• 药理与临床 •

黄芩素调控 NLRP3/Caspase-1/GSDMD 通路介导的焦亡减轻小鼠急性肺损伤作用

兰悦嘉1,孟宪丽1*,吴嘉思2*

- 1. 成都中医药大学药学院,四川 成都 611137
- 2. 成都中医药大学针灸推拿学院,四川 成都 611137

摘 要:目的 探究黄芩素对急性肺损伤(acute lung injure, ALI) 小鼠的治疗作用以及对 NOD 样受体热蛋白结构域 3 (NODlike receptor family pyrin domain containing 3, NLRP3) /半胱氨酸天冬氨酸蛋白酶-1 (cystein-asparate protease-1, Caspase-1) /消 皮素 D(gasdermin D, GSDMD) 焦亡通路的调控作用。方法 60 只雄性 C57BL/6 小鼠随机分为对照组、模型组、Caspase-1 抑制剂 VX-765 (30 mg/kg) 组和黄芩素低、中、高剂量 (10、20、40 mg/kg) 组,每组 10 只。除对照组外,其余各组 ip 脂多糖(lipopolysaccharide, LPS, 15 mg/kg), 分别于造模前 24 h 和造模 0.5 h 后给予黄芩素或 VX-765(30 mg/kg)干预。 造模 24 h 后, 检测小鼠肺湿干质量比以评价肺肿胀; 苏木素-伊红 (HE) 染色法检测肺组织病理变化; 透射电子显微镜观察 肺组织中巨噬细胞损伤情况; ELISA 法检测小鼠血清和肺泡灌洗液中白细胞介素-1β (interleukin-1β, IL-1β)、IL-6、IL-18、 IL-1α 和肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)水平;采用 Western blotting 检测肺组织 NLRP3、凋亡相关的斑点 样蛋白(apoptosis-associated speck-like protein containing CARD, ASC)、cleaved Caspase-1、pro Caspase-1、GSDMD-N 以及 GSDMD 蛋白表达。人源单核细胞白血病 THP-1 细胞加入 100 nmol/L 佛波酯诱导 24 h, 贴壁后随机分为对照组、模型组、 VX-765 (500 nmol/L) 组和黄芩素低、中、高剂量 (3、10、30 μmol/L) 组,除对照组外,采用 1 μg/mL LPS 联合 5 mmol/L 三磷酸腺苷(adenosine triphosphate, ATP)刺激 THP-1 细胞建立细胞炎症模型,给予黄芩素或 VX-765 干预,采用 CCK-8 法检测细胞活力; ELISA 法检测上清液中 IL-1β、IL-18 和 IL-1α 水平; LDH 试剂盒检测上清液中乳酸脱氢酶 (lactate dehydrogenase,LDH)活力;免疫荧光评估NLRP3炎症小体组装情况;采用膜联蛋白-V-PE(Annexin-V-PE)/7-氨基放线菌 素(7-aminoactinomycin,7-AAD)试剂盒评价细胞焦亡情况;Western blotting 检测细胞 NLRP3/Caspase-1/GSDMD 通路相关 蛋白表达。结果 在 ALI 小鼠模型中,与模型组比较,VX-765 组和黄芩素组小鼠肺肿胀程度明显减轻 (P < 0.01),肺组织 损伤评分显著降低 (P<0.01),肺组织中巨噬细胞炎性病变得到缓解,血清及肺泡灌洗液中 IL-6、IL-1 β 、TNF- α 、IL-18、IL-1α水平明显降低 (P<0.05、0.01),肺组织 NLRP3、ASC、cleaved Caspase-1、pro Caspase-1、GSDMD-N 以及 GSDMD 蛋 白表达水平均显著降低 (P<0.05、0.01)。在细胞炎症模型中,与模型组比较,VX-765 组和黄芩素组 THP-1 细胞 IL-1β、IL-18、IL-1α 分泌量显著降低 (P<0.01),NLRP3/Caspase-1/GSDMD 通路相关蛋白表达水平明显降低 (P<0.05、0.01),NLRP3 炎症小体组装明显被抑制 (P<0.05、0.01), LDH 释放量及细胞焦亡率显著降低 (P<0.01)。结论 黄芩素通过抑制 NLRP3/Caspase-1/GSDMD 通路介导的细胞焦亡,从而改善 LPS 诱导的小鼠 ALI。

关键词: 黄芩素; 急性肺损伤; 脂多糖; NLRP3/Caspase-1/GSDMD 通路; 细胞焦亡

中图分类号: R285.5 文献标志码: A 文章编号: 0253 - 2670(2023)20 - 6694 - 10

DOI: 10.7501/j.issn.0253-2670.2023.20.013

Baicalein alleviates acute lung injury in mice by regulating NLRP3/Caspase-1/GSDMD pathway mediated pyroptosis

LAN Yue-jia¹, MENG Xian-li¹, WU Jia-si²

收稿日期: 2023-05-31

基金项目: 国家自然科学基金青年基金项目(82104491); 四川省自然科学基金面上项目(2023NSFSC0674); 中国博士后科学基金面上资助地区专项支持计划项目(2021M693789); 成都中医药大学"杏林学者"学科人才科研提升计划项目(XKTD2022013)

作者简介: 兰悦嘉,硕士研究生,从事中药药理与毒理研究。E-mail: lanyuejia@stu.cdutcm.edu.cn

*通信作者: 孟宪丽,教授,博士生导师,从事中药及民族药药理与毒理研究。E-mail: xlm999@cdutcm.edu.cn 吴嘉思,讲师,博士后,硕士研究生导师,从事中药药理与毒理研究。E-mail: wujiasi@cdutcm.edu.cn

- 1. School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- 2. School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China

Abstract: Objective To investigate the therapeutic effect of baicalein on acute lung injure (ALI) mice and its regulatory effect on NOD-like receptor family pyrin domain containing 3 (NLRP3)/cysteine-aspartate protease-1 (Caspase-1)/gasdermin D (GSDMD) pyroptosis pathway. Methods A total of 60 male C57BL/6 mice were randomly divided into control group, model group, Caspase-1 inhibitor (VX-765, 30 mg/kg), baicalein low-, medium- and high-dose (10, 20, 40 mg/kg) groups, with 10 mice in each group. Except for the control group, mice in the other groups were ip lipopolysaccharide (LPS, 15 mg/kg) to establish a mouse model of ALI, baicalein or VX-765 was given 24 h before and 0.5 h after modeling. The lung wet/dry weight ratio of mice was measured 24 h after LPS administration to evaluate lung swelling; The hematoxylin-eosin (HE) staining was used to detect lung tissue pathological changes; The injury of macrophages in lung tissue was observed by transmission electron microscopy (TEM); ELISA method was applied to detect interleukin-1β (IL-1β), IL-6, IL-18, IL-1α and tumor necrosis factor-α (TNF-α) levels in alveolar lavage fluid and serum of mice; Protein expressions of NLRP3, apoptosis-associated speck-like protein containing CARD (ASC), cleaved Caspase-1, pro Caspase-1, GSDMD-N, and GSDMD in lung tissue were determined by Western blotting. THP-1 cells were induced with 100 nmol/L phorbol ester for 24 h. After adherence, cells were randomly divided into control group, model group, VX-765 (500 nmol/L) group and baicalein low-, medium- and high-dose (3, 10, 30 μmol/L) groups. Except for the control group, THP-1 cells were stimulated with 1 μg/mL LPS combined with 5 mmol/L adenosine triphosphate (ATP) to replicate inflammatory model, baicalein or VX-765 was given for intervention, CCK-8 method was applied to determine the cell ability; IL-1β, IL-18, and IL-1α levels in supernatant were detected by ELISA; The lactate dehydrogenase (LDH) kit was used to measure LDH activity; The assembly of NLRP3 inflammasome was evaluated by immunofluorescence; Annexin V-PE/7-aminoactinomycin (7-AAD) kit was used to evaluate the cell pyroptosis; The expressions of NLRP3/Caspase-1/GSDMD pathway protein were detected by Western blotting. Results In ALI mice model, compared with model group, lung swelling of mice in VX-765 group and baicalein group weas significantly attenuated (P < 0.01), lung injure score was decreased (P < 0.01), inflammatory changes of macrophages in lung tissue were alleviated, levels of IL-6, IL-1 β , TNF- α , IL-18 and IL-1 α in serum and bronchoalveolar lavage fluid were significantly decreased (P < 0.05, 0.01), NLRP3, ASC, cleaved Caspase-1, pro Caspase-1, GSDMD-N, and GSDMD protein expressions in lung tissues were decreased (P < 0.05, 0.01). In cell inflammatory model, compared with model group, IL-1β, IL-18 and IL-1α secretions of THP-1 cells in VX-765 group and baicalein group were significantly decreased (P < 0.01), the expressions of NLRP3/Caspase-1/GSDMD pathway related proteins were obviously decreased (P < 0.05, 0.01), NLRP3 inflammasome assembly was inhibited (P < 0.05, 0.01), LDH release and pyroptosis rate were significantly decreased (P < 0.01). Conclusion Baicalein can improve LPS-induced ALI in mice by inhibiting NLRP3/Caspase-1/GSDMD pathway-mediated pyroptosis.

Key words: baicalein; acute lung injury; lipopolysaccharide; NLRP3/Caspase-1/GSDMD pathway; pyroptosis

急性肺损伤(acute lung injury,ALI)是脓毒症患者常见的并发症之一,其特征是肺泡上皮细胞和内皮细胞损伤、肺部炎症细胞浸润以及出现充血水肿等,属于临床常见的危重症,其发病急骤、病死率高[1-2]。目前西医治疗以原发病的治疗、呼吸支持为主,总体上缺乏特效的药物及方法,不能达到理想的治疗效果,此外,针对脓毒症临床治疗所使用的抗生素、糖皮质激素,因不良反应大且易引起药物依赖性[3],故不宜长期应用。因此,深入探究 ALI 发生的作用机制,寻找新型 ALI 预防及治疗药物的具有意义。

NOD 样受体热蛋白结构域 3(NOD-like receptor family pyrin domain containing 3, NLRP3)/半胱氨酸天冬氨酸蛋白酶-1 (cystein-asparate protease-1, Caspase-1)/消皮素 D (gasdermin D, GSDMD)为

典型的炎症通路,是 ALI 的发病核心^[4],其诱导的下游肺泡巨噬细胞焦亡是肺损伤和肺肿胀的主要原因之一^[5]。据报道,抑制巨噬细胞中 NLRP3 的激活可减少白细胞介素-1β(interleukin-1β,IL-1β)、IL-18 的释放,抑制炎症反应,缓解脓毒症小鼠组织损伤^[6]。此外,抑制 Caspase-1 介导的细胞焦亡能够明显降低机体过度炎症反应,从而改善脓毒症小鼠ALI 并抑制脂多糖(lipopolysaccharide,LPS)诱导的肺血管内皮细胞和肺泡巨噬细胞炎症反应^[7]。因此,NLRP3/Caspase-1/GSDMD通路可作为治疗脓毒症的重要潜在靶点。

《太平圣惠方》中记载治疗脓毒症药物使用频次位于前 5 位的是大黄、黄芩、甘草、栀子、麦冬^[8]。此外,黄芩作为臣药在黄连解毒汤治疗脓毒血症过

程中发挥了清泻上焦心肺之火的效用[9]。成分-效应研究结果显示黄芩素是黄芩中含量最高的黄酮类化合物^[10],临床常应用于治疗多种感染性疾病,有较好的解热、抗炎及改善"热、毒、瘀"状态作用。既往研究表明黄芩素针对多种炎症相关疾病具有明显的改善作用,如对酒精诱导的小鼠急性肝损伤具有保护作用^[11];通过抑制缺氧诱导因子-1α(hypoxia inducible factor-1α,HIF-1α)/血管内皮生长因子(vascular endothelial growth factor,VEGF)信号通路抑制类风湿性关节炎大鼠炎症反应及病理性血管生成等^[12]。然而,黄芩素能否通过调控 NLRP3/Caspase-1/GSDMD 通路改善 LPS 诱导的炎症反应和 ALI 尚不可知。因此,本研究主要探究黄芩素对脓毒症小鼠 ALI 的影响及其作用机制。

1 材料

1.1 动物

SPF 级雄性 C57BL/6 小鼠 60 只,7~8 周龄,体质量(20±5)g,购自北京华阜康生物科技股份有限公司,动物许可证号 SCXK(京)2019-0008。动物于 12 h 昼夜交替环境下适应性喂养 1 周。动物实验经成都中医药大学动物保护与使用委员会批准(批准号 2022-79)。

1.2 细胞系

人源单核细胞白血病 THP-1 细胞、小鼠单核巨 噬 RAW264.7 细胞购自武汉普诺赛生命科技有限公司,并取第 3~10 代细胞用于后续实验。

1.3 药品与试剂

黄芩素(质量分数≥98%,批号 MUST-21101117) 购自成都曼思特生物科技有限公司; LPS (批号 L4391-1MG)、二甲基亚砜 (dimethyl sulfoxide, DMSO, 批号RNBF8134)均购自美国Sigma公司; 佛波酯 (phorbol ester, PMA, 批号 514V021)、三磷 酸腺苷 (adenosine triphosphate, ATP, 批号 530S021) 购自北京索莱宝科技有限公司; PBS (批号 GA22090352838)、电镜固定液(批号 CR2203215) 购自武汉赛维尔生物科技有限公司; THP-1 细胞专用 RPMI 1640 培养基(批号 WH1623N271)、RAW264.7 细胞专用高糖 DMEM 培养基(批号 WHAA23N141) 购自武汉普诺赛生命科技有限公司; NLRP3、 Caspase-1、cleaved Caspase-1、GSDMD、HMGB1 抗 体(批号分别为15101、83383S、67314S、46451S、 6893) 购自美国 CST 公司; 凋亡相关的斑点样蛋白 (apoptosis-associated speck-like protein containing CARD, ASC) 抗体(批号 sc-365611) 购自美国 Santa Cruz Biotechnology 公司; 3-磷酸甘油醛脱氢酶 (glyceraldehyde-3-phosphate dehydrogenase, GAPDH) 抗体 (批号 BB12287199)、山羊抗兔 IgG 二抗 (批号 BA12163708) 购自北京博奥森生物科技有限公司; Alexa Fluor 488 标记的山羊抗兔 IgG 二抗(批号 A0423)、Alexa Fluor 555 标记的驴抗小鼠 IgG 二抗 (批号 A0460)、乳酸脱氢酶(lactate dehydrogenase, LDH) 检测试剂盒(批号 C0016) 购自上海碧云天生 物技术有限公司; Caspase-1 抑制剂 Belnacasan (VX-765, 批号 S2228) 购自美国 Selleck 公司;蛋白酶抑 制剂 PMSF (批号 17E10A92)、RIPA 裂解液 (批号 17K17B05)、CCK-8 试剂盒(批号17K16B60)购自 武汉博士德生物工程有限公司; IL-1β、IL-6、IL-1α、 IL-18、肿瘤坏死因子-α (tumor necrosis factor-α, TNFα) ELISA 试剂盒(批号分别为 PA1064X87935、 PA08L02H1995、PA02FDR00461、PA09FR8B5902、 PA0684VL9962) 购自武汉伊莱瑞特生物科技有限公 司; 膜联蛋白-V-PE (Annexin-V-PE) /7-氨基放线菌素 (7-aminoactinomycin, 7-AAD)细胞凋亡检测试剂盒 (批号 C08A090)购自上海爱必信生物科技有限公司。

1.4 仪器

SpectraMaxR iD5 型全波长多功能酶标仪(美国美谷分子仪器有限公司); CLM-170B-8-NF 型培养箱(新加坡 ESCO 公司); SP8SR STED 型超高分辨激光共聚焦显微镜(德国 Leica 公司); JEM-1400 型FLASH 透射电子显微镜(TEM,日本 JEOL 公司); 1384 系列生物安全柜(美国 Thermo Fisher Scientific公司); AE2000 型倒置显微镜(Motic 股份有限公司); Mini PROTEAN 型蛋白电泳仪、Mini Trans-Blot蛋白转印系统(美国 Bio-Rad 公司); UVP ChemStudio多功能成像仪(德国 Jena 公司); Milli-Q Plus 超级纯水仪(美国 Millipore 公司); FACSCanto II型流式细胞仪(美国 BD 公司); SK-O180-S 型数显圆周摇床(上海珂淮仪器有限公司)。

2 方法

2.1 体内实验

2.1.1 分组、造模与给药 将 60 只雄性 C57BL/6 小鼠适应性喂养 1 周后,随机分为对照组、模型组、 VX-765 (30 mg/kg)组和黄芩素低、中、高剂量 (10、20、40 mg/kg)组,每组 10 只。参照文献方法^[13]构建 ALI 小鼠模型,除对照组外,其余各组 ip LPS (15 mg/kg),各给药组分别于造模前 24 h 和造模 0.5 h

后 ip 黄芩素或 VX-765,造模后 24 h 收集各组小鼠 血液、肺组织及肺泡灌洗液。

- 2.1.2 肺组织病理学观察 每组取 4 只小鼠的左肺组织于 4%多聚甲醛中固定,脱水、透明、石蜡包埋,制备组织切片,切片厚度 3~5 μm,进行苏木素-伊红(HE)染色、封片后,于显微镜下观察肺组织病理学变化,并进行病理分析评分。
- 2.1.3 肺肿胀度评估 取 "2.1.2" 项下各组小鼠的 右肺,生理盐水清洗后,使用滤纸擦拭干净水分,然 后称定质量并标记为湿质量。随后置于 65 ℃烘箱内 24 h 称定质量并标记为干质量,计算肺湿干质量比。 2.1.4 TEM 观察肺组织超微结构 取新鲜肺组织,组织体积 2 mm×2 mm 大小,于电镜固定液内室温固定 2 h,再用含 1%锇酸的 0.1 mol/L 磷酸缓冲液 (pH 7.4) 在室温下固定 2 h,0.1 mol/L 磷酸缓冲液 (pH 7.4) 漂洗 3 次,每次 15 min,然后以梯度丙酮进行脱水,Epon812 渗透包埋,采用超薄切片机制备 60~90 nm 超薄切片,以铀铅双染色法染色,最后置于 TEM 下观察,采集图像并分析。
- 2.1.5 ELISA 法检测血清、肺泡灌洗液中 IL-1β、IL-6、IL-18、IL-1α 和 TNF-α 水平 小鼠血液样本常温静置 2 h 后,4 ℃、4000 r/min 离心 10 min,吸取上层血清。按照文献方法^[14]收集小鼠肺泡灌洗液,离心后吸取上清。按照试剂盒说明书测定血清、肺泡灌洗液中 IL-1β、IL-6、IL-18、IL-1α 和 TNF-α 水平。
 2.1.6 Western blotting 法检测肺组织相关蛋白表达
- 2.1.6 Western blotting 法检测肺组织相关蛋白表达将剩余各组的肺组织于匀浆机中匀浆,取匀浆液100 mg 与 1 mL RIPA 裂解液混合,再加 10 μL PMSF混匀搅碎,离心取上清液,采用 BCA 法测定蛋白浓度,调整蛋白浓度并加入上样缓冲液,加热使蛋白变性。样品经十二烷基硫酸钠-聚丙烯胺凝胶电泳、转膜、封闭、TBST 洗膜后,分别加入 NLRP3、pro Caspase-1、cleaved Caspase-1、ASC、GSDMD 抗体,4 ℃孵育过夜,TBST 洗涤 3 次,每次 10 min。加入二抗,室温下摇床孵育 2 h,TBST 洗涤 3 次,每次 10 min。ECL 显色后曝光,采用 Image J 1.8.0 软件分析。以 GAPDH 为内参,计算目的蛋白相对表达量。2.2 体外实验
- **2.2.1** 细胞培养与处理 THP-1 细胞用 RPMI 1640 培养基,于 37 ℃、5% CO₂ 培养箱中培养,取对数 生长期细胞进行实验。THP-1 细胞接种于 96 孔板或 6 孔板中,加入 100 nmol/L PMA 诱导 24 h,贴壁后随机分为对照组、模型组、VX-765(500 nmol/L)

组和黄芩素低、中、高剂量(3、10、30 μmol/L)组。除对照组外,其余各组加入 LPS(1 μg/mL)预处理3 h;各给药组分别加入相应药物孵育3 h 后,除对照组外各组另加入5 mmol/L ATP 继续刺激45 min。2.2.2 CCK-8 法测定细胞活力 THP-1 细胞接种于96 孔板中,加入100 nmol/L PMA 诱导24 h,贴壁后分别加入0、1、10、30、50、100、200 μmol/L 的黄芩素处理24 h,另设置不接种细胞不含药物的空白孔。各孔更换为新鲜培养液,加入10 μL CCK-8溶液继续培养1.5 h,采用酶标仪测定各孔在450 nm处的吸光度(A)值,计算细胞存活率。

细胞存活率= $(A_{\text{x}} - A_{\text{2}})/(A_{\text{MM}} - A_{\text{2}})$

- **2.2.3** ELISA 法检测上清液中 IL-1 β 、IL-18 和 IL-1 α 水平 按 "2.2.1" 项下方法进行分组及处理,收集各组细胞上清液,按照试剂盒说明书测定 IL-1 β 、IL-18 和 IL-1 α 水平。
- 2.2.4 Western blotting 法检测 THP-1 细胞相关蛋白 表达 按 "2.2.1" 项下方法进行分组及处理,收集 细胞,加入 RIPA 裂解液提取蛋白,采用 BCA 蛋白 定量试剂盒测定蛋白浓度,蛋白样品经十二烷基硫酸钠-聚丙烯酰胺凝胶电泳,转至 PVDF 膜,于 5% 牛血清白蛋白中封闭,分别加入 NLRP3、pro Caspase-1、cleaved Caspase-1、ASC、GSDMD、HMGB-1 抗体,4 $^{\circ}$ C孵育过夜;加入二抗,室温孵育 2 h,加入超敏 ECL 化学发光试剂,于凝胶成像 仪中曝光显影。
- 2.2.5 免疫荧光法观察 NLRP3 炎症小体组装情况 THP-1 细胞以 $4\times10^5/\text{mL}$ 接种于玻底小皿中,加入 100 nmol/L PMA 诱导 24 h,贴壁后随机分为对照 组、模型组、VX-765(500 nmol/L)组和黄芩素高 剂量(30 μ mol/L)组。按"2.2.1"项下方法处理,用 PBS 清洗 3 次,用 2.5%戊二醛固定细胞,分别 加入含 NLRP3 兔抗、ASC 鼠抗、pro Caspase-1 兔抗、ASC 鼠抗的 5%牛血清白蛋白,4 ℃孵育过夜;加入 Alexa Fluor 488 标记的山羊抗兔 IgG 二抗或 Alexa Fluor 555 标记的驴抗小鼠 IgG 二抗,室温孵育 2 h,再进行 DAPI 染色,最后在激光共聚焦显微镜下观察并拍照。
- **2.2.6** Annexin-V/7-AAD 检测细胞焦亡RAW264.7细胞以 8×10^5 /mL接种于6孔板中,贴壁12h后随机分为对照组、模型组、VX-765(500 nmol/L)和黄芩素低、中、高剂量(3、10、30 μ mol/L)组。各给药组分别加入相应药物预处理1h后,除

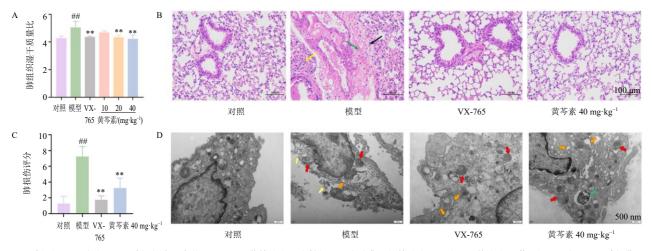
对照组外,其余各组加入 LPS (500 ng/mL) 处理 12 h,再另加入 5 mmol/L ATP 继续刺激 45 min。最后使用 Annexin-V/7-AAD 试剂盒染色,并采用流式细胞 仪上机检测。

2.2.7 LDH 释放量检测 THP-1 细胞接种于 96 孔板中,加入 100 nmol/L PMA 诱导 24 h,贴壁后按"2.2.1"项下方法进行分组及处理,收集细胞培养液, $400 \times g$ 离心 5 min,取上清液,根据 LDH 检测试剂 盒说明书测定 LDH 释放量。

2.3 统计学分析

采用 SPSS 20.0 软件进行数据分析,实验数据 以 $\bar{x} \pm s$ 表示,多组间比较采用单因素方差分析,组 间两两比较采用 t 检验。

3 结果


3.1 黄芩素对 ALI 小鼠肺组织损伤的影响

如图 1-A 所示,与对照组比较,模型组小鼠肺组织肺湿干质量比显著升高(P<0.01);与模型组比较,VX-765 组和黄芩素中、高剂量组肺湿干质量比显著降低(P<0.01)。如图 1-B 所示,对照组小鼠肺组织各级支气管结构无明显异常,肺泡壁结构清晰,未见明显的炎性改变;模型组小鼠肺组织肺泡壁增厚,肺泡腔狭窄或消失,伴少量炎性细胞及淋巴细胞浸润,偶见血管周围水肿及少量出血;与模型组比较,VX-765 组和黄芩素高剂量组肺组织结

构损伤减轻,包括肺水肿、肺泡壁增厚减轻,炎性细胞浸润减少。此外,与对照组比较,模型组肺组织损伤评分显著升高(P<0.01,图 1-C);与模型组比较,各给药组肺组织损伤评分均显著降低(P<0.01)。采用 TEM 观察各组小鼠肺组织超微结构,如图 1-D 所示,与对照组比较,模型组肺组织的巨噬细胞中线粒体明显肿胀,粗面内质网扩张呈囊状,细胞膜出现破裂;与模型组比较,VX-765组和黄芩素高剂量组线粒体轻度肿胀,粗面内质网扩张程度降低,其中黄芩素高剂量组发生自噬现象。以上结果表明黄芩素能明显缓解 LPS 诱导的小鼠肺损伤,包括减轻肺水肿、减少炎性细胞浸润以及阻止肺组织中巨噬细胞发生炎性病变等。

3.2 黄芩素对 ALI 小鼠血清和灌洗液中炎症因子 水平的影响

如图 2 所示,与对照组比较,模型组小鼠血清和肺泡灌洗液中 IL-6、IL-1 β 、TNF- α 、IL-18、IL-1 α 水平均显著升高(P<0.01);与模型组比较,VX-765组及黄芩素低、中、高剂量组小鼠血清 IL-1 β 、TNF- α 、IL-1 α 和肺泡灌洗液 TNF- α 、IL-1 α 水平均显著降低(P<0.01),VX-765组及黄芩素中、高剂量组小鼠血清 IL-6、IL-1 α 和肺泡灌洗液 IL-6、IL-1 β 水平均显著降低(P<0.01),且黄芩素作用呈剂量相关性。

A-肺组织湿干质量比 B-肺组织病理变化(×200,黄箭头表示炎性细胞浸润聚集,绿箭头表示出血,黑箭头表示淋巴细胞浸润) C-肺损伤评分 D-肺组织超微结构(×25000,黄箭头表示细胞膜破裂,红箭头表示线粒体肿胀,橙箭头表示粗面内质网扩张,绿箭头表示自噬) 与对照组比较: **P<0.01;与模型组比较: **P<0.05 ***P<0.01,下图同

A-lung tissue wet/dry weight B-pathological changes of lung tissue (\times 200, yellow arrow indicates inflammatory cells infiltration and aggregation, green arrow indicates hemorrhage and black arrow indicates lymphocyte infiltration) C-lung injury score D-ultrastructure of lung tissue (\times 25 000, yellow arrows indicate membrane disruption, red arrows indicate mitochondrial swelling, orange arrows indicate dilation of the rough endoplasmic reticulum, and green arrow indicates autophagy) ##P<0.01 vs control group; *P<0.05 **P<0.01 vs model group, same as below figures

图 1 黄芩素对 ALI 小鼠肺组织损伤的影响 $(\bar{x} \pm s, n = 4)$

Fig. 1 Effect of baicalein on lung tissue injury in ALI mice ($\bar{x} \pm s$, n = 4)

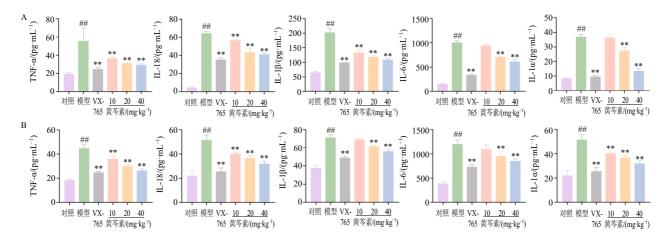


图 2 黄芩素对 ALI 小鼠血清 (A) 和肺泡灌洗液 (B) 中 IL-6、IL-1 β 、TNF- α 、IL-1 α 、IL-1 α 水平的影响 ($\bar{x} \pm s$, n = 4) Fig. 2 Effect of baicalein on IL-6, IL-1 β , TNF- α , IL-18, IL-1 α levels in serum (A) and bronchoalveolar lavage fluid (B) of ALI mice ($\bar{x} \pm s$, n = 4)

3.3 黄芩素对 ALI 小鼠肺组织 NLRP3 通路相关蛋白表达的影响

如图 3 所示,与对照组比较,模型组小鼠肺组织 NLRP3、ASC、cleaved Caspase-1、pro Caspase-1、GSDMD-N 和 GSDMD 蛋白表达水平均显著升高 (P<0.01);与模型组比较,VX-765 组及黄芩素中、高剂量组 pro Caspase-1 和 GSDMD 蛋白表达水平明显降低 (P<0.05、0.01),且呈剂量相关性;VX-765 组及黄芩素高剂量组 NLRP3、ASC、cleaved Caspase-1 和 GSDMD-N 蛋白表达水平均显著降低 (P<0.05、0.01)。

3.4 黄芩素对 LPS 联合 ATP 诱导 THP-1 细胞 NLRP3 通路相关蛋白表达及炎症因子水平的影响

如图 4-A 所示, 1、10 μmol/L 的黄芩素促进细

胞增殖,30、50、100、200 μ mol/L 的黄芩素抑制细胞活力,且呈剂量相关性。如图 4-B、C 所示,与对照组比较,LPS 联合 ATP 刺激后 THP-1 细胞 IL-18 和 IL-1 β 分泌量显著升高(P<0.01);与模型组比较,VX-765 组及黄芩素低、中、高剂量组 IL-1 β 分泌量显著降低(P<0.01),VX-765 组及黄芩素中、高剂量组 IL-18 分泌量显著降低(P<0.01)。如图 4-D 所示,与对照组比较,模型组 NLRP3 和 cleaved Caspase-1 蛋白表达水平显著升高(P<0.01);与模型组比较,VX-765 组及黄芩素中、高剂量组 NLRP3 蛋白表达水平显著降低(P<0.05、0.01),VX-765 组及黄芩素低、中、高剂量组 cleaved Caspase-1 蛋白表达水平显著降低(P<0.05、0.01),各组间 ASC蛋白表达水平显著降低(P<0.05、0.01),各组间 ASC蛋白表达水平无明显差异。

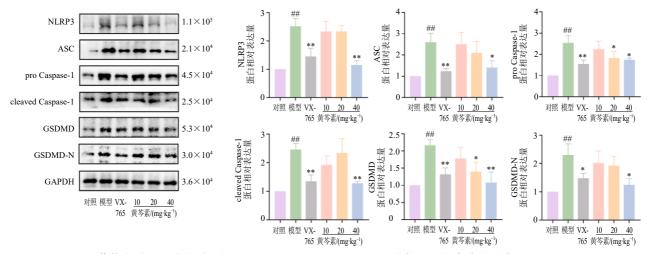


图 3 黄芩素对 ALI 小鼠肺组织 NLRP3/Caspase-1/GSDMD 通路相关蛋白表达的影响 $(\bar{x} \pm s, n = 3)$

Fig. 3 Effect of baicalein on expressions of NLRP3/Caspase-1/GSDMD pathway related proteins in lung tissue of ALI mice $(\bar{x} \pm s, n = 3)$

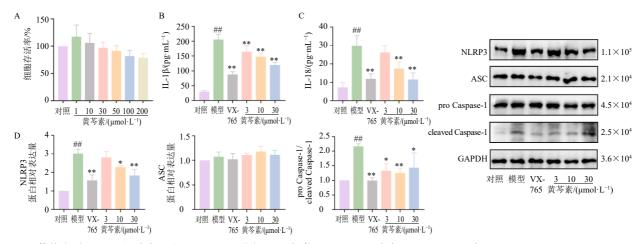


图 4 黄芩素对 THP-1 细胞存活率 (A)、LPS 联合 ATP 刺激后 THP-1 细胞中 IL-18、IL-1 β 水平 (B、C) 及 NLRP3/Caspase-1/GSDMD 通路相关蛋白表达 (D) 的影响 ($\bar{x} \pm s, n = 3$)

Fig. 4 Effect of baicalein on THP-1 cell viability (A), levels of IL-18 and IL-1 β (B, C) and NLRP3/Caspase-1/GSDMD pathway related proteins expressions (D) in THP-1 cells stimulated by LPS combined with ATP ($\bar{x} \pm s$, n = 3)

3.5 黄芩素对 LPS 联合 ATP 诱导 THP-1 细胞 NLRP3 炎症小体组装的影响

如图 5 所示,与对照组比较,LPS 联合 ATP 诱导的 THP-1 细胞中 pro Caspase-1 与 ASC 间、ASC 与 NLRP3 间蛋白-蛋白相互绑定作用增强,且共定位系数差异具有统计学意义(P<0.01);与模型组比较,VX-765 组及黄芩素高剂量组显著减弱以上蛋白间相互作用(P<0.05、0.01),表明黄芩素抑制了LPS 联合 ATP 刺激后 THP-1 细胞中 NLRP3 炎症小体的组装。

3.6 黄芩素对 LPS 联合 ATP 诱导 THP-1 细胞焦 亡的影响

如图 6-A 所示,与对照组比较,LPS 联合 ATP

刺激的 THP-1 细胞中 LDH 释放量显著升高 (*P*<0.01);与模型组比较,VX-765 组及黄芩素中、高剂量组 LDH 释放量显著降低 (*P*<0.01)。如图 6-B 所示,对照组细胞状态优良,极少量出现凋亡、坏死情况;而模型组在 LPS 联合 ATP 刺激下出现明显的焦亡现象 (*P*<0.01);与模型组比较,VX-765 组及黄芩素低、中、高剂量组均不同程度地抑制了细胞焦亡 (*P*<0.01),且黄芩素的作用呈剂量相关性。如图 6-C 所示,LPS 联合 ATP 刺激介导焦亡标志性蛋白 GSDMD-N 蛋白及下游炎症因子 HMGB-1 的过表达 (*P*<0.01);而 VX-765 组及黄芩素中、高剂量组明显降低 GSDMD-N 蛋白表达水平 (*P*<0.05、0.01),VX-765 组及黄芩素高剂量组明显降低

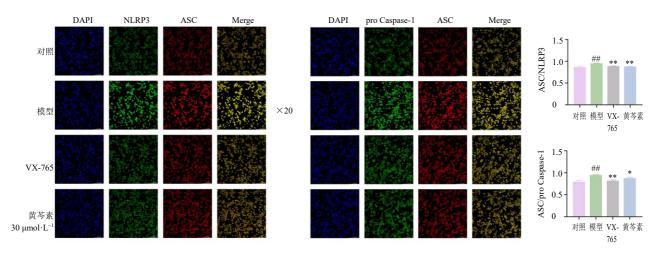


图 5 黄芩素对 LPS 联合 ATP 刺激后 THP-1 细胞 NLRP3 炎症小体组装的影响 $(\bar{x} \pm s, n = 3)$

Fig. 5 Effect of baicalein on NLRP3 inflammasome assembly in THP-1 cells stimulated by LPS combined with ATP ($\bar{x} \pm s$, n = 3)

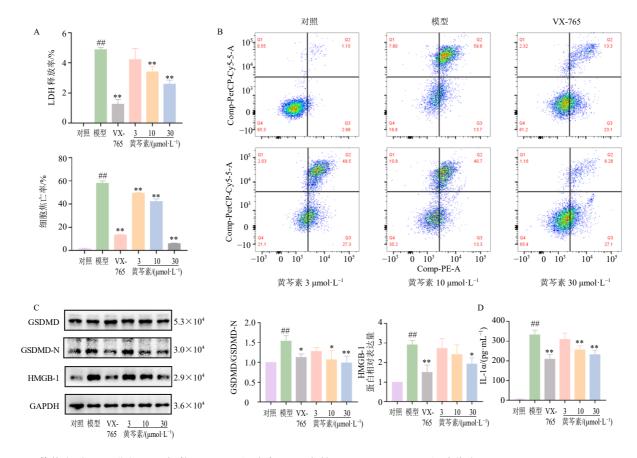


图 6 黄芩素对 LPS 联合 ATP 刺激后 THP-1 细胞中 LDH 释放量 (A)、RAW264.7 细胞焦亡 (B)、NLRP3/Caspase-1/GSDMD 通路相关蛋白表达 (C) 及 IL-1 α 水平 (D) 的影响 ($\bar{x} \pm s$, n = 3)

Fig. 6 Effect of baicalein on LDH secretion (A), pyroptosis of RAW264.7 cells (B), NLRP3/Caspase-1/GSDMD pathway related proteins expressions (C) and IL-1 α level (D) in THP-1 cells stimulated by LPS combined with ATP ($\bar{x} \pm s$, n = 3)

HMGB-1 蛋白表达水平 (P<0.05、0.01)。如图 6-D 所示,模型组 IL-1 α 分泌量显著升高 (P<0.01),而 VX-765 组及黄芩素中、高剂量组 IL-1 α 分泌量明显降低 (P<0.01)。以上结果提示黄芩素逆转 LPS 联合 ATP 诱导的细胞焦亡。

4 讨论

ALI 是临床上常见的危重症之一,主要发病机制为严重感染、创伤后的肺部或全身不可控的炎症,其发生率和病死率均较高[15]。研究表明,内毒素是导致 ALI 的重要因素,其主要成分 LPS 是建立 ALI 动物模型常用的诱导剂^[16-17]。 LPS 可以激活肺组织中性粒细胞,诱导机体大量炎症因子生成,使炎症系统激活,触发 ALI 的发生发展^[18]。针对 ALI 目前临床上主要有控制感染、机械通气、抗生素等几种治疗方法,但以上方法均存在疗效不确切和不良反应大等问题^[19],因此开发具有治疗潜力的药物对于治疗 ALI 具有重大意义。

黄芩是唇形科植物黄芩 Scutellaria baicalensis

Georgi 的干燥根,性寒味苦,具有清热燥湿、泻火 解毒等功效, 尤其擅长清上焦心肺热。黄芩素是黄 芩的主要活性成分之一,具有抗炎、抗氧化、抗肿 瘤、抗凋亡[20]等药理作用。研究发现,黄芩素能改 善脓毒症大鼠肺水肿与肺部炎性病变, 具有潜在的 ALI 治疗价值[21]。但是目前有关黄芩素对 ALI 的作 用机制尚不完全清楚。为此本研究首先采用 LPS 建 立小鼠 ALI 模型, 观察黄芩素对其作用。结果显示, 模型组小鼠肺组织湿干质量比增加,肺组织染色后 中性粒细胞大量聚集,肺泡坍塌变形,肺组织中巨 噬细胞坏死,细胞膜破裂,细胞器肿胀,血清及灌 洗液中细胞因子 TNF-α、IL-6 等水平升高,提示 ALI 小鼠模型构建成功。而黄芩素干预后, 肺组织湿干 质量比明显降低, 肺组织结构趋于完整, 炎性细胞 和淋巴细胞浸润减少,进一步检测发现血清及灌洗 液中炎症因子含量显著降低,表明黄芩素能够有效 缓解肺肿胀,明显改善肺部炎性损伤,并抑制 ALI 小鼠体内大量促炎细胞因子的释放,进而发挥治疗 ALI 的作用。

细胞焦亡是一种同时具有坏死和凋亡表型特征, 并介于二者之间的炎症性、可逆的调节性死亡[22],焦 亡细胞表现为 Annexin-V 和 7-AAD 染色呈双阳性[23], 因此通过流式细胞术准确快速地检测造模以及给药 前后 RAW264.7 细胞焦亡的发生率。此外研究证实, NLRP3 炎性小体是细胞焦亡启动的关键环节[24]。焦 亡是一种由外源刺激信号活化胞内的炎症信号通 路,并伴随着先天免疫受体蛋白 NLRP3、适配蛋白 ASC 和炎性蛋白酶 Caspase-1 组装的炎症小体形成, 同时激活 Caspase-1,从而诱导的 GSDMD 依赖性的 细胞程序性死亡。期间 $IL-1\beta$ 、IL-18、 $IL-1\alpha$ 及 HMGB-1 等炎症介质相继释放,并最终参与炎症反 应。近年来大量研究表明直接或间接抑制 NLRP3/ Caspase-1/ASC 炎症小体介导的巨噬细胞焦亡能显 著改善 ALI 的肺部损伤[25]。本研究发现 ALI 小鼠肺 组织 NLRP3/Caspase-1/GSDMD 通路蛋白表达以及 血清和灌洗液中炎症因子 IL-1β、IL-18、IL-1α 释放 均明显升高, 而经黄芩素干预后能够明显逆转以上 情况。为进一步明确黄芩素是否通过调控 NLRP3/ Caspase-1/GSDMD 细胞焦亡通路来改善 LPS 诱导 的 ALI, 通过体外培养 THP-1 细胞, 考察黄芩素对 LPS 联合 ATP 诱导 THP-1 细胞焦亡的影响及机制。 结果显示, 黄芩素能够抑制细胞焦亡, 显著降低 NLRP3/Caspase-1/GSDMD 信号通路蛋白表达以及 LDH、IL-1β、IL-18、IL-1α的释放,与动物实验结 果一致。ALI 小鼠肺组织中 ASC 蛋白表达水平增 加,给药后表达水平出现不同程度的降低,而在 THP-1 细胞中刺激前后各组 ASC 蛋白均稳定表达, 且并未受到黄芩素和 VX-765 干预的影响,这可能 与 LPS 刺激后不影响 ASC 的转录和翻译, 但改变 ASC 斑点数量有关[26]。此外, 黄芩素还能干预 NLRP3 炎症小体的组装,并抑制下游细胞焦亡。以 上结果提示黄芩素可以通过抑制 NLRP3/Caspase-1/ GSDMD 介导细胞焦亡发挥 ALI 肺组织损伤的保护 作用(图7)。

中医学认为 ALI 属于"外感热病",符合"温热病"的范畴^[27],而黄芩具有泻实火、除湿热的功效,临床广泛用于治疗各种感染和炎症性疾病。本研究明确了黄芩中重要黄酮类化合物黄芩素通过抑制 NLRP3/Caspase-1/GSDMD 通路,降低 ALI 细胞焦亡,改善肺损伤。基于黄连-黄芩联合应用发挥抗炎作用的文献支撑,本课题组前期还研究了黄连中表

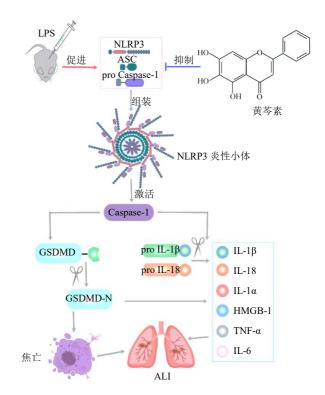


图 7 黄芩素通过调控 NLRP3/Caspase-1/GSDMD 通路介导的细胞焦亡减轻 LPS 诱导的 ALI

Fig. 7 Baicalein alleviates LPS-induced ALI by regulating NLRP3/Caspase-1/GSDMD pathway-mediated pyroptosis

小檗碱对 ALI 小鼠的作用及机制^[28],证明了表小檗碱对 LPS 介导的 ALI 也具有明显的改善作用,与调控 CD39-P2X7 嘌呤能通路与下游 NLRP3 炎症小体有关。这为黄连-黄芩联合应用作为临床治疗脓毒症药物提供理论基础,为临床抗脓毒症新药的选择提供更多可能性。

以上研究结果为黄芩素治疗 ALI 提供了潜在研究机制,但仅对其中的 NLRP3 炎症小体信号通路进行了初步研究,对于其他炎性小体如 NLRP1、白介素-1β 转换酶激活因子(interleukin-1β-converting enzyme protease-activating factor,IPAF)、黑素瘤缺乏因子 2(human absent in melanoma 2,AIM2)的相关性研究不足,对 NLRP3 炎症小体通路上游以及更深的影响机制尚未完全阐明,因此仍需更多进一步的实验研究来丰富和发展 ALI 的相关理论基础,以期最终改善疾病的预后。

利益冲突 所有作者均声明不存在利益冲突

参考文献

[1] Xu H B, Qi Q, Yan X X. Myricetin ameliorates sepsisassociated acute lung injury in a murine sepsis model [J]. Naunyn Schmiedebergs Arch Pharmacol, 2021, 394(1): 165-175.

- [2] Jin C, Chen J, Gu J, *et al.* Gut-lymph-lung pathway mediates sepsis-induced acute lung injury [J]. *Chin Med J*, 2020, 133(18): 2212-2218.
- [3] Wang R H, Xie Y X, Qiu J W, et al. The effects of dexmedetomidine in a rat model of sepsis-induced lung injury are mediated through the adenosine monophosphateactivated protein kinase (AMPK)/silent information regulator 1 (SIRT1) pathway [J]. Med Sci Monit, 2020, 26: e919213.
- [4] 罗亚岚, 许才明, 李兆霞, 等. NLRP3 炎性小体: 急性肺损伤的发病核心 [J]. 中国急救医学, 2019, 39(3): 285-289.
- [5] Jing W D, Pilato J L, Kay C, et al. Clostridium septicum α-toxin activates the NLRP3 inflammasome by engaging GPI-anchored proteins [J]. Sci Immunol, 2022, 7(71): eabm1803.
- [6] Kim M J, Bae S H, Ryu J C, et al. SESN2/sestrin2 suppresses sepsis by inducing mitophagy and inhibiting NLRP3 activation in macrophages [J]. Autophagy, 2016, 12(8): 1272-1291.
- [7] Li Z Y, Jia Y F, Feng Y, et al. Methane alleviates sepsisinduced injury by inhibiting pyroptosis and apoptosis: in vivo and in vitro experiments [J]. Aging, 2019, 11(4): 1226-1239.
- [8] 陈子秋, 庞博. 《太平圣惠方》治疗脓毒症用药规律分析 [J]. 河南中医, 2021, 41(4): 542-547.
- [9] 李翀, 翁书和, 梁莉萍, 等. 黄连解毒汤对脓毒症模型 小鼠肺损伤的保护作用及其机制研究 [J]. 江苏中医药, 2018, 50(3): 79-82.
- [10] 周胜男, 邓瑞雪, 赵爽, 等. HPLC 法测定黄芩中 8 个黄酮类成分的含量 [J]. 化学研究与应用, 2022, 34(8): 1920-1926.
- [11] 李金玲. 黄芩素对酒精诱导的小鼠急性肝损伤的保护作用 [D]. 长春: 吉林农业大学, 2022.
- [12] 杜红丽, 张晨宇, 赵清. 黄芩素通过调节 HIF-1a/VEGF 信号通路抑制类风湿关节炎大鼠的炎症反应和病理性 血管生成 [J]. 中国病理生理杂志, 2022, 38(12): 2213-2219.
- [13] Xiong S Q, Hong Z G, Huang L S, et al. IL-1β suppression of VE-cadherin transcription underlies sepsis-induced inflammatory lung injury [J]. J Clin Invest, 2020, 130(7): 3684-3698.
- [14] Englert J A, Bobba C, Baron R M. Integrating molecular pathogenesis and clinical translation in sepsis-induced acute respiratory distress syndrome [J]. *JCI Insight*, 2019, 4(2): e124061.
- [15] 马晓春, 王辰, 方强, 等. 急性肺损伤/急性呼吸窘迫综合征诊断和治疗指南 (2006) [J]. 中国危重病急救医学,

- 2006(12): 706-710.
- [16] Bayston K F, Cohen J. Bacterial endotoxin and current concepts in the diagnosis and treatment of endotoxaemia [J]. *J Med Microbiol*, 1990, 31(2): 73-83.
- [17] Menden H, Welak S, Cossette S, et al. Lipopolysaccharide (LPS)-mediated angiopoietin-2-dependent autocrine angiogenesis is regulated by NADPH oxidase 2 (Nox2) in human pulmonary microvascular endothelial cells [J]. J Biol Chem, 2015, 290(9): 5449-5461.
- [18] Nova Z, Skovierova H, Calkovska A. Alveolar-capillary membrane-related pulmonary cells as a target in endotoxininduced acute lung injury [J]. *Int J Mol Sci*, 2019, 20(4): 831.
- [19] Bao H, Gao F Y, Xie G G, et al. Angiotensin-converting enzyme 2 inhibits apoptosis of pulmonary endothelial cells during acute lung injury through suppressing miR-4262 [J]. Cell Physiol Biochem, 2015, 37(2): 759-767.
- [20] Gupta S, Buttar H S, Kaur G, *et al.* Baicalein: Promising therapeutic applications with special reference to published patents [J]. *Pharm Pat Anal*, 2022, 11(1): 23-32.
- [21] 杨丽, 陈卫, 华丽, 等. 黄芩素对脓毒症大鼠的治疗作用及机制 [J]. 广州中医药大学学报, 2022, 39(7): 1637-1643.
- [22] Chen X, He W T, Hu L C, et al. Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis [J]. Cell Res, 2016, 26(9): 1007-1020.
- [23] Teng J F, Mei Q B, Zhou X G, *et al.* Polyphyllin VI induces caspase-1-mediated pyroptosis via the induction of ROS/NF-κB/NLRP3/GSDMD signal axis in non-small cell lung cancer [J]. *Cancers*, 2020, 12(1): 193.
- [24] Zeng Y J, Qin Q W, Li K Y, et al. PKR suppress NLRP3pyroptosis pathway in lipopolysaccharide-induced acute lung injury model of mice [J]. Biochem Biophys Res Commun, 2019, 519(1): 8-14.
- [25] Li J H, Ma J M, Li M Y, et al. GYY4137 alleviates sepsisinduced acute lung injury in mice by inhibiting the PDGFRβ/Akt/NF-κB/NLRP3 pathway [J]. Life Sci, 2021, 271: 119192.
- [26] Zhao W M, Ma L, Cai C, *et al.* Caffeine inhibits NLRP3 inflammasome activation by suppressing MAPK/NF-κB and A2aR signaling in LPS-induced THP-1 macrophages [J]. *Int J Biol Sci*, 2019, 15(8): 1571-1581.
- [27] 汪海慧, 熊旭东, 沈晓红. 脓毒症急性肺损伤的中医药治疗进展 [J]. 世界中西医结合杂志, 2016, 11(7): 1024-1027.
- [28] 吴嘉思, 兰悦嘉, 王俊, 等. 表小檗碱调控 CD39-NLRP3-GSDMD 焦亡路径改善脓毒症肺损伤的机制研究 [J]. 中草药, 2023, 54(1): 112-121.

[责任编辑 李亚楠]