

Glcp-(1→、Galp-(1→、→6)-Galp-(1→、Manp-(1→、

→3,6)-Manp-(1→、→3)-Rhap-(1→即 ZRBP 的骨架结

构主要由→5)-Araf-(1→、→4)。-Glcp-(1→、→6)-Manp-

(1→、→6)-Galp-(1→和→3-Rhap-(1→组成，在 Glc 的

C6和Man的C6上存在分支点，存在Ara、Glc、Gal、 

 

图 4  ZRBP 的单糖组成分析 

Fig. 4  Monosaccharide composition analysis of ZRBP 

Man的T末端。 

3.3.3  傅里叶变换红外光谱分析  ZRBP 的红外光

谱如图 5 所示。3 349 cm−1 处的特征吸收峰是由 O-

H 拉伸振动引起的。2 934 cm−1 处特征吸收峰是由

C-H 伸缩振动引起的[26]。这 2 种类型的化学键广泛

存在于碳水化合物中，由此可以确定 ZRBP 为糖类 
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表 1  ZRBP 的甲基化分析结果 

Table 1  Results of methylation analysis of ZRBP 

tR/min 甲基化糖 连接方式 

20.648 2,3,5-Me3-Araf Araf-(1→ 

21.450 2,3,4,6-Me4-Glcp Glcp-(1→ 

22.012 2,3,4,6-Me4-Galp Galp-(1→ 

22.209 2,3,4,6-Me4-Manp Manp-(1→ 

23.205 2,3,5-Me2-Araf →5)-Araf-(1→ 

24.234 2,4-Me2-Rhap →3)-Rhap-(1→ 

24.834 2,3,6-Me3-Glcp →4)-Glcp-(1→ 

25.208 2,3,6-Me3-Glcp →6)-Glcp-(1→ 

25.232 2,3,6-Me3-Galp →6)-Galp-(1→ 

27.188 2,4-Me2-Manp →3,6)-Manp-(1→ 

28.176 2,3-Me2-Glcp →4,6)-Glcp-(1→ 

2,3,5-Me3-Araf-1,4-di-O-acety1-2,3,5-tri-O-methyl-arabitol，其他甲

基化糖采用同样的书写规则。 

2,3,5-Me3-Araf-1,4-di-O-acety1-2,3,5-tri-O-methyl-arabitol, other 

methylated sugars follow the same writing rules. 

 

图 5  ZRBP 红外光谱图 

Fig. 5  ZRBP infrared spectrum 

化合物。1 728、1 655 cm−1 处特征吸收峰是由羧基

和半缩醛引起的。1 412 cm−1 处的吸收峰是由 C-H

伸缩振动或 C-OH 的弯曲振动引起[27]。1 149 cm−1

为吡喃环上 C-O-C 和 C-O-H 的伸缩振动，表明存

在吡喃糖苷。1 078、1 028 cm−1 附近相邻的 2 个吸

收信号是吡喃糖环上 C-O 键的特征吸收峰，表明

ZRBP 中存在吡喃糖基团[28]。在 935 cm−1处，1 个较

弱但可识别的信号对应于 3,6-无水半乳糖单元[29]。由

此可见，ZRBP 为酸性杂多糖。 

3.3.4  刚果红实验  多糖是一种有着复杂结构的

大分子，它们表现出不同的链状结构，如单螺旋、

双螺旋、蠕虫状和三股螺旋，多糖活性与其螺旋结

构关系密切[30]。刚果红是一种酸性染料，可以形成

具有多链螺旋构象的复杂多糖，具有螺旋结构的多

糖与刚果红形成的络合物会使其最大吸收波长

（λmax）红移[31]。如图 6 所示，与空白组相比，ZRBP 

 

图 6  刚果红实验 

Fig. 6  Congo red experiments 

呈红移，具有螺旋结构的多糖在碱性条件下螺旋卷曲

变换，能够使得其最大吸收波长发生红移或蓝移[32]。

ZRBP 的 λmax 随着 NaOH 浓度增加而降低，推测

ZRBP 可能具有螺旋结构。 

3.3.5  扫描电子显微镜分析  多糖的微观形态可

能是由物理化学性质的差异引起的，这代表了多糖

的特性之一[33]。此外，样品的制备方法对多糖的表

观形态和结构也有影响[34]。如图 7 所示，ZRBP 呈

现多网孔片状结构，薄片的表面较为光滑，上面分

布着很多不规则的网孔。 

3.3.6  热重分析  ZRBP 的 TG-DTG 曲线如图 8 所

示。热分解稳定性是决定多糖应用的重要理化性

质，多糖中存在大量的亲水基团，可以吸附一定量

的水分，温度升高时水分蒸发，使得多糖样品质量

有所减小。当温度从 30 ℃升至 90 ℃时，ZRBP 样

品的质量缓慢减小，可能与多糖吸附水分的蒸发有

关；当温度从 90 ℃升至 200 ℃时，ZRBP 样品质

量维持在稳定水平，此时热稳定性良好；当温度从

200 ℃升至 350 ℃时，ZRBP 样品的质量显著减小， 

 

图 7  ZRBP 扫描电镜图 

Fig. 7  ZRBP scanning electron microscope 
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图 8  热重分析曲线 

Fig. 8  Thermogravimetric analysis curve 

损失率约为 42.89%，可能是高温使得多糖的分子发

生了剧烈的解聚和分解作用，导致大量多糖分子在

分解成寡糖、单糖后，又进一步裂解产生 CO2、水

蒸气等逸出；当温度从 400 ℃升至 600 ℃时，ZRBP

的质量减少速度变慢，可能是因为大多数多糖经过

高温处理后已经成为碳化结构；剩余的少数多糖热

稳定性较高。一阶导数曲线可以较直观反映 ZRBP

损失率与温度变化的关系。根据 DTG 曲线可知，

ZRBP 损失率在 200～350 ℃时最大，出现 2 个峰

值；在 90～200 ℃时和 400～600 ℃时最小。 

3.4  ZRBP 降血糖潜力研究 

3.4.1  ZRBP 对 α-淀粉酶和 α-葡萄糖苷酶抑制  体

外 α-淀粉酶抑制活性实验结果如图 9-a 所示。ZRBP

对 α-淀粉酶的抑制效果与浓度呈正相关，IC50 值为

19.825 mg/mL。当质量浓度达到 25 mg/mL 时，ZRBP

抑制率达到 62%。体外 α-葡萄糖苷酶抑制活性实验

结果如图 9-b 所示。在实验浓度范围内，随着 ZRBP

浓度的升高，其对 α-葡萄糖苷酶的抑制效果也逐渐

增强，呈正相关关系。ZRBP 的 IC50 值为 1.064 

mg/mL，在 4 mg/mL 的浓度下，ZRBP 的 α-葡萄糖

苷酶抑制率达（95.22±0.15）%。 

 

与相同质量浓度的阿卡波糖相比：*P＜0.05  **P＜0.01。 

*P < 0.05  **P < 0.01 vs acarbose at same concentration. 

图 9  α-淀粉酶 (a) 和 α-葡萄糖苷酶 (b) 抑制活性筛选 ( x s , n = 3) 

Fig. 9  Screening of α-amylase inhibitory activity (a) and α-glucosidase inhibitory activity (b) ( x s , n = 3) 

3.4.2  细胞实验 

（1）ZRBP 对 HepG2 细胞活力的影响：将对照

组的细胞存活率作为 100%，对比分析 ZRBP 对

HepG2 细胞活力的影响。如图 10 所示，同一浓度

不同时间培养的 ZRBP 处理的 HepG2 细胞存活率

未出现明显差异；而在同一时间不同浓度的 ZRBP

处理后的 HepG2 细胞存活率仍未表现出明显差异，

表明当ZRBP质量浓度低于500 μg/mL时，对HepG2

细胞的正常生长和增殖没有明显的促进或抑制作

用，即未发现细胞毒性。 

（2）HepG2-IR 模型的建立：不同浓度的棕榈酸

对 HepG2 细胞存活率影响的实验结果见图 11-a。当

棕榈酸浓度低于 0.4 mmol/L 时，HepG2 细胞活力无

显著变化；当棕榈酸浓度达到 0.6～0.8 mmol/L 时，

HepG2 细胞活力极显著降低（P＜0.01），且细胞活

力降低水平与棕榈酸浓度呈正相关。 

不同浓度的棕榈酸诱导 HepG2-IR 模型的实验

结果见图 11-b，对照组（棕榈酸浓度为 0 mmol/L）

中，葡萄糖消耗量随时间延长而增加；随着棕榈酸

浓度提高，棕榈酸诱导组中（浓度为 0.2、0.4、0.6、

0.8 mmol/L）葡萄糖消耗量出现显著变化，各培养阶

段葡萄糖消耗量均低于对照组；表明这些剂量诱导下

的细胞均产生不同程度的胰岛素抵抗，且胰岛素抵抗

程度随着棕榈酸浓度的提高而提高，随培养时间的增 
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不同字母表示差异显著（P＜0.05），下图同。 

Different letters indicate significant differences (P < 0.05), same as Fig. 

below。 

图 10  ZRBP 对 HepG2 细胞活力影响 ( x s , n = 3) 

Fig. 10  Effects of ZRBP on HepG2 cell viability ( x s , n = 3) 

加而出现不同程度的弱化。细胞在 0.4 mmol/L 棕榈酸

诱导下，36 h内葡萄糖消耗量都维持相对平衡的状态，

且与对照组相比有显著性差异（P＜0.05），即该条件

下胰岛素抵抗模型较为稳定。综合考虑棕榈酸浓度对

HepG2 细胞存活率和 HepG2-IR 模型的建模效果影

响，最终的建模条件为棕榈酸浓度 0.4 mmol/L、诱导

时间 24 h，用于后续实验研究。 

（3）ZRBP 对 HepG2-IR 模型细胞葡萄糖消耗

量的影响：如图 12 所示，与对照组相比，模型组的

葡萄糖消耗量显著降低（P＜0.05），表明造模成功。

与模型组相比，ZRBP 给药组的葡萄糖消耗量与模

型组均存在显著性差异（P＜0.05），主要表现为随

着 ZRBP 浓度的提高，葡萄糖消耗量呈缓慢上升趋

势，表明 ZRBP 对 HepG2-IR 模型细胞的胰岛素抵

抗具有改善作用，改善程度与糖质量浓度呈正相关

性。尽管改善效果弱于二甲双胍，但有研究表明，  

 

a-不同浓度棕榈酸对 HepG2 细胞存活率的影响；b-HepG2-IR 模型持续时间的测定；与对照组比较：**P＜0.01 

a-effects of palmitic acid concentration on survival rate of HepG2 cells; b-determination of duration of HepG2-IR model; **P < 0.01 vs control group. 

图 11  HepG2-IR 模型构建条件优化 ( x s , n = 3)  

Fig. 11  Optimization of construction conditions for HepG2-IR model ( x s , n = 3) 

 

图 12  ZRBP 对 HepG2 细胞葡萄糖消耗量的影响  

( x s , n = 3) 

Fig. 12  Effects of ZRBP on glucose consumption in HepG2 

cells ( x s , n = 3) 

天然植物多糖比化学药物毒性更小，不良反应也更

少，仍具有降血糖开发的潜力[35]。 

4  讨论 

经水提醇沉获得的 C-ZRBP 中不仅含有多种糖

类物质，还含有蛋白、核酸等非糖物质，为获得高

纯度的均一多糖，需进行除蛋白以及柱色谱进行分

离纯化。目前，除蛋白质常用的方法有 Sevag 法、

三氟三氯乙烷法、三氯乙酸法、酶法等 [24]，其中

Sevag 法条件温和且能有效保持多糖分子的键合结

构及理化特性[36]。经除蛋白质后的多糖依旧是多种

糖类的混合物，需进一步通过柱色谱进行最终的分

离纯化。多糖纯化常用的柱色谱手段有阴离子交换 
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色谱法、大孔树脂法、凝胶色谱法等[37]，其中凝胶

滤过色谱（即分子排阻色谱）利用分子筛作用而进

行分离，大分子先洗脱，小分子由于运动路径长而

后洗脱出来，可以选择不同凝胶填料从而分离不同

相对分子质量的多糖，该方法具有分离效果好、条

件温和的特点。故本研究选择该 Sevag 法除蛋白结

合 Sephadex G-200 柱色谱进行 C-ZRBP 的分离纯

化，获得纯化多糖 ZRBP。采用紫外-可见分光光度

法和考马斯亮蓝法检测除蛋白效果[38]，洗脱曲线法

分析柱色谱分离纯化效果，最终通过液相色谱法结

合糖含量测定结果进行均一性分析，结果表明

ZRBP 是一种平均相对分子质量在 1.52×106 的多

糖，糖质量分数达（95.87±0.26）%。 

多糖的生物活性与其相对分子质量、单糖组

成、糖苷键组成和高级构象表征密切相关[39]。本研

究通过 PMP 衍生法、甲基化实验、FT-IR、刚果红

实验、SEM 等方法对 ZRBP 的结构进行分析。由于糖

化合物无法吸收紫外线，使得其检测变得复杂[40]，因

此，单糖分析采用特异性衍生化，例如 PMP 衍生

化，在温和的反应条件下从减糖端进行，1 个 PMP

分子与 1 个醛基反应形成衍生物，这导致强烈的紫

外线吸收[41]，并通过 HPLC 分析多糖的组成成分。

PMP 衍生法单糖组成分析结果表明 ZRBP 主要由

葡萄糖、半乳糖和阿拉伯糖组成，其中葡萄糖含量

最高。这与 Feng 等[25]的研究结果一致。多糖甲基

化是多糖结构表征的核心技术之一，可以确定多糖

中各单糖残基的连接位点、连接方式及糖苷键构

型，是解析多糖一级结构（骨架与侧链连接）的关

键方法。甲基化实验结果表明 ZRBP 骨架结构主要

由→5)-Araf-(1→、→4)-Glcp-(1→、→6)-Manp-(1→、

→6)-Galp-(1→和→3)-Rhap-(1→组成，在 Glc 的 C6

和 Man 的 C6 上存在分支点，存在 Ara、Glc、Gal、

Man 的 T 末端。FT-IR 是通过干涉仪将红外光的频

率信息转化为干涉图，再经傅里叶变换得到样品的

红外吸收光谱[42]。FT-IR 谱图表明 ZRBP 具有典型

的多糖特征吸收峰，尤其使吡喃糖环上 C-O 键的特

征峰，证实了 ZRBP 中存在吡喃糖基团。赵小亮等
[43]对柴胡多糖的红外光谱分析结果也表明，柴胡多

糖中一般含有一定量的糖醛酸，并存在吡喃糖残基

糖环。此外，刚果红实验及 SEM 观察结果显示，

ZRBP 是可能具有三螺旋结构的网孔片状结构，与

Wang 等[44]发现的柴胡多糖形成不规则的聚集体，

如球状体、片状和树状大分子的结果相似。这表明

柴胡多糖具有灵活的链构象，可能与高纯度、碳水

化合物链的大小和较强的分子间相互作用有关。 

柴胡多糖具有免疫调节、抗氧化、抗肿瘤、抗

糖尿病、抗衰老和保护胃气的作用等多种生物活

性[23,45-49]。本研究聚焦于 ZRBP 的降血糖潜力，通

过 α-葡萄糖苷酶抑制、α-淀粉酶抑制实验以及

HepG2-IR 实验对其进行评价。对碳水化合物水解酶

类的抑制实验是一种简单、可行、有效的评价是否

能够降低餐后血糖的方法。α-淀粉酶是 1 种分解长

链碳水化合物的酶，最终从直链淀粉中产生麦芽三

糖和麦芽糖，从支链淀粉中产生葡萄糖和限制糊

精[50]，因此，抑制 α-淀粉酶的活性可以延迟葡萄糖

向血糖的转化，控制糖尿病中的血糖水平[51]；α-葡

萄糖苷酶位于肠道细胞的刷状边界表面膜中，将低

聚糖降解为单糖，被肠上皮吸收，从而导致血糖水

平升高[52]。抑制 α-葡萄糖苷酶可以降低餐后血糖水

平，这是预防或治疗糖尿病和边缘性患者血糖水平的

重要策略。已有研究显示，HepG2-IR 细胞已被广泛的

选为评估多糖体外降糖活性的理想模型[53-54]。这是由

于 HepG2 来源于人类肝细胞癌，保留了正常肝细胞

的许多功能特性，例如糖原合成、葡萄糖代谢等，

能够模拟人体肝脏在血糖调节中的关键作用[55]。结

果表明，ZRBP 对 α-淀粉酶（IC50＝19.825 mg/mL）

和 α-葡萄糖苷酶（IC50＝1.064 mg/mL）具有抑制效

应。且 ZRBP 对 α-淀粉酶的抑制率随其的浓度的增

加而升高，可能是 ZRBP 作为复杂碳水化合物，含

多个羧基、羟基、糖苷键等官能团。随浓度的升高，

ZRBP 与 α-淀粉酶分子间作用增强，改变了 α-淀粉

酶的空间构象，进而使 α-淀粉酶失活，从而减少了

与淀粉的结合[56]，抑制率随之提升。ZRBP 对 α-葡

萄糖苷酶的抑制率随其浓度变化，先呈缓慢上升趋

势，后显著提高并趋于平缓。当 ZRBP 质量浓度为

2 mg/mL 时，抑制率显著提高，可能是多糖结合后

导致酶构象发生改变，降低其与底物亲和力[57]。最

后结合位点饱和，抑制率无明显变化。本研究使用

盐酸二甲双胍作为阳性对照，用盐酸二甲双胍和不

同质量浓度 ZRBP 处理后，HepG2-IR 细胞的葡萄糖

消耗量显著增加（P＜0.05），葡萄糖消耗量和 ZRBP

浓度之间存在剂量相关性效应，这与 Cao 等[58]、Ren

等[59]的研究一致，反映了多糖在促进葡萄糖消耗以

降低血糖水平方面的潜力。Pan 等[60]研究也发现，

柴胡多糖对糖尿病有积极影响。此外，Liu 等[48]研

究发现柴胡多糖可以显著下调肿瘤坏死因子 -α
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（tumor necrosis factor-α，TNF-α）、白细胞介素-6

（interleukin-6，IL-6）、Toll 样受体 4（Toll-like receptor 

4，TLR4）、高迁移率组蛋白 B1（high mobility group 

box 1，HMGB1）和核因子-κB（nuclear factor-κB，

NF-κB），表达这表明其抗糖尿病机制可能与抑制

HMGB1-TLR4 通路的中断有关。 

结构是影响多糖降血糖活性的 1 个关键因素。

ZRBP 可能具有螺旋结构，在水溶液中表现出有序

结构，该结构可能是抑制 α-淀粉酶和 α-葡萄糖苷酶

的重要因素之一。Feng 等 [61]研究显示莼菜多糖

BSP-U100 组分具有螺旋结构，在水溶液中呈有序

构象，对 α-淀粉酶和 α-葡萄糖苷酶的抑制活性均高

于其他 2 种无明确三螺旋结构的多糖；Cao 等[58]研

究发现海蒿子多糖 SPP-1 具有分支缠绕结构及三螺

旋构象，而 SPP-2 无三螺旋构象，酶抑制活性测定

结果显示 SPP-1对 α-淀粉酶和 α-葡萄糖苷酶的抑制

作用强于 SPP-2，且能显著提高胰岛素抵抗型

HepG2 细胞（HepG2-IR）的葡萄糖消耗量与细胞增

殖能力；推测 ZRBP 降血糖活性可能与其螺旋结构

相关。ZRBP 的单糖组成主要由葡萄糖、半乳糖、

阿拉伯糖组成，其中葡萄糖含量最高，且含有少量

糖醛酸。单糖组成作为多糖的重要结构特征，与其

空间构象形成及生物靶点的特异性结合密切相关，

进而影响药理活性[62]。Li 等[63]研究发现，滇黄精多

糖 PKPs-1 的单糖组成为葡萄糖为主要成分，同时

含有半乳糖、阿拉伯糖等单糖，且 PKPs-1 能显著上

调胰岛素受体底物 1（insulin receptor substrate 1，

IRS-1）、磷脂酰肌醇 3-激酶（phosphoinositide 3-

kinase，PI3K）和蛋白激酶 B（protein kinase B，Akt）

的表达水平，激活 PI3K/Akt 信号通路调控葡萄糖代

谢，对糖尿病小鼠表现出显著的抗高血糖活性。

ZRBP 与 PKPs-1 的单糖组成较为相似，均为葡萄糖

为主要成分，同时含有半乳糖、阿拉伯糖等单糖，

推测ZRBP可能也有调节 IRS/PI3K/Akt信号通路的

作用。此外，糖醛酸中羧基的存在可能通过氢键增

强多糖与消化酶（如 α 淀粉酶和 α-葡萄糖苷酶）的

相互作用，从而更高效地抑制酶活性[64]，有研究报

告显示，酸性多糖表现出强于其中性多糖组分的降

血糖和抗糖尿病活性[65-66]。李红钰[67]研究发现，太

子参多糖 PHP-1 对 α-葡萄糖苷酶表现出强烈的抑

制作用，可能与其相对较高的葡萄糖含量有关，其

作用机制可能是多糖分子中大量的葡萄糖残基可

模拟 α-葡萄糖苷酶的天然底物，与酶活性中心特异

性结合，形成竞争性抑制作用。ZRBP 以葡萄糖为主

要单糖组分，这一结构特征与 PHP-1 相似，推测葡萄

糖可能是 ZRBP 发挥 α-葡萄糖苷酶抑制作用的重要

结构基础。越来越多的研究表明，大多数具有降血糖

活性的多糖拥有 1→3、1→4 和 1→6 个糖苷键[68-69]。

Liu 等[70]从草珊瑚残渣中提取的多糖 SERP1，其结构

中含有→5)-Araf-(1→、→3)-Galp-(1→、→4)-Glcp-

(1→、→6)-Glcp-(1→、→4,6)-Glcp-(1→、→2)-Rhap-

(1→，该多糖可有效抑制 α-葡萄糖苷酶活性和降低

血糖水平。ZRBP 连接方式与之相似，推测这种骨

架连接方式、分支特征、末端残基类型通过影响多

糖与酶、细胞受体或信号通路关键蛋白的相互作用

进行血糖调节。综上所述，ZRBP 在降血糖活性方

面具有一定的潜力。 

综合糖苷酶抑制实验和 HepG2-IR 细胞模型实

验的结果，初步探索发现 ZRBP 具有降血糖的潜力，

不可否认的是体外活性评价在生物活性研究上具

有一定的缺陷。因此，要进行 ZRBP 降血糖活性的

深度挖掘和探究还需要进行相关的动物实验，从整

体生理功能到分子机制层面验证其降血糖机制，为

更好的开发柴胡多糖提供更充足的理论基础和支

撑。本研究初步探索了 ZRBP 在降血糖上的应用潜

力，相关成果对于深入阐明其生物活性及作用机

制、推动其在功能性食品领域的开发研究具有重要

的理论与实践意义。 
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