细辛通过上调 p53 介导铁死亡致大鼠肝损伤的作用机制研究

鲍慧中1,朱丽娟1,2,刘雪枫1,2,王丽娟1,2,罗慧英1,2*

摘 要:目的 探讨细辛通过上调 p53 表达介导铁死亡致大鼠肝损伤的作用机制。方法 32 只大鼠随机分为对照组和细辛 低、中、高剂量(0.27、0.81、1.35 g/kg)组,每组8只,每日 ig 给药1次,连续28 d。末次给药2h 后采集血清样本和肝 脏样本,全自动生化仪检测丙氨酸氨基转移酶(alanine aminotransferase,ALT)、天门冬氨酸氨基转移酶(aspartate aminotransferase, AST) 和碱性磷酸酯酶 (alkaline phosphatase, ALP) 水平;酶联免疫吸附法 (enzyme linked immunosorbent assay, ELISA)检测肿瘤坏死因子-α(tumor necrosis factor-α, TNF-α)和白细胞介素-1β(interleukin-1β, IL-1β)水平;比色 法检测超氧化物歧化酶(superoxide dismutase, SOD)活性和还原型谷胱甘肽(reduced glutathione, GSH)、丙二醛 (malonaldehyde, MDA)及Fe²⁺含量;化学荧光法检测活性氧物质(reactive oxide species, ROS)含量;苏木精-伊红染色法 (hematoxylin-eosin, HE)染色观察肝脏病理变化:定量反转录-聚合酶链锁反应(quantitative reverse transcription-polymerase chain reaction, qRT-PCR)检测 p53、溶质载体家族7成员11(solute carrier family 7 members 11, SLC7A11)、谷胱甘肽过氧 化物酶 4 (glutathione peroxidase 4, GPX4)、铁蛋白重链 1 (ferritin heavy chain 1, FTH1)、转铁蛋白受体 1 (transferrin receptor 1, TFR1) mRNA 含量; Western blotting 检测 p53、SLC7A11、GPX4、FTH1、TFR1 蛋白表达。结果 与对照组比较,细辛 组肝功能指标(ALT、AST、ALP)和血清致炎因子(TNF-α、IL-1β)水平显著升高(P<0.05); 肝脏出现明显炎性改变; 肝组织中 SOD 活性和 GSH 水平显著降低(P<0.05),氧化应激水平(ROS、MDA)和 Fe²⁺含量显著升高(P<0.05); p53 和 TFR1 的蛋白及 mRNA 表达均显著上调(P<0.05),GPX4、SLC7A11 和 FTH1 的蛋白及 mRNA 表达均显著下调(P< 0.05)。结论 细辛对大鼠肝脏有一定的损伤,其机制可能与上调 p53、TFR1 表达水平,下调 FTH1 表达水平,提高细胞内 Fe²⁺含量;同时下调 SLC7A11 表达,使 GPX4 表达水平降低进而诱发肝细胞铁死亡有关。 关键词:细辛: p53;铁死亡;肝损伤;溶质载体家族7成员11;谷胱甘肽过氧化物酶4;铁蛋白重链1;转铁蛋白受体1

中图分类号: R285 文献标志码: A 文章编号: 0253 - 2670(2023)02 - 0593 - 08 DOI: 10.7501/j.issn.0253-2670.2023.02.027

DOI: 10.7501/J.1881.0255-2670.2025.02.027

Study on mechanism of *Asari Radix* et *Rhizoma* induced hepatic injury in rats by up-regulating p53 expression mediated ferroptosis

BAO Hui-zhong¹, ZHU Li-juan^{1, 2}, LIU Xue-feng^{1, 2}, WANG Li-juan^{1, 2}, LUO Hui-ying^{1, 2}

1. School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China

2. Gansu Key Laboratory of Pharmacology and Toxicology for Traditional Chinese Medicine, Lanzhou 730000, China

Abstract: Objective To investigate the role of Xixin (*Asari Radix* et *Rhizoma*) on hepatica damage by up-regulating p53 expression to induce ferroptosis in rats. **Methods** Thirty-two rats were randomly divided into blank group, *Asari Radix* et *Rhizoma* low-dose, medium-dose and high-dose groups, with eight rats in each group. The rats were given orally once a day for 28 d. Serum and liver samples were collected 2 h after the last administration, and the levels of alanine aminotransaminase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP) were detected by automatic biochemical analyzer. The levels of tumor necrosis factor- α (TNF- α) and interleukin-1 β (IL-1 β) were detected by enzyme-linked immunosorbent assay (ELISA). The activity of superoxide dismutase (SOD) and the content of reduced glutathione (GSH), malonaldehyde (MDA) and Fe²⁺ were detected by colorimetric method. The content of reactive oxygen species (ROS) was detected by chemical fluorescence method. Hematoxylin and eosin staining (HE) was

^{1.} 甘肃中医药大学药学院, 甘肃 兰州 730000

^{2.} 甘肃省中药药理与毒理学重点实验室, 甘肃 兰州 730000

收稿日期: 2022-10-13

基金项目: 甘肃省自然科学基金项目(22JR5RA585)

作者简介: 鲍慧中(1999—), 女, 硕士在读, 研究方向为中药药理与毒理学。

^{*}通信作者:罗慧英,女,博士,教授,硕士生导师,研究方向为中药药理与毒理学。E-mail: louria@126.com

used to observe the pathological changes of liver. The mRNA levels of p53, solute carrier family 7 members 11 (*SLC7A11*), glutathione peroxidase 4 (*GPX4*), ferritin heavy chain 1 (*FTH1*) and transferrin receptor 1 (*TFR1*) were detected by qRT-PCR. The protein expressions of p53, SLC7A11, GPX4, FTH1 and TFR1 were detected by Western blotting. **Results** Compared with the blank group, liver function indexes (ALT, AST, ALP) and serum inflammatory factors (TNF- α , IL-1 β) levels in the *Asari Radix* et *Rhizoma* groups were significantly increased (*P* < 0.05); the obvious inflammatory changes were observed in liver; the activity of SOD and the level of GSH in liver tissue were significantly decreased (*P* < 0.05); the oxidative stress levels (ROS, MDA) and Fe²⁺ content were significantly increased (*P* < 0.05); the mRNA and protein expressions of p53 and TFR1 were significantly up-regulated (*P* < 0.05), while the mRNA and protein expressions of p53 and TFR1 were significantly down-regulated (*P* < 0.05). **Conclusion** *Asari Radix* et *Rhizoma* had toxicity to liver, the mechanism might be related to the up-regulation of p53 and TFR1 expression and the down-regulation of p53 expression leaded to the down-regulation of SLC7A11 and GPX4 expression, resulting the induction of ferroptosis of hepatocyte.

Key words: *Asari Radix* et *Rhizoma*; p53; ferroptosis; hepatic injury; solute carrier family 7 members 11; glutathione peroxidase 4; ferritin heavy chain 1; transferrin receptor 1

《中国药典》2020年版中记载,细辛为马兜铃科 植物北细辛 Asarum heterotropoides Fr. Schmidt var. mandshuricum (Maxim.) Kitag.、汉城细辛 A. sieboldii Miq. var. seoulense Nakai 或华细辛 A. sieboldii Miq. 的干燥根和根茎。其味辛,性温,具有解表散寒、祛 风止痛、通窍、温肺化饮之功效; 主治风寒感冒、头 痛、牙痛、鼻塞流涕、鼻鼽、鼻渊、风湿痹痛、痰饮 喘咳等。现代药理学研究发现,细辛具有解热镇痛、 抗惊厥、降压、抗感染、调节免疫、提高机体新陈代 谢功能等作用,在临床上应用广泛。但有关细辛毒性 的认识仍众说纷纭。《黄帝内经》《神农本草经》等传 统医学典籍明确记载细辛"无毒",各版《中国药典》 也均未见细辛有毒的记载。但《本草纲目》《全国中 草药汇编》《中华本草》及各版高等医学院校教材《中 药学》都明确标注细辛有小毒。研究表明, 细辛所含 毒性成分主要有黄樟醚、甲基丁香酚、马兜铃酸类似 物、肉豆蔻醚等[1-2]。细辛长期毒性的靶器官主要在 肝脏,可使肝细胞发炎、肿胀、坏死^[3],机制主要涉 及氧化应激^[4]和细胞色素 P450 代谢障碍^[5],但具体 分子机制仍不清楚。铁死亡是一种依赖铁离子及活 性氧物质(reactive oxide species, ROS)诱导脂质过 氧化导致的调节性细胞坏死,在形态学、生物学及基 因水平上均明显不同于凋亡、坏死、自噬等其他形式 的调节性细胞坏死,常伴有线粒体变小、铁和 ROS 聚集等特征,其本质是细胞内脂质氧化物的代谢障 碍,进而在铁离子的催化下异常代谢,产生大量脂 质,破坏细胞内氧化还原平衡,攻击生物大分子,触 发细胞的死亡[6-8]。本研究旨在通过动物实验评价细 辛的肝脏毒性,并对可能机制进行初步探讨,以期为 临床用药提供参考。

1 材料与方法

1.1 药品、主要试剂与仪器

细辛药材购自兰州惠仁堂药业股份有限公司 (产地为甘肃,批号 20211004),经甘肃中医药大学 王明伟教授鉴定为马兜铃科植物北细辛 *A. heterotropoides* Fr. Schmidt 的干燥根,经高效液相色 谱法测得细辛脂素质量分数为 0.385%,符合《中国 药典》2020 年版中细辛干燥样品细辛脂素不得少于 0.050%的标准。将细辛药材置于 40 ℃干燥箱干燥 1 h 后碾碎、过 80 目筛,得细辛散剂,临用时加入 适量蒸馏水制成混悬液^[9]。

天冬氨酸氨基转移酶 (aspartate aminotransferase, AST)、丙氨酸氨基转移酶(alanine aminotransferase, ALT)、碱性磷酸酯酶(alkaline phosphatase, ALP)、超氧化物歧化酶(superoxide dismutase, SOD)和还原型谷胱甘肽(reduced glutathione, GSH) 检测试剂盒(南京建成生物工程 研究所,批号分别为 20210923、20210815、 20210711、20210920、20210912)。肿瘤坏死因子-α (tumor necrosis factor-α, TNF-α)、白细胞介素-1β (interleukin-1β, IL-1β)、ROS、铁检测试剂盒(上 海酶联生物科技有限公司, 批号分别为 ml002859、 ml037361、ml092661、ml095093)。定量反转录酶-聚合酶链锁反应(quantitative reverse transcriptionpolymerase chain reaction, RT-PCR) 试剂盒、逆转 录试剂盒、蛋白浓度测定试剂盒、RNA 提取 (Trizol 法) 试剂盒、兔多抗 p53、兔多抗溶质载体家族 7 成 员 11(solute carrier family 7 members 11, SLC7A11)、 兔多抗硒蛋白谷胱甘肽过氧化物酶 4(glutathione peroxidase 4, GPX4)、兔多抗铁蛋白重链1(ferritin

heavy chain 1, FTH1)、兔多抗转铁蛋白受体 1 (transferrin receptor 1, TFR1)、兔多抗甘油醛-3-磷 酸 脱 氢 酶 (glyceraldehyde-3-phosphate dehydrogenase, GAPDH)、辣根过氧化物酶标记山 羊抗兔免疫球蛋白G(immunoglobulinG, IgG)(上 海翌圣生物科技股份有限公司, 批号分别为 13110ES50、11121ES60、20202ES76、19241ES50、 30019ES5、31006ES50、31017ES50、31016ES50、 31030ES50、30202ES40、33101ES60)。

BS124S 电子天平(赛多利斯公司)、B-600 超 微量分光光度计(上海元析仪器有限公司)、3K30 型 多功能高速低温离心机(美国 Sigma 公司)、 Chemray240 型全自动生化分析仪(Rayto 公司)、 SUNRISE 酶联免疫检测仪(瑞士 TECAN 公司)、 PCR 扩增仪和实时荧光定量 PCR 仪(美国 Applied Biosystem 公司)、1645050 型基础电泳仪和 Mini-PROTEAN Tetra 电泳槽和小型 Trans-Blot 转印槽(美 国 Bio-Rad 公司)。

1.2 动物分组及给药

6 周龄 SPF 级 Wistar 大鼠 32 只,体质量 150~ 160 g,雌雄各半,购自甘肃中医药大学实验动物中 心,动物生产许可证号 SCXK(甘)2015-0002。大 鼠于室温 20~22 ℃,湿度 50%适应性饲养 3 d 后, 随机分为 4 组:对照组(等量生理盐水)和细辛低、 中、高剂量(细辛悬浮液 0.27、0.81、1.35 g/kg) 组^[9],每组 8 只,每日 ig 给药 1 次,每次 2 mL/100 g, 连续 28 d。本实验经甘肃中医药大学实验动物伦理 审查委员会批准,伦理审查批号 20220028。

1.3 肝功能及炎症因子水平检测

最后一次给药 2 h 后, 大鼠腹主动脉采血, 4 ℃ 低温离心 10 min (3500 r/min), 取血清, 全自动生 化仪测定血清 ALT、AST、ALP 水平; ELISA 试剂 盒测定血清 TNF-α 和 IL-1β 含量。

1.4 氧化应激指标及铁离子含量测定

处死动物,冰上取出肝脏分成 3 份,一份 4% 多聚甲醛溶液固定后供 ROS 测定和病理学检查使 用;一份置于-80 ℃冰箱保存,供 RT-PCR 和 Western blotting 检测使用。取适量剩余新鲜肝脏组 织,低温制成匀浆,4 ℃离心 10 min (2500 r/min), 取上清液,试剂盒检测 SOD 活性及 MDA、GSH 和 Fe²⁺含量。

1.5 ROS 含量测定

取一部分 4%多聚甲醛溶液固定的肝组织,冷

冻包埋后切成 5~15 μm 的切片, 黏贴在处理过的 载玻片上,室温干燥 1h 后,按试剂盒说明书步骤, 采用 DCFH-DA 探针荧光检测 ROS 含量,激光共聚 焦显微镜(激发波长 502 nm,发射波长 530 nm)观 察绿色荧光表达,采用 Image-Pro Plus 6.0 软件比较 荧光强度。

1.6 肝脏病理学观察

取另一部分 4%多聚甲醛溶液固定的肝组织, 修切、脱水、石蜡包埋、切片、HE 染色、乙醇梯度 脱水、透明、封片,光学显微镜下观察病理改变。 1.7 qRT-PCR 检测 p53、SLC7A11、GPX4、FTH1、 TFR1 mRNA 表达水平

取-80 ℃保存的肝脏组织 50 mg, 按照 RNA 提 取试剂盒说明书步骤提取收集 RNA,将得到的 RNA 溶于 DEPC 水中; 取溶解后的 RNA 2 µL, 微量分光 光度计于 260、280 nm 处测定吸光度, 通过 A_{260}/A_{280} 计算 RNA 的纯度和浓度。通过逆转录试剂盒合成 cDNA, NCBI Geneba (https://www.ncbi.nlm.nih. gov/)和 Primer Bank (http://harvard.edu) 搜索基因 序列, 根据基因序列设计引物 (引物序列见表 1), 采用 qRT-PCR 扩增,每个样品做 3 个复孔。扩增条 件: 94 ℃预变性 5 min, 95 ℃变性 30 s, 60 ℃退 火 30 s, 72 ℃延伸 30 s, 30 个循环。

Western blotting 检测 p53、SLC7A11、GPX4、 FTH1、TFR1 蛋白表达水平

取适量-80 ℃保存的肝脏组织加入裂解液,低 温匀浆,冰上裂解 20 min 后冻融 3 次,低温离心 10 min (8000 r/min,4 ℃),取上清,用 5×上样 缓冲液与蛋白样品按 1:4 的比例混合,100 ℃变

表 1 引物序列 Table 1 Primer sequences

		Tuble 1 Timer sequences	
基因	引物	序列 (5'-3')	产物长度/bp
GPX4	正向	TGTGCATCCCGCGATGATT	185
	反向	CCCTGTACTTATCCAGGCAGA	
p53	正向	TCACAGCGTCTGTTGACATTT	210
	反向	ACCAAGCTCATTACCCTGACA	
SLC7A11	正向	GGCACCGTCATCGGATCAG	308
	反向	CTCCACAGGCAGACCAGAAAA	
TFR1	正向	CTGGGCTGGATTAAGTGCCTG	205
	反向	TGGCTGGTAAGCTGAAATTGAA	
FTH1	正向	CAAGTGCGCCAGAACTACCA	298
	反向	ACAGATAGACGTAGGAGGCATAC	
GAPDH	正向	ACAACTTTGGTATCGTGGAAGG	101
	反向	GCCATCACGCCACAGTTTC	

性 5 min 后进行聚丙烯酰胺凝胶电泳分离、转膜, 5%BSA 封闭 1 h, 一抗4 ℃孵育过夜, 二抗室温孵 育 1 h, ECL 发光液显影, Image J 软件分析目的蛋 白与内参蛋白的灰度值, 根据相应内参的灰度值计 算目的蛋白的相对表达量。

1.9 统计学处理

用 SPSS20.0 软件对所有数据进行处理,计量资料采用 x±s表示,两组间比较采用 t 检验,多组间比较采用单因素方差分析, P<0.05 为具有统计学意义。

2 结果

2.1 细辛对大鼠肝功能及血清炎症因子水平的影响

由图 1 可以看出,与对照组比较,大鼠 ig 细辛 悬浮液 28 d 后肝功能指数 ALT、AST、ALP 明显升 高,且呈剂量相关性,差异具有统计学意义(P< 0.05),提示肝细胞受损,肝功能障碍形成。血清炎 症因子检测发现(表 2),与对照组比较,大鼠 ig 细 辛悬浮液后,血清中 TNF-α、IL-1β 含量显著增高, 差异具有统计学意义(P<0.05),其中中、高剂量 组作用更为显著(P<0.05)。

与对照组比较: *P<0.05; 与细辛低剂量组比较: *P<0.05; 与细 辛中剂量组比较: *P<0.05, 图4同

*P < 0.05 vs control group; #P < 0.05 vs Asari Radix et Rhizoma lowdose group; *P < 0.05 vs Asari Radix et Rhizoma medium-dose group, same as fig. 4

图 1 细辛对大鼠肝功能的影响 ($\bar{x} \pm s, n=8$) Fig. 1 Effect of *Asari Radix* et *Rhizoma* on liver function in rats ($\bar{x} \pm s, n=8$)

表 2 细辛对大鼠血清炎症因子水平的影响 ($\bar{x} \pm s, n=8$) Table 2 Effects of *Asari Radix* et *Rhizoma* on serum inflammatory factors in rats ($\bar{x} \pm s, n=8$)

组别	剂量/(g·kg ⁻¹)	$TNF-\alpha/(pg \cdot mL^{-1})$	IL- $\beta/(pg \cdot mL^{-1})$
对照	—	31.85 ± 1.59	23.14 ± 1.15
细辛	0.27	$33.69 \pm 1.68^{*}$	$28.46 \pm 1.41^*$
	0.81	45.61±2.28 ^{*#}	$30.25 \pm 1.51^{*\#}$
	1.35	$55.22 \pm 2.76^{*\#\&}$	32.78±1.63*#&

与对照组比较: *P<0.05; 与细辛低剂量组比较: *P<0.05; 与细辛 中剂量组比较: *P<0.05, 下表同

*P < 0.05 vs control group; #P < 0.05 vs Asari Radix et Rhizoma lowdose group; *P < 0.05 vs Asari Radix et Rhizoma medium-dose group, same as below tables

2.2 细辛对大鼠肝脏组织氧化应激指标及铁离子 含量的影响

由表 3 可知,与对照组比较,大鼠 ig 细辛悬浮 液 28 d 后,肝脏组织中 SOD 活性和 GSH 含量明显 降低 (*P*<0.05),MDA 和 Fe²⁺水平显著升高 (*P*<0.05),且作用呈剂量相关性 (*P*<0.05)。由图 2 可 知,与对照组比较,大鼠 ig 细辛悬浮液 28 d 后,肝 脏组织中 ROS 含量显著升高 (吸光度分别为对照组 0.032±0.007、细辛低剂量组 0.179±0.009、细辛中 剂量组 0.368±0.012、细辛高剂量组 0.714±0.019) (*P*<0.05),作用呈剂量相关性 (*P*<0.05),提示细辛 可能会降低大鼠体内抗氧化酶活性,导致氧化应激 产物 MDA 堆积,ROS 水平升高,进而诱发脂质过 氧化损伤;GSH 水平的降低和 Fe²⁺水平的升高提示 细辛对大鼠肝脏损伤可能与肝细胞铁死亡有关。

2.3 细辛对大鼠肝脏组织病理学的影响

由图 3 可以看出,对照组大鼠肝脏组织肝细胞 的边界清晰,细胞形态完整、整齐,细胞核明显。 ig 细辛悬浮液后,细辛低剂量组肝索排列稍显紊乱, 偶见炎性细胞浸润;细辛中剂量组肝细胞出现轻微 水肿,胞质疏松化,炎性细胞浸润加重,出现少量 嗜酸性变;细辛高剂量组肝细胞胞质疏松化加剧, 细胞核体积变小,出现较多嗜酸性变与气球样变, 可见散在点灶状坏死。

表 3 细辛对大鼠肝组织氧化应激指标及铁离子含量的影响($\bar{x} \pm s, n=8$) Table 3 Effects of *Asari Radix* et *Rhizoma* on oxidative stress index and Fe²⁺ content in liver tissue of rats ($\bar{x} \pm s, n=8$)

组别	剂量/(g·kg ⁻¹)	$SOD/(U \cdot mg^{-1})$	MDA/(nmol·mg ⁻¹)	$GSH/(\mu mol \cdot g^{-1})$	$Fe^{2+}/(\mu mol \cdot g^{-1})$
对照	—	125.368 ± 5.887	5.426 ± 0.884	213.451 ± 8.114	10.890 ± 1.004
细辛	0.27	$110.445 \pm 6.102^*$	$7.421 \pm 0.421^{*}$	$180.323 \pm 7.212^*$	$13.547 \pm 1.472^*$
	0.81	$107.301 \pm 4.515^{*\#}$	$8.554 \pm 0.546^{*\#}$	$168.441 \pm 4.005^{*\#}$	$16.221 \pm 0.924^{*\#}$
	1.35	$89.115 \pm 4.004^{*\#\&}$	$11.006 \pm 0.995^{*\#\&}$	$140.555 \pm 6.013^{*\#\&}$	$18.046 \pm 2.063^{*\#\&}$

图 2 细辛对大鼠肝组织 ROS 含量的影响

图 3 细辛对大鼠肝组织病理学影响 (HE, ×200)

2.4 细辛对大鼠肝组织 *p53、SLC7A11、GPX4、 FTH1、TFR1* mRNA 表达水平的影响

由图 4 可知,与对照组比较,大鼠 ig 细辛悬浮 液 28 d 后,肝脏组织中 *p53* 和 *TFR1* 的 mRNA 表达明显增加(*P*<0.05),而 *SLC7A11、GPX4* 和 *FTH1* 的 mRNA 表达明显降低 (*p*<0.05),且作用呈剂量 相关性 (*P*<0.05)。

2.5 细辛对大鼠肝组织 p53、SLC7A11、GPX4、FTH1、TFR1 蛋白表达水平的影响

由表 4 和图 5 可知,与对照组比较,大鼠 ig 细 辛悬浮液 28 d 后,肝脏组织中 p53 和 TFR1 的蛋白 表达明显增加(*P*<0.05),SLC7A11、GPX4 和 FTH1 的蛋白表达明显降低 (*P*<0.05),且作用呈剂量相 关性 (*P*<0.05)。

图 4 细辛对大鼠肝组织 *p53、SLC7A11、GPX4、FTH1、TFR1* mRNA 表达水平的影响 ($\overline{x} \pm s, n = 8$) Fig. 4 Effects of *Asari Radix* et *Rhizoma* on mRNA expressions of *p53*, *SLC7A11*, *GPX4*, *FTH1* and *TFR1* in rat liver tissue ($\overline{x} \pm s, n = 8$)

表 4 细辛对大鼠肝组织 p53、SLC7A11、GPX4、FTH1、TFR1 蛋白表达水平的影响(x±s,n=8)

Table 4 Effects of *Asari Radix* et *Rhizoma* on protein expressions of p53, SLC7A11, GPX4, FTH1 and TFR1 in rat liver tissue $(\bar{x} \pm s, n = 8)$

组别	剂量/(g·kg ⁻¹)	p53/GAPDH	SLC7A11/GAPDH	GPX4/GAPDH	FTH1/GAPDH	TFR1/GAPDH
对照	_	0.177 ± 0.015	$0.815 \!\pm\! 0.036$	0.704 ± 0.017	$0.698 \!\pm\! 0.031$	0.417 ± 0.012
细辛	0.27	$0.389 \!\pm\! 0.021^*$	$0.673 \pm 0.028^*$	$0.512\!\pm\!0.015^*$	$0.514\!\pm\!0.018^*$	$0.456 \!\pm\! 0.030$
	0.81	$0.521\!\pm\!0.017^{*\!\scriptscriptstyle\#}$	$0.421\!\pm\!0.012^{*\!\#}$	$0.334 \pm 0.020^{*\!\#}$	$0.399 \!\pm\! 0.011^{*\!\#}$	$0.577 \!\pm\! 0.024^{*\!\#}$
	1.35	$0.677 \pm 0.024^{*\#\&}$	$0.389 \pm 0.009^{*\#\&}$	$0.275 \pm 0.018^{*\!\#\&}$	$0.247 \!\pm\! 0.007^{*\!\#\&}$	$0.699 \pm 0.022^{*\#\&}$

3 讨论

铁死亡(ferroptosis)是一种不同于细胞凋亡、

细胞坏死和细胞自噬的铁依赖性细胞程序性死亡^[9]。 其最显著的特征是铁依赖性脂质 ROS 的过载。ROS

图 5 细辛对大鼠肝组织 p53、SLC7A11、GPX4、FTH1、 TFR1 蛋白表达水平的影响 (n = 8)

Fig. 5 Effects of *Asari Radix* et *Rhizoma* on protein expressions of p53, SLC7A11, GPX4, FTH1 and TFR1 in rat liver tissue (*n* = 8)

的产生和随后羟自由基介导的脂质过氧化最终导致 质膜损伤是导致铁死亡的核心事件^[10]。铁代谢稳态 和铁蛋白调控是铁死亡机制的重要调节点^[11]。

在人体内,铁主要以 Fe²⁺和 Fe³⁺的形态存在。 来自食物或红细胞降解的 Fe²⁺经血浆铜蓝蛋白 (ceruloplasmin, CP)氧化成 Fe³⁺后,与细胞膜上的 转铁蛋白(transferrin, TF)结合成 TF-Fe³⁺, 与 TFR1 形成复合物后进入细胞内,再经前列腺跨膜上皮抗 原3(STEAP3)还原成 Fe^{2+[12]}。细胞内的 Fe²⁺主要 有 3 个去向: ①经二价金属离子转运体 1 (divalentmetal transporter l, DMT1) 或锌铁调控蛋 白家族 8/14 (ZRT/IRT-like proteins 8/14, ZIP8/14) 介导,储存至细胞内的不稳定铁池(labile iron pool, LIP)^[13-15]。②与铁蛋白轻链多肽 (ferritin light chain, FTL) 或/和 FTH1 组成铁蛋白复合物储存^[10-12]。 ③多余的 Fe²⁺则由细胞膜上的铁转运蛋白 (transferrin, TF) 运至细胞外,参与体内铁的再循 环,以维持细胞内的铁稳态[16]。细胞内过多的活性 Fe²⁺会通过芬顿反应,催化H₂O₂生成·OH自由基, 诱发脂质过氧化^[17-18]。本实验中,大鼠 ig 细辛 28 d 后,TFR1 表达增加而 FTH1 表达降低,肝组织中 Fe²⁺含量增加,提示经细胞膜转运进入细胞内的 Fe²⁺增加,而以储铁蛋白储存的 Fe²⁺减少,出现了 Fe²⁺超载。

胱氨酸/谷氨酸逆向转运体 (System Xc-)-GSH-GPX4 轴是细胞内重要的抗氧化防御体系^[19]。 SLC7A11 又称 xCT 是一种参与胱氨酸摄取的膜转 运蛋白。是 System Xc-的重要组成部分,可与溶质 载体家族 3 成员 2 一起等比例的将细胞外胱氨酸摄 入胞内还原成半胱氨酸,同时释放谷氨酸,促进胞

内重要的自由基清除剂还原性型 GSH 的合成^[20-21]。 GSH 是一种重要的铁死亡抑制因子和非酶促抗氧 化剂,GSH 与氧化型谷胱甘肽(oxidized glutathione, GSSG)的比值可以反映细胞内氧化应激水平[22]。同 时,GSH 还是许多抗氧化酶的辅助因子,包括 GPX4。GPX4 是细胞内唯一一个用于脂质体过氧化 物还原的 GPX, 可将胞内 GSH 转化为 GSSG, 同时 将细胞内毒性脂质过氧化氢(L-OOH)转化为无毒 的脂醇(L-OH),加速H2O2分解,防止和减轻过氧 化物对细胞结构的损害[23-25]。GSH 和 GPX4 是铁死 亡氨基酸代谢中的重要靶点, GSH 的耗尽将引起 GPX4 失活,造成 ROS 积累,增加细胞内脂质过氧 化物,诱导铁死亡^[26]。除 GSH 外,细胞内抗氧化 剂,如辅酶Q10、SOD、四氢生物蝶呤(BH4)和 多巴胺等[23],也参与维持细胞内氧化还原平衡,保 护细胞免受氧化应激损伤,防止铁死亡期间的脂质 过氧化。本实验中,大鼠 ig 细辛悬浮液 28 d 后,肝 功能指标和血清炎症因子水平显著升高; SOD 活性 和 GSH 含量显著降低; ROS 水平和氧化应激产物 MDA 含量显著增加;提示 System Xc-GSH-GPX4 等 抗氧化体系水平下降,脂质过氧化产物增加,诱发 铁死亡。

p53 是一种大小为 5.3×10⁴ 的蛋白质。参与调 节基因组完整性、细胞周期停滞、细胞凋亡、自噬, 改变新陈代谢、抑制多能性和细胞可塑性以及促进 铁依赖性细胞死亡等[27-28]。p53 对铁死亡的调控与 影响铁代谢、多不饱和脂肪酸 (polyunsaturated fatty acid, PUFAs)代谢、氨基酸代谢和还原型烟酰胺腺 嘌呤二核苷酸磷酸 (nicotinamide adenine dinucleotide phosphate, NADPH)介导的多种细胞代 谢、辅酶 Q10 的生物合成等有关^[29-32]。文献报道, p53 可以通过抑制 SLC7A11 来减少胱氨酸和谷氨酸 的交换,导致细胞内胱氨酸还原产物半胱氨酸减少, 降低下游 GSH 的合成,从而降低 GPX4 活性,导致 ROS 累积进而诱导铁死亡^[33]。p53 还可促进脱泛素 酶 7(USP7)的核易位,易位后的 USP7 可降低 SCL7A11 表达及下游 GSH 的合成,抑制 GPX4 表 达导致 ROS 累积进而诱导肺癌细胞铁死亡,抑制肺 癌细胞的生长^[34]。另外, p53 还可通过上调转铁蛋 白,调节铁稳态^[35]。下调 p53 蛋白及 mRNA 的表达 水平,可以上调 GPX4、SLC7A11 和 FTH1 蛋白及 mRNA 的水平,拮抗肝细胞铁死亡相关因子,减少 脂质沉积进而实现对动脉粥样硬化小鼠肝脏的保护 作^[36]。降低 *p53* mRNA 表达,可提高 GPX4、FTH1 蛋白及 *SLC7A11* mRNA 表达,可改善疡性结肠炎 小鼠临床症状及病理组织学变化,治疗溃疡性结肠炎 。抑制 p53 表达水平,可提高 SLC7A11、GPX4 和 FTH1 表达水平,改善氧化应激水平,抑制细胞 铁死亡而发挥改善心功能及抑制心肌纤维化的作 用^[37]。上调 p53,可以上调 TFR1 表达水平,提高 细胞内 Fe²⁺含量,经芬顿反应产生过量的 ROS,增 加氧化损伤,诱导受损组织细胞铁死亡^[38]。

本实验中,大鼠 ig 细辛后, p53 和 TFR1 的蛋 白及 mRNA 表达均显著上调,而 SLC7A11、GPX4 和 FTH1 的蛋白及 mRNA 表达均显著下调,结合相 关文献报道,认为细辛可能通过上调 p53,促进 TFR1 表达,增加 TFR1 介导的铁摄取;抑制 FTH1 表达,减少 Fe²⁺以铁蛋白复合物储存。细胞内大量 Fe²⁺通过芬顿反应产生大量羟自由基,启动脂质过 氧化。同时 p53 的上调,抑制 SLC7A11 表达,进而 减少 GSH 生成,使下游 GPX4 表达降低,ROS 堆 积,诱导肝细胞铁死亡致肝损伤。

利益冲突 所有作者均声明不存在利益冲突

参考文献

- [1] 宗时宇,刘洋,张红,等.不同基原与产地的细辛质量
 评价及肝毒性化学成分定量分析 [J].时珍国医国药, 2021,32(6):1351-1353.
- [2] 栾永福,李晓骄阳,孙蓉.基于功效和物质基础的细辛 毒性研究进展 [J].中国药物警戒, 2012, 9(3): 170-173.
- [3] 徐建兵. 细辛毒性靶器官研究 [D]. 成都: 成都中医药 大学, 2013.
- [4] 董小艳,周祯祥,游姣娥,等. 细辛散剂长期毒性对
 SD 大鼠肝肾功能的影响 [J]. 光明中医, 2015, 30(12): 2550-2552.
- [5] 于俏,陈雨虹,琚辉,等. 细辛挥发油成分与 CYP1A2 酶的分子对接分析 [J]. 中国实验方剂学杂志, 2020, 26(9): 202-207.
- [6] Dixon S J, Lemberg K M, Lamprecht M R, et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death [J]. Cell, 2012, 149(5): 1060-1072.
- [7] Wu Z M, Geng Y, Lu X J, et al. Chaperone-mediated autophagy is involved in the execution of ferroptosis [J]. Proc Natl Acad Sci USA, 2019, 116(8): 2996-3005.
- [8] Tang D L, Kang R, Berghe T V, et al. The molecular machinery of regulated cell death [J]. Cell Res, 2019, 29(5): 347-364.
- [9] 刘金伟,韩林涛,黄芳,等.基于 ¹H-NMR 代谢组学细 辛肝肾毒性的机制研究 [J].中药药理与临床, 2020,

36(4): 131-136.

- [10] Lei G, Zhuang L, Gan B Y. Targeting ferroptosis as a vulnerability in cancer [J]. *Nat Rev Cancer*, 2022, 22(7): 381-396.
- [11] Lei G, Mao C, Yan Y L, *et al.* Ferroptosis, radiotherapy, and combination therapeutic strategies [J]. *Protein Cell*, 2021, 12(11): 836-857.
- [12] Zhao L, Zhou X X, Xie F, *et al.* Ferroptosis in cancer and cancer immunotherapy [J]. *Cancer Commun (Lond)*, 2022, 42(2): 88-116.
- [13] Zhang C, Liu X Y, Jin S D, *et al.* Ferroptosis in cancer therapy: A novel approach to reversing drug resistance [J]. *Mol Cancer*, 2022, 21(1): 47.
- [14] Stockwell B R. Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications [J]. *Cell*, 2022, 185(14): 2401-2421.
- [15] Li J B, Liu J, Xu Y H, *et al.* Tumor heterogeneity in autophagy-dependent ferroptosis [J]. *Autophagy*, 2021, 17(11): 3361-3374.
- [16] Liu P, Wang W Z, Li Z, et al. Ferroptosis: A new regulatory mechanism in osteoporosis [J]. Oxid Med Cell Longev, 2022, 2022: 2634431.
- [17] Lei T, Qian H, Lei P F, *et al.* Ferroptosis-related gene signature associates with immunity and predicts prognosis accurately in patients with osteosarcoma [J]. *Cancer Sci*, 2021, 112(11): 4785-4798.
- [18] Liang D G, Minikes A M, Jiang X J. Ferroptosis at the intersection of lipid metabolism and cellular signaling [J]. *Mol Cell*, 2022, 82(12): 2215-2227.
- [19] Xu S J, Wu B X, Zhong B Y, et al. Naringenin alleviates myocardial ischemia/reperfusion injury by regulating the nuclear factor-erythroid factor 2-related factor 2 (Nrf2)/System xc-/glutathione peroxidase 4 (GPX4) axis to inhibit ferroptosis [J]. Bioengineered, 2021, 12(2): 10924-10934.
- [20] Lu H Y, Xiao H, Dai M Y, *et al.* Britanin relieves ferroptosis-mediated myocardial ischaemia/reperfusion damage by upregulating GPX4 through activation of AMPK/GSK3β/Nrf2 signalling [J]. *Pharm Biol*, 2022, 60(1): 38-45.
- [21] Parker J L, Deme J C, Kolokouris D, *et al*. Molecular basis for redox control by the human cystine/glutamate antiporter system xc [J]. *Nat Commun*, 2021, 12(1): 7147.
- [22] Ursini F, Maiorino M. Lipid peroxidation and ferroptosis: The role of GSH and GPx4 [J]. *Free Radic Biol Med*, 2020, 152: 175-185.
- [23] Miao Y, Chen Y W, Xue F, et al. Contribution of ferroptosis and GPX4's dual functions to osteoarthritis progression [J].

EBioMedicine, 2022, 76: 103847.

- [24] Xu S J, Wu B X, Zhong B Y, et al. Naringenin alleviates myocardial ischemia/reperfusion injury by regulating the nuclear factor-erythroid factor 2-related factor 2 (Nrf2)/System xc-/glutathione peroxidase 4 (GPX4) axis to inhibit ferroptosis [J]. Bioengineered, 2021, 12(2): 10924-10934.
- [25] Zhu L J, Chen D Z, Zhu Y, et al. GPX4-regulated ferroptosis mediates S100-induced experimental autoimmune hepatitis associated with the Nrf2/HO-1 signaling pathway [J]. Oxid Med Cell Longev, 2021, 2021: 6551069.
- [26] 徐寒莹,张艺缤,张冬梅,等.铁死亡机制与中医药干预脑卒中后神经细胞铁死亡的研究进展 [J].中国实验 方剂学杂志,2022,28(20):232-240.
- [27] Nishida Xavier da Silva T, Friedmann Angeli J P, Ingold I. GPX4: old lessons, new features [J]. *Biochem Soc Trans*, 2022, 50(3): 1205-1213.
- [28] Chen L L, Wang W J. p53 regulates lipid metabolism in cancer [J]. *Int J Biol Macromol*, 2021, 192: 45-54.
- [29] Zheng J S, Conrad M. The metabolic underpinnings of ferroptosis [J]. *Cell Metab*, 2020, 32(6): 920-937.
- [30] Liu Y Q, Gu W. p53 in ferroptosis regulation: The new weapon for the old guardian [J]. *Cell Death Differ*, 2022, 29(5): 895-910.
- [31] Wang Y Q, Zhao Y J, Ye T, et al. Ferroptosis signaling and

regulators in atherosclerosis [J]. *Front Cell Dev Biol*, 2021, 9: 809457.

- [32] Fan F S, Liu P, Bao R D, et al. A dual PI3K/HDAC inhibitor induces immunogenic ferroptosis to potentiate cancer immune checkpoint therapy [J]. Cancer Res, 2021, 81(24): 6233-6245.
- [33] Jiang L, Kon N, Li T Y, *et al*. Ferroptosis as a p53-mediated activity during tumour suppression [J]. *Nature*, 2015, 520(7545): 57-62.
- [34] Wang Y F, Yang L, Zhang X J, et al. Epigenetic regulation of ferroptosis by H2B monoubiquitination and p53 [J]. EMBO Rep, 2019, 20(7): e47563.
- [35] Marei H E, Althani A, Afifi N, *et al.* p53 signaling in cancer progression and therapy [J]. *Cancer Cell Int*, 2021, 21(1): 703.
- [36] 何信用, 王俊岩, 宋囡, 等. 二陈汤合桃红四物汤调控 p53/SLC7A11 介导的氧化损伤及铁死亡抗动脉粥样硬 化的作用及机制研究 [J]. 中华中医药杂志, 2020, 35(5): 2344-2348.
- [37] 王 俊 岩 , 黄 育 生 , 刘 青 , 等 . 心 阳 片 抑 制 MLK3/JNK/p53 介导的心肌细胞铁死亡抗慢性心力衰 竭的作用及机制研究 [J]. 中华中医药杂志, 2020, 35(5): 2604-2607.
- [38] 饶政清,梅志刚,葛金文,等. 脑泰方调控细胞铁转运 抑制铁死亡保护脑卒中缺血损伤的机制研究 [J]. 中草 药, 2021, 52(21): 6552-6560.

[责任编辑 潘明佳]