密花香薷叶绿体基因组结构及系统进化分析

富贵1,2,3,刘晶1,李军乔1,2,3*

- 1. 青海民族大学生态环境与资源学院,青海 西宁 810007
- 2. 青海省生物技术与分析测试重点实验室,青海 西宁 810007
- 3. 青海民族大学 青藏高原蕨麻研究中心,青海 西宁 810007

摘 要:目的 基于高通量测序获得药用资源植物密花香薷 Elsholtzia densa 叶绿体基因组序列,分析了叶绿体基因组结构 及特征,为研究密花香薷资源分类及系统进化奠定了基础。方法 以密花香薷叶片为材料,利用改良的 CTAB 法提取 DNA; 采用二代测序技术 Illumina NovaSeq 平台对叶绿体基因组进行测序;以广藿香叶绿体基因组为参考序列,进行序列组装和矫 正,得到完整叶绿体基因组序列;利用生物信息学方法分析密花香薷叶绿体基因组特征并进行系统发育分析。结果 获得密 花香薷完整叶绿体基因组序列全长 149 095 bp,GC 含量 37.92%,注释到 130 个基因,其中包括 85 个蛋白质编码基因,8 个 rRNA 基因和 37 个 tRNA 基因; 密花香薷叶绿体基因组中共检测到 28 个散在重复序列,串联重复序列共检测到 191 个,单核苷酸重复序列最多,共114 个;系统发育结果表明,密花香薷和其他唇形科植物聚合在一起形成一个分支结构,紫苏属 植物和香薷属植物亲缘关系较近。结论 建立了适于香薷属植物叶绿体基因组测序及其特征分析的方法,丰富了唇形科植物 遗传资源,为密花香薷分子标记开发及唇形科属种间系统发育分析研究提供了理论基础。

关键词: 密花香薷; 叶绿体; 基因组; 分子标记; 系统发育

中图分类号: R282.12 文献标志码: A 文章编号: 0253 - 2670(2022)06 - 1844 - 10 **DOI**: 10.7501/j.issn.0253-2670.2022.06.028

Characterization of chloroplast genome structure and phyletic evolution of *Elsholtzia densa*

FU Gui^{1, 2, 3}, LIU Jing¹, LI Jun-giao^{1, 2, 3}

- 1. College of Ecological Environmental and Resources, Qinghai Nationalities University, Xining 810007, China
- 2. Key Laboratory of Biotechnology and Analysis of Qinghai Province, Xining 810007, China
- 3. Centre for Juema Studies, Qinghai University for Nationalities, Xining 810007, China

Abstract: Objective The choroplast genome sequence of *Elsholtzia densa* in medicinal plants was obtained through high-throughput sequencing, and characterization of chloroplast genome structure was analyzed. This study lays the groundwork for resource classification and phyletic evolution of *E. densa*. **Methods** The total genomic DNA was extracted from the leaves of *E. densa* using improved CTAB method, and the sequencing process was performed by the platform of Illumina NovaSeq which was from second generation sequencing technique. After sequence assembly and correction was executed by *Pogostemon cablin* chloroplast genome as a reference, the complete chloroplast genome sequence was obtained. The characterization of chloroplast genome in *E. densa* and phyletic evolution were analyzed with the method of bioinformatics. **Results** The complete chloroplast genome of *E. densa* was 149 095 bp in length and the total GC content of the genome was 37.92%. A number of 130 genes were detected, including 85 protein-coding genes, 37 tRNA genes and eight ribosomal RNA genes. A total of 28 interspersed repetitive sequence and 191 polymorphic simple-sequence repeat loci were identified. The single nucleotide repeats had the greatest number of 114. The result of phylogenetic tree showed that plants in *Perilla* had a close relationship with *E. densa* and all species in *Lamiaceae* were grouped into one branch in this study. **Conclusion** The suitable approach for studying sequencing and characterization of chloroplast genome in *Elsholtzia* was established, and all research findings in this study not only enriched the genetic resources of *Lamiaceae*, but also laid the theoretical basis foundation for the development of molecular markers and studying on the systematic evolution of interspecific in *Lamiaceae*.

Key words: Elsholtzia densa Benth.; chloroplast; genome; molecular markers; phylogenesis

收稿日期: 2021-09-06

基金项目:青海民族大学校级理工科项目(2019XJY02)

作者简介: 富 贵(1987—), 男, 讲师, 研究方向为系统进化与分子生物学。Tel: 13997286190 E-mail: qhmdfg@163.com

^{*}通信作者: 李军乔(1968—), 女,教授,研究方向为植物栽培学。Tel: 13997278171 E-mail: ljqlily2002@126.com

叶绿体是绿色植物特有细胞器,是细胞能量转 换和储存的场所,遗传方式以母系为主,所以在植 物中具有种的特异性,其自身拥有一套完整的基因 组,重组率低,后代遗传稳定[1-2]。叶绿体基因组 在被子植物中具有独立的蛋白表达系统,大小介于 1.20×10⁵~1.80×10⁵ bp, 一般为共价闭合的环状 结构,其结构由4部分组成:包含2个反向重复区 (inverted repeats, IRs)、大单拷贝区 (large single copy, LSC) 和小单拷贝区 (small single copy, SSC) 4 个部分[3]。叶绿体基因组相比核基因组包含信息 量较小,由于进化模式和分布区域的差异,不同类 群物种间基因组有时会发生插入/缺失、重复、倒 位、重排等多种类型的结构变异和基因丢失现象, 但是,从组成结构、基因类型和数目及排列顺序来 看,叶绿体基因组较稳定,具有保守性,长度较小, 易于测序,而且叶绿体基因组核苷酸进化速率较 低,因此在植物不同分类阶段的系统发育分析中具 有广发的应用,叶绿体基因组和其 CDS 基因片段 变异分析常被用于分析物种种群遗传结构分化及 动态历史发展规律^[4-7]。烟草 Nicotiana tabacum L.^[8] 和地钱 Marchantia polymorpha L.[9] 2 个物种叶绿 体基因组测序报道,是人类首次获得绿色植物叶绿 体基因组序列信息。二代测序技术的不断完善和推 广,为植物叶绿体基因组相关研究提供了技术支 持,为后续植物资源分类和鉴定、系统发育、谱系 地理学、及野生植物资源利用和保护方面的研究提 供了有效的途径[10-12]。

密花香薷 Elsholtzia densa Benth.在中国西北地 区,如陕西、四川、云南、甘肃、青海、西藏等地 广泛分布,其外观形态和紫苏接近,所以又称之为 野紫苏,属唇形科(Labiatae)香薷属 Elsholtzia L. 一年生草本植物,生境多样化,农田、林缘、高山、 草地边缘、林下、河边、荒地等海拔1800~4200 m 的范围内均有分布^[13-14]。经研究发现,密花香薷全 草可入药,具有发汗解暑、行水散湿、温胃调中的 功效,且据现代药理研究,香薷类植物挥发油具有 广谱抗菌和杀菌作用,并有直接抑制流感病毒的作 用^[15-16]。密花香薷亦可作为蜜源,养蜂价值极高^[17]。 所以密花香薷具有重要的药用和经济价值。

目前,有关密花香薷生药学或化学成分提取和 分离相关研究较多^[16, 18-24],蜜腺的解刨学结构研究 比较古老^[25],但关于密花香薷资源分类、居群分布 规律、生理特性,尤其是分子生物学方面的相关研 究还无人涉及。本研究以分布在青藏高原的密花香 薷为材料,使用二代测序技术获得密花香薷叶绿体 全基因组序列信息,利用生物信息学相关软件,分 析其叶绿体基因组构成和特征,不仅可丰富唇形科 植物遗传信息,也为后续密花香薷资源分类和鉴定、 遗传多样性、种群历史动态发展和香薷属植物间的 系统发育与亲缘关系研究奠定了基础。

1 材料

用于本研究的密花香薷样本,采于青海省共和 县青海湖二郎剑景区(N100.4911°,E36.5785°, 海拔 3194 m),采取生长状况良好的幼嫩叶片,液 氮冷存,带回青海民族大学于-80 ℃冷冻保存,用 于 DNA 提取。植物凭证样本保存于青海民族大学 生态环境与资源学院 (FGE20197201)。

2 方法

2.1 全基因组 DNA 提取及测序

经典 CTAB 法用于样品 DNA 提取,琼脂糖凝 胶电泳判断样本 DNA 的完整性,微量核酸测定仪 (NanoDrop 2000)检测其质量和 DNA 含量。若样 品基因组 DNA 检测结果符合实验要求,对基因组 DNA 进行片段化处理,用到的方法一般为机械打断 法即超声波法,下一步是对片段化 DNA 进行纯化 和末端修复,还需在 3'端加 A、连接测序接头,对 上述处理完的 DNA 片段需进行片段长度分选,最 后进行 PCR 扩增构建测序文库,对测序完成的文库 需进行质量检测,质检合格的文库用 Illumina NovaSeq 平台进行测序,测序读长为 PE150。

为确保序列组装过程中的准确性,必须对原始 获得的 raw reads 序列进行一系列处理,主要是去 除测序时连接的接头以及扩增时的引物序列;筛选 出高质量的数据,保证数据质量(质量值 $Q \leq 5$ 的 碱基数占整个 read 的 50%以上的 reads)。通过前 期处理和质量控制之后最终获得高质量的 clean data。

使用 bowtie2 v2.2.4 (http://bowtie-bio. sourceforge.net/bowtie2/index.shtml)比对南京集思 慧远公司自建的叶绿体基因组数据库,将比对上 的测序序列当作样品的叶绿体基因组测序序列 (cpDNA序列)。组装核心模块采用 SPAdes v3.10.1 (http://cab.spbu.ru/software/spades/)软件组装叶绿 体基因组,组装不依赖参考基因组。使用 SPAdes 软件对上述 clean reads 进行基因组拼接,将拼接 结果与 Pogostemon cablin Benth.叶绿体基因组 (MF287372.1)进行 blast 比对,基因组比对参考序列,查看基因组的保守与重排等共线性分析;基因组比对参考序列结构信息,比较两者间的差异。

2.2 叶绿体基因组注释和基因分析

使用 blast v2.2.25 (https://blast.ncbi.nlm. nih.gov/Blast.cgi)软件比对 NCBI 数据库的叶绿体 基因组 cds 序列,手工校正后得到叶绿体基因组基 因注释结果。使用 hmmer v3.1b2 (http://www. hmmer.org/) 软件比对 NCBI 数据库叶绿体基因组 rRNA 序列,得到叶绿体基因组的 rRNA 注释信息。 使用 aragorn v1.2.38 (http://130.235.244.92/ ARAGORN/)软件对叶绿体基因组序列进行 tRNA 的预测,得到叶绿体基因组 tRNA 注释信息。最后 使用 OGDRAW (https://chlorobox.mpimp-golm. mpg.de/OGDraw.html)制作叶绿体基因组完整图谱。 利用 CodonW1.4.2 (http://mobyle.pasteur. fr/cgi-bin/portal.py?form=codonw)软件对密花香薷 叶绿体基因组密码子偏好性(RSCU, relative synonymous codon usage)进行分析和统计。

2.3 散在重复序列及 cpSSR 分析

叶绿体基因组中的重复序列根据不同的分布 模式分为 2 种类型即散在重复序列和串联重复序 列,散在重复序列多是失活的转座元件,在基因 组中呈分散式分布,简单重复序列(simple sequence repeats, SSR)标记,是一类由几个核苷 酸(一般为1~6个)为重复单位组成的长达几十 个核苷酸的串联重复序列。使用 vmatch v2.3.0 (http://www.vmatch.de/)软件鉴定散在重复序列。 叶绿体基因组中含有不同重复类型的串联重复序 列,一般称之为称之为 cpSSR。使用 MISA v1.0 (MIcroSAtellite identification tool, http:// pgrc.ipk-gatersleben.de/misa/misa.html)软件进行 cpSSR 的分析,参数1-8(单碱基重复8次及以上)、 2-5、3-3、4-3、5-3、6-3,2个 SSR 序列之间的 最小距离设置为 100 bp。

2.4 基于叶绿体基因组序列系统进化分析

搜索 NCBI 数据库,选取已公开的唇形科,不 同属植物共 18 种[虎尾紫苏 Perilla frutescens var. hirtella Makino et Nemoto (KT220691.1)、柠檬紫苏 P. citriodora Nakai (KT220690.1)、P. setoyensis G. Honda (KT220692.1);海州香薷 E. splendens Nakai ex F. Maekawa (MH700782.1); Ocimum tenuiflorum L. (NC 043873.1)、罗勒 O. basilicum L. (NC 035143.1); 丹参 Salvia miltiorrhiza Bge. (JX312195.1)、鼠尾草 S. japonica Thunb. (NC 035233); 夏枯草 Prunella vulgaris L. (NC 039654.1); 掌叶青兰 Dracocephalum palmatum C. Y. Wu (NC 031874.1); 留兰香 Mentha spicate L. (NC 037247.1)、欧薄荷 M. longifolia L. (NC 032054.1)、黄芩 Scutellaria baicalensis Georgi (MF521633.1), S. insignis Nakai (NC 028533.1); 广霍香 P. cablin Benth. (MF287372.1); 棉毛水苏 Stachys byzantina C. Koch NC 029825.1)、林地水苏 S. sylvatica L. (NC 029824.1、红花水苏 S. coccinea Jacq. (NC 029823.1), 下载其序列, 以茄科的黑果 枸杞 Lycium ruthenicum Murr. (NC 039651.1) 为外 类群。物种间多个序列比对用 MAFFT 软件 (http://mafft.cbrc.jp/ alignment/ software/) 进行, 比对后的序列进行矫正,使用 MEGA 6.0 软件 megasoftware.net/) (https://www. 构建 Neighbor-Joining (NJ) 进化树, Bootstrap 置信度 重复1000次。

3 结果与分析

3.1 叶绿体基因组结构基本特征

密花香薷叶绿体基因组经测序, 去掉低质量 reads 后得到 clean reads 22 864 493 个片段, Q20 为 96.91%, GC 含量为 39.64%^[26]。GC 含量也可 反应叶绿体基因组组成特征,本研究检测到密花 香薷叶绿体基因组 GC 含量 37.92%, 远低于 AT 含量(62.08%),说明具有绿色植物叶绿体基因 组普遍 AT 偏向性的特征^[26]。其中 IR 区序列包 含有 4 个编码 rRNA 的基因,所以 GC 含量 (43.16%) 明显高于 LSC 区 (35.96%) 和 SSC 区 (31.92%)^[26](表 1)。使用 SPAdes 软件进行基因 组片段的拼接,拼接完成的序列与参考序列 (accession: MF287372.1) 比对, 进行组装完成后 的质量检控。最终得到密花香薷叶绿体基因组, 全长 149 095 bp, 其结构与大多数被子植物相同, 为环状双链分子,呈典型的四段式结构(图1)。 其中, LSC 结构区长度为 81 497 bp, SSC 结构区 长度为 17 364 bp, 2 个反向互补重复区 IR 分别长 25 117 bp^[26]。

3.2 基因注释及归类分析

密花香薷叶绿体基因组共检测到 129 个基因, 其中包括 84 个蛋白质编码基因, 8 个 rRNA 基因和

Table 1 Structure and composition of chloroplast genome in <i>E. densa</i>									
不同结构区段	A/%	C/%	G/%	(T/U) /%	大小/bp	GC/%			
LSC	31.36	18.50	17.46	32.68	81 497	35.96			
SSC	34.13	16.80	15.12	33.96	17 364	31.92			
IRA	28.48	20.82	22.34	28.36	25 117	43.16			
IRB	28.36	22.34	20.82	28.48	25 117	43.16			
合计	30.69	19.34	18.58	31.39	149 095	37.92			

表 1 密花香薷叶绿体基因组结构组成 Table 1 Structure and composition of chloroplast genome in *E. dens*

37 个 tRNA 基因(图 1)。其中有 17 个基因在 IRs 区重复,包含 6 个蛋白编码基因(*ndhB、rpl2、rpl2*、*rps12、rps7、ycf2*),4 个 rRNAs 基因(*rrn16、rrn23、rrn4.5、rrn5*)7 个 tRNA 基因(*trnA-UGC、trnI-CAU、trnI-GAU、trnL-CAA、trnN-GUU、trnR-ACG、trnV-GAC*);SSC 区包括 12 个蛋白编码基因,1 个 tRNA 基因;LSC 区包含 60 个蛋白编码基因,22 个 tRNA 基因。密花香薷叶绿体基因组中大多数蛋

白质编码基因由 1 个外显子组成, 共有 15 个基因 (*atpF、ndhA、ndhB、petB、petD、rpl2、rpl16、rpoC1、 trnA-UGC、trnG-UCC、trnH-GUG、trnI-GAU、 trnK-UUU、trnL-UAA、trnV-UAC*)包含 1 个内含子, 3 个基因(*rps12、clpP、ycf3*)包含 2 个内含子。 编码基因根据其产物功能的不同分为以下几种类 型:(1)光合作用相关基因;(2)自身翻译相关基 因;(3)其他基因;(4)未知功能相关基因(表 2)。

Genes drawn inside the circle are transcribed clockwise, and those outside are counterclockwise

图 1 密花香薷叶绿体基因组完整图谱 Fig.1 Gene map of chloroplast genome in *E. densa*

3.3 叶绿体基因组密码子偏好性分析

对密花香薷叶绿体密码子研究发现,共检测到 26 160 个密码子,其中编码亮氨酸(Leu)的密码子 数量最多,有 3397 个,占总密码子数的 12.99%;编 码半胱氨酸 Cys 的最少,有 299 个,占总密码子数的

1.15%。相对同义密码子(relative synonymous codon usage, RSCU)使用度最高的为 AUG (2.990 1),最低的是 CUG/GUG (0.004 8)。32 个密码子 RSCU 值 大于 1.00,其中,29 个密码子碱基构成以 A 或 U 结 尾,其余 4 个以 G 或 C 结尾 (图 2)。

	基因功能及类别	基因名称
光合作用相关基因	光系统I	
	光系统 Ⅱ	psaA, psaB, psaC, psaI, psaJ
		psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI,
		psbJ、psbK、psbL、 psbM、psbN、psbT、psbZ
	细胞色素 b/f 复合体	$petA$, $petB^1$, $petD^1$, $petG$, $petL$, $petN$
	ATP 合酶	$atpA$, $atpB$, $atpE$, $atpF^{1}$, $atpH$, $atpI$,
	NADH 脱氢酶	ndhA ¹ 、*ndhB ¹ 、ndhC、ndhD、ndhE、ndhF、ndhG、 ndhH、ndhI、ndhJ、ndhK
自身表达相关基因	二磷酸核酮糖羧化酶大亚基	rbcL
	ATP 蛋白酶基因	$ClpP^2$
	RNA 聚合酶	$rpoA$, $rpoB$, $rpoC1^1$, $rpoC2$
	核糖体蛋白(SSU)	rps2、rps3、rps4、*rps7、arps8、rps11、*rps12 ² 、rps14、 rps15、rps18、rps19
	核糖体蛋白(LSU)	*rpl2 ¹ 、rpl14、rpl16 ¹ 、rpl20、rpl22、*rpl23、rpl32、 rpl33、rpl36
	转运 RNAs	<pre>trnY-GUA、 trnW-CCA、 trnV-UAC ¹、 *trnV-GAC、 trnT-UGU、 trnT-GGU、 trnS-UGA、 trnS-GGA、 trnS-GCU、 trnR-UCU、 *trnR-ACG、 trnQ-UUG、 trnP-UGG、 *trnN-GUU、 trnM-CAU、 trnL-UAG、 trnL-UAA¹、 *trnL-CAA、 trnK-UUU¹、 *trnI-GAU¹、 *trnI-CAU、 trnH-GUG¹、 trnG-UCC¹、 trnG-GCC、 trnfM-CAU、 trnF-GAA、 trnE-UUC、 trnD-GUC、 trnC-GCA、 *trnA-UGC¹</pre>
其他基因	核糖体 成熟酶基因 C型细胞色素合成基因 乙酰辅酶 A 羧化酶亚基 靈膜蛋白基因	matK ccsA accD cemA $vcfL$, * $vcf2^{2}$, $vcf3^{2}$, $vcf4$
未知功能相关基因	假定叶绿体开放性阅读框(ycf)	/

表 2 密花香薷叶绿体基因组注释基因归类

*代表多拷贝基因, 1、2分别指包含有1个内含子和2个内含子的基因

* duplicated genes, superscript¹⁻² indicates one intron gene and two intron genes, respectively

图 2 密花香薷叶绿体基因组相对同义密码子使用度 Fig. 2 RSCU value of chloroplast genome in *E. densa*

3.4 叶绿体基因组重复序列分析

28 个散在重复序列在密花香薷叶绿体基因组中被 检测到。串联重复序列共检测到 191 个,单核苷酸重 复序列最多,共114 个,主要以A(51)和T(56)碱 基重复为主,单核苷酸T重复序列最长,为14 bp,单 核苷酸串联重复序列长度占总序列长度的0.685 5%,3 碱基串联重复序列总数为55 个,2 碱基重复序列和4 碱基重复序列最少为5 个,复合型重复序列12 个, 串联重复序列长度介于 8~26 bp, 串联序列总长度为 1885 bp, 占叶绿体基因组序列总长度的 1.264 3%。基 因编码区包含的 SSR 序列位点总数达 84 个和分布于 基因间隔区 (IGS) 的 SSR 序列位点数相同, 位于内 含子区域 (Intron) 的为 21 个,其余 2 个分布于间隔 区和基因编码区 (表 3)。密花香薷 SSRs 位点在叶 绿体基因组中分布不均匀,多态性较高,为后续 SSR 分子标记的开发提供了理论依据。

	表 3	密花香薷叶绿体基因检测到的简单重复序列
Table 3	Informat	ion of SSRs identified in the chloroplast genome of <i>E. densa</i>

							B				
序号	重复序列	长度/bp	起始	终止	所在位置	序号	重复序列	长度/bp	起始	终止	所在位置
1	(AAGA)3	12	97	108	IGS	45	(C)9(A)11	20	34 694	34 713	IGS
2	(A)9	9	1843	1851	Intron	46	(TAA)3	9	34 825	34 833	IGS
3	(T)8	8	2127	2134	Intron	47	(ATG)3	9	37 190	37 198	psaB
4	(A)8	8	2769	2776	Intron	48	(ATG)3	9	39 414	39 422	psaA
5	(T)8	8	4012	4019	Intron	49	(T)10	10	40 433	40 442	IGS
6	(A)11	11	4295	4305	IGS	50	(T)8	8	40 563	40 570	IGS
7	(A)9	9	4328	4336	IGS	51	(TA)5	10	40 667	40 676	IGS
8	(C) ₈	8	4940	4947	IGS	52	(T)10	10	40 916	40 925	IGS ycf3
9	(A)9	9	4987	4995	IGS	53	(T)8	8	41 636	41 643	ycf3
10	(ATA)3	9	6206	6214	IGS	54	(T)9	9	41 774	41 782	ycf4
11	(A)9	9	6347	6355	IGS	55	(A)11	11	42 148	42 158	Intron
12	(T)11	11	6534	6544	IGS	56	(A)8	8	42 972	42 979	IGS
13	(TTG)3	9	6983	6991	IGS	57	(T)12	12	44 172	44 183	IGS
14	(T)9	9	7476	7484	psbK	58	(TAT)4(ATA)3	21	44 328	44 348	IGS
15	(AAT) ₃	9	7534	7542	IGS	59	(A)10	10	44 930	44 939	IGS
16	(A)10	10	8106	8115	IGS	60	(T)8	8	46 369	46 376	IGS
17	(TA)5	10	8327	8336	IGS	61	(AAC)3	9	47 983	47 991	ndhK
18	(A)8	8	8410	8417	IGS	62	(G)11	11	48 827	48 837	IGS
19	(T)8	8	8499	8506	IGS	63	(T)8	8	49 357	49 364	IGS
20	(A)13	13	9260	9272	Intron	64	(TTA)3	9	49 425	49 433	Intron
21	(AT)6(TAT)4	21	9729	9749	IGS	65	(T)8	8	49 472	49 479	Intron
22	(A)9	9	11 611	11 619	IGS	66	(T)10	10	52 323	52 332	atpB
23	(T)8	8	12 346	12 353	Intron	67	(ATA)4	12	52 377	52 388	Intron
24	(C)sttttattc(T)9	25	12 983	13 007	IGS	68	(T)10	10	52 409	52 418	IGS
25	(AAT)3	9	14 185	14 193	IGS	69	(TCA)3	9	52 837	52 845	IGS
26	(T)12	12	14 225	14 236	IGS	70	(TTG)3	9	53 144	53 152	IGS
27	(AAC)3	9	14 513	14 521	atpI	71	(GA)5	10	54 199	54 208	rbcL
28	(A)stcgaactt(A)9	25	15 133	15 157	IGS	72	(A)9	9	55 002	55 010	IGS
29	(TTA) ₃	9	15 349	15 357	IGS	73	(A)10	10	55 249	55 258	IGS
30	(A)11	11	16 094	16 104	IGS	74	(GGA) ₃	9	56 206	56 214	accD
31	(TA)5	10	17 219	17 228	rpoC2	75	(TAT)3	9	56 596	56 604	accD
32	(T)11	11	18 322	18 332	rpoC2	76	(TAA)3	9	57 415	57 423	IGS
33	(A)9	9	18 465	18 473	rpoC2	77	(A)9	9	57 486	57 494	IGS
34	(TA)5	10	19 688	19 697	rpoC2	78	(T)11	11	57 671	57 681	IGS
35	(TTA)3	9	20 744	20 752	rpoC1	79	(T)8	8	58 263	58 270	ycf4
36	(A)8	8	20 921	20 928	rpoC1	80	(T) ₈	8	58 888	58 895	IGS
37	(TTC) ₃	9	21 944	21 952	rpoC1	81	(T) ₈	8	58 955	58 962	IGS
38	(A)8	8	22 128	22 135	rpoC1	82	(A)8	8	60 674	60 681	petA
39	(T)10	10	22 444	22 453	Intron	83	(A)8	8	61 275	61 282	IGS
40	(T)8	8	26 052	26 059	rpoB	84	(A)8	8	61 541	61 548	IGS
41	(TTA)3t(TTA)3	19	26 899	26 917	IGS	85	(ATT)3(T)8	15	62 146	62 160	IGS
42	(T)8	8	26 992	26 999	IGS	86	(A)8	8	62 349	62 356	psbF
43	(ATAG)3	12	28 667	28 678	IGS	87	(T)9aggaa(T)9	23	63 073	63 095	IGS
44	(TTC)4	12	33 672	33 683	psbC	88	(AAT)3	9	63 291	63 299	IGS

续表3

序号	重复序列	长度/hn	起始	终止	所在位置	序号	重复序列	长度/bn	起始	终止	所在位置
89	<u>(CCT)</u>	0 0	64 015	64 023	IGS	141	<u>主</u> 反/1/1	10	10.8872	108 881	IGS
90	(GAA)2	9	64 110	64 118	IGS	142	(A)0	9	108 905	108 913	IGS
91	(ATA)2	9	64 571	64 579	IGS	142	(T)1690(A)	26	100 003	100 119	IGS
92	(T)12	12	64 919	64 930	IGS	144	(T)	8	109 139	109 146	IGS
93	$(AAC)_2$	9	65 828	65.836	rns18	145	(A) ₈	8	110 483	110 490	ccsA
94	(A)10	10	66 061	66 070	IGS	146	(T) ₀	9	110 718	110 726	ccsA
95	(Λ) ₁₀	8	66 081	66 088	IGS	140	(T)9	8	110 910	110 920	ccsA
96	(A)14	14	66 823	66 836	IGS	148	(A) ₈	8	111 413	111 420	ndhD
97	(T) ₁₄ (T) ₀	0	67 136	67 144	IGS	149	$(\Delta \Delta T \Delta)_2$	12	111 607	111 618	ndhD
98	(T)u	11	67 283	67 293	IGS	150	(T) ₀	8	111 007	112 005	ndhD
99	(T) ₈	8	67 563	67 570	IGS	150	(A)8	8	112 494	112 501	ndhD
100	(T) ₈	8	68 217	68 224	Intron	152	(A) ₈	8	112 839	112 846	ndhD
101	(A)o	9	68 379	68 387	Intron	152	(TTC)2	9	115 907	115 915	ndhA
102	(G)s	8	69 004	69.011	Intron	153	(A)	8	116 288	116 295	Intron
102	(U) (TCT)	9	71 416	71 424	nshB	155	(A)8	8	116 435	116 442	Intron
103	(A)otcaaatg(A)o	25	71 692	71 716	IGS	155	(A)o	9	116 993	117 001	Intron
105	(T)»	8	71 821	71 828	nshT	150	$(TAA)_2$	9	110 235	119 243	IGS
105	(TTC)2	9	75 685	75 693	rnoA	158	(T)10	10	119 874	119 883	vefl
107	(TGC) ₂	9	76 646	76 654	rns11	150	(G)s	8	120 670	120 677	vcfl
108	(T)10	10	78 031	78 040	IGS	160	(O)8 (A)0	9	121 003	121 011	vcfl
109	(A)	8	78 564	78 571	IGS	161	(T) ₉	9	121 005	121 011	vcfl
110	(A)o	9	79 205	79 213	Intron	162	(A)	8	121 117	121 125	vcfl
111	(A) ₈	8	79 857	79 864	Intron	163	(T) ₈	8	121 105	121 192	vcfl
112	(T) ₈	8	80 386	80 393	rns3	163	(T) ₀	9	121 843	121 851	vcfl
113	(TGC) ₂	9	80 955	80 963	rpl22	165	(T)9	9	121 015	121 021	vcfl
113	(T) ₈	8	81 434	81 441	rns19	166	(T) ₉	8	122 097	122 104	vcfl
115	(T) ₀	9	81 466	81 474	rps19	167	(T)	11	122 077	122 101	vcfl
116	(CTT)2	9	81 603	81 611	rpl?	168	(T)10	10	122 191	122 1 11	vcfl
117	(A)o	9	86 884	86 892	vcf?	169	(T)8	8	122 695	122 199	vcfl
118	(TCT)3	9	87 576	87 584	ycf2	170	(CTT)3	9	122 099	122 756	vcfl
119	(CTT)3	9	87 682	87 690	vef2	171	(A)8	8	122 836	122 843	vcfl
120	(TGA)3	9	88 173	88 181	yef2	172	(T)8	8	122 050	123 396	vcfl
120	(GAA)3	9	89 385	89 393	yef2	172	(T)	9	123 983	123 991	vcfl
122	(G)8	8	90 598	90 605	IGS	174	(TTG)3	9	124 538	124 546	vcfl
123	(C)s(A)s	16	91 019	91 034	IGS	175	(TCT)3	9	124 854	124 862	vcfl
124	(T)9	9	91 289	91 297	IGS	176	(A)8	8	125 815	125 822	IGS
125	(AGA)3	9	91 988	91 996	ndhB	177	(CAG)3	9	129 516	129 524	rrn23
126	(AGA) ₃	9	93 422	93 430	ndhB	178	(A)11	11	131 301	131 311	Intron
127	(CCCT) ₃	12	95 252	95 263	IGS	179	(A)8	8	135 036	135 043	IGS
128	(T)8	8	95 550	95 557	IGS	180	(AGGG)3	12	135 330	135 341	IGS
129	(T)11	11	99 282	99 292	Intron	181	(TTC) ₃	9	137 162	137 170	ndhB
130	(CTG) ₃	9	101 069	101 077	rm23	182	(TCT) ₃	9	138 597	138 605	ndhB
131	(T)8	8	104 771	104 778	IGS	183	(A)9	9	139 296	139 304	IGS
132	(AGA)3	9	105 731	105 739	IGS	184	$(T)_{8}(G)_{8}$	16	139 559	139 574	IGS
133	(CAA) ₃	9	106 047	106 055	IGS	185	(C)8	8	139 988	139 995	IGS
134	(A)9	9	106 602	106 610	ndhF	186	(TTC)	9	141 200	141 208	vcf2
135	(C)8	8	107 238	107 245	IGS ndhF	187	(TCA)	9	142 412	142 420	vcf2
136	(A)9	9	107 286	107 294	ndhF	188	(AAG)	9	142 903	142 911	vcf2
137	(AAT) ₃	9	107 733	107 741	ndhF	189	(AGA)	9	143 009	143 017	vcf2
138	(TAA)3	9	108 230	108 238	ndhF	190	(T)	9	143 701	143 709	vcf2
139	(A)8	8	108 352	108 359	ndhF	191	(GAA)	9	14 8981	148 989	rol2
140	(AAG)3	9	108 719	108 727	ndhF		(·····	·			1

3.5 基于叶绿体基因组的密花香薷系统发育分析

总共选取了唇形科 10 个属,共 18 种植物叶绿 体全基因组序列(括号内为物种数目),紫苏属(3)、 香薷属(1)、罗勒属(2)、鼠尾草属(2)、夏枯草 属(1)、青兰属(1)、薄荷属(2)、黄芩属(2)、 刺蕊草属(1)、水苏属(3),外类群1个,加上本 研究所测密花香薷叶绿体基因组共 20 个种,构建 了 NJ 系统发育树。系统发育树结果显示,"密花 香薷"与其他唇形科植物聚在一起形成一个大的分 支。19 种唇形科植物形成 2 个大亚支,且分支支 持率高(BP=100),第 I 大亚支(BP=100)由 2 个分支构成,其中一个分支包含 2 个亚支,一个亚 支由 2 个分支构成,紫苏属 3 个物种形成一个单独 分支联合海州香薷和密花香薷形成 1 个分支,另一 分支由罗勒属 2 个物种单独构成;另一亚支由鼠尾 草属 2 个物种单独形成的一个分支和夏枯草属、青 兰属和薄荷属 6 个物种形成的另一分支构成。第 II 大亚支(BP=100)由黄芩属 2 个物种单独形成的 一个分支和刺蕊草属 1 个物种、水苏属 3 个物种联 合形成的另一姐妹分支构成。除密花香薷和海洲香 薷 *Elsholtzia splendens* 外,同属物种均汇聚在一起 形成姐妹分支(图 3)。

4 讨论

被子植物质体 DNA 通常为母系遗传,因其在 进化过程中不经历基因重组,通过对其序列结构组 成,特征及变异分析,可以很好地揭示物种系统发 育过程[27]。尤其二代高通量测序技术的不断优化, 极大地提高了测序效率,降低了测序费用,使植物 叶绿体基因组测序在许多物种遗传研究中被频繁使 用。有报道研究表明,叶绿体基因组结构为双链环 状 DNA 分子结构,由4部分构成,包含 LSC、SSC 和 2 个 IR, 其中 2 个 IR 区序列相同, 方向相反^[8]。 测序获得的基因组长度介于 1.20×105~1.80× 10⁵ bp, 检测到的编码基因数为 100~130, 蛋白编 码基因数最多为 70~80, 30~32 种不同类型的 tRNA 编码基因被检测到, rRNA 编码基因数比较稳 定,通常有4种^[28]。本研究所获得密花香薷叶绿体 基因组大小和结构与上述被子植物研究结果相符。 香薷属植物约有40余种,我国分布有33种,但是 有关本属叶绿体基因组测序的报道较少,目前只有 2 个物种被报道,一个是海州香薷,另一个是本研 究所测得密花香薷,比较两个物种叶绿体基因组组 成和特征发现,各个区段组成及 GC 含量差异不大。 密花香薷基因组 GC 含量为 37.92%,海州香薷为 37.8%^[29],叶绿体基因组的总体进化速度较慢,在 同属内植物表现出保守性。

对测得的叶绿体基因组进行了基因功能注释, 共注释到130个基因,检测到了84个蛋白编码基因, 其中有4种rRNA基因被检测到。密花香薷tRNAs 基因数(37)与海州香薷(38)仅相差1个。前人 研究表明,不同植物所检测到的tRNAs基因数变异 较大,同一科内其tRNA基因数目存在较大差异, 如壳斗科(Fagacea)植物叶绿体基因tRNA基因数 目介于29~46^[4],五加科(Araliaceae)植物叶绿体 基因组tRNA基因数目介于29~38^[30],但rRNA基 因数目比较保守,如裸子植物臭柏*Juniperus sabina* Ant.^[5]、惠水金橘*Citrus erythrosa* Hort. ex Tan.^[31]、 盐桦*Betula halophila* Ching ex P. C. Li^[32]、壳斗科

(Fagacea) 植物^[4]等 rRNA 基因数目和类型相同, 均 为为4种(rrn4.5、rrn5、rrn16、rrn23),分布在IRs 区,先前报道的海州香薷和本研究检测到的密花香 薷 rRNA 基因数目和类型与上述研究相同。叶绿体 基因组差异主要是由反向重复区的变异引起的,而 IR 在稳定叶绿体基因组结构和影响叶绿体基因组 大小方面起着非常重要的作用^[5]。位于 IRs 的 vcf1、 vcf15、vcf68 基因编码区内有终止密码子,所以被 称为假基因[33],这几个假基因在不同种之间表现出 广泛的变异性, 密花香薷和海州香薷主要差异也分 布在 IRs 区,本研究密花香薷未检测到 ycf15、ycf68 2 个基因,但在海州香薷中被检测到。密花香薷基 因分布和很多被子植物研究结果一致,编码基因主 要分布在 LSC 区,大多数的基因只含有一个外显 子,单拷贝基因居多,17个基因在 IRs 区重复。编 码蛋白和其他被子植物一样,根据其功能主要分为 3 类,(1)光合作用相关基因;(2)自身翻译相关 基因; (3) 其他基因; (4) 未知功能相关基因^[34]。

唇形科(Lamiaceae) 全球分布有 245 属 7500 余种,被认为是被子植物的第6大科,其中包含许 多常见的芳香族植物和药用植物,具有巨大的经济 价值。叶绿体基因组因具有较强的稳定性和保守性, 所以常被用于系统发育树的构建。Li 等[35]基于叶绿 体基因组对 Harley 等 2004 年提出的唇形科的分类 进行了纠正,但是唇形科内部的许多种属系统进化 关系还需进一步得到解决。目前有关唇形科植物叶 绿体全基因组测序报道较少,相关科及亚科内部系 统进化关系构建主要利用叶绿体基因组内部的个别 功能基因如 Matk、rbcl、ndhF。本研究以已测得的 密花香薷叶绿体基因组联合NCBI下载的18种唇形 科植物叶绿体基因组序列构建了 NJ 进化树,结果 表明,该进化树的分辨率较高,各节点也获得了较 高的支持率, 唇形科内属间呈现出较为明确的发育 关系,同一属内物种呈明显的姐妹关系。本研究所 下载的18个物种序列中,除罗勒属2个物种为罗勒 亚科(Ocimoideae)外,其余均为野芝麻亚科 (Lamioideae), 进化树上并没有将 2 个亚科明显区 分, 罗勒属 2 个物种和紫苏属及香薷属聚合形成一 个分支,表现出较近的亲缘关系,但分支支持率较 低(BP=75)。沈立群^[36]对唇形科药用植物叶绿体 基因组进行系统进化分析时发现, 罗勒 Ocimum basilicum L. 和 Perilla setoyensis L. (紫苏属植物) 两者之间呈姐妹关系, ML 分析及 MP 分析给出的 支持率均不高(LB=75, PB=75),这一结论与本 研究相同。香薷属和紫苏属2个物种表现出较近的 亲缘关系,这一结果和已报道海州香薷叶绿体基因 组系统进化关系分析一致。海州香薷和密花香薷虽 为同一属物种,但并未形成姐妹分支,可能是2个 种形态和分布差异较大的原因。本研究首次对密花 香薷叶绿体基因组进行测序组装,并对其基因结构、 密码子偏好性、SSRs 数量及分布和基因功能等进行 了分析,结合已公布的唇形科物种叶绿体基因组序 列,构建了系统发育树,阐明了密花香薷和唇形科 内不同属物种之间的系统发育关系,不仅丰富了唇 形科植物的遗传资源,也为从分子水平进行植物分 类和深入了解植物进化和系统发育提供了有效的途 径,这对于密花香薷植物的分类和开发研究提供了 理论依据。

利益冲突 所有作者均声明不存在利益冲突 参考文献

- Douglas S E. Plastid evolution: Origins, diversity, trends
 [J]. *Curr Opin Genet Dev*, 1998, 8(6): 655-661.
- [2] Birky C W Jr. Uniparental inheritance of mitochondrial and chloroplast genes: Mechanisms and evolution [J]. *Proc Natl Acad Sci USA*, 1995, 92(25): 11331-11338.
- [3] 蒋达和. 叶绿体基因组的结构研究进展 [J]. 生物化学 与生物物理进展, 1990, 17(1): 10-14.
- [4] 张妍彤,黄剑,宋菊,等. 壳斗科植物叶绿体基因组结构及变异分析 [J]. 植物研究, 2018, 38(5): 757-765.
- [5] 路东晔,张磊,郝蕾,等. 臭柏叶绿体基因组结构与系统进化分析 [J].西北植物学报,2018,38(8): 1464-1475.
- [6] Nock C J, Waters D L, Edwards M A, et al. Chloroplast genome sequences from total DNA for plant identification [J]. Plant Biotechnol J, 2011, 9(3): 328-333.
- [7] 王玲,董文攀,周世良. 被子植物叶绿体基因组的结构 变异研究进展 [J]. 西北植物学报,2012,32(6): 1282-1288.
- [8] Shinozaki K, Ohme M, Tanaka M, et al. The complete nucleotide sequence of the tobacco chloroplast genome: Its gene organization and expression [J]. EMBO J, 1986, 5(9): 2043-2049.
- [9] Ohyama K, Fukuzawa H, Kohchi T, et al. Chloroplast gene organization deduced from complete sequence of liverwort *Marchantia polymorpha* chloroplast DNA [J]. *Nature*, 1986, 322(6079): 572-574.
- [10] Moore M J, Bell C D, Soltis P S, et al. Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms [J]. Proc Natl Acad Sci USA,

2007, 104(49): 19363-19368.

- [11] Nock C J, Waters D L, Edwards M A, et al. Chloroplast genome sequences from total DNA for plant identification [J]. Plant Biotechnol J, 2011, 9(3): 328-333.
- [12] Nie X J, Lv S Z, Zhang Y X, *et al.* Complete chloroplast genome sequence of a major invasive species, crofton weed (*Ageratina adenophora*) [J]. *PLoS One*, 2012, 7(5): e36869.
- [13] 中国科学院中国植物志编辑委员会. 中国植物志-第六 十六卷 [M]. 北京: 科学出版社, 1977: 263.
- [14] 中国科学院西北高原生物研究所. 藏药志 [M]. 西宁: 青海人民出版社, 1991: 236.
- [15] 石晋丽,朱甘培.中国香薷属植物的药用及开发前景[J].中药材, 1994, 17(12): 10-13.
- [16] 张彦, 郭增军, 张新新, 等. 密花香薷挥发油促进黄芩 苷透皮吸收的研究 [J]. 中国现代应用药学, 2018, 35(2): 222-224.
- [17] 李萍,谢鹤.论密花香薷在宁夏六盘山区蜂业生产中的价值 [J].中国蜂业,2013,64(31):32-33.
- [18] 孙丽萍, 尹作栋, 傅正生, 等. 密花香薷的化学成分[J]. 植物学报, 1996, 38(8): 672-676.
- [19] 王笳,赵联甲,韩基明,等.密花香薷精油的化学成分 研究 [J].中国野生植物资源,1996,15(2):35-36.
- [20] Xue X J, Guo Z J, Zhang H, et al. Chemical composition, in vitro antioxidant activity and α-glucosidase inhibitory effects of the essential oil and methanolic extract of *Elsholtzia densa* Benth [J]. Nat Prod Res, 2016, 30(23): 2707-2711.
- [21] Chauhan A, Venkatesha K T, Padalia R C, et al. Essential oil composition of leaves and inflorescences of *Elsholtzia* densa Benth. from western Himalaya [J]. J Essent Oil Res, 2019, 31(3): 217-222.
- [22] Liu Y, Si J Y, Cao L, et al. Chemical composition, antimicrobial and antiviral activities of the essential oil of *Elsholtzia densa* Benth [J]. 天然产物研究与开发, 2012, 24(8): 1070-1074.
- [23] Ren Q R, Li J, Wang Y N, et al. In vitro antioxidant, antibacterial and anti-tumor activities of total flavonoids from *Elsholtzia densa* Benth [J]. *Trop J Pharm Res*, 2018, 16(12): 2935.

- [24] 郑尚珍,杨红澎,许先芳,等. GC/MS 法测定超临界流体 CO₂ 萃取萼果香薷精油的化学成分 [J]. 药物分析杂志, 2004, 24(1): 20-23.
- [25] 姜彦成,邓彦斌,杨箴,等.密花香薷花蜜腺的解剖学 研究 [J].西北植物学报,1996,16(3):239-244.
- [26] Fu G, Liu J, Li J Q. The complete chloroplast genome sequence of *Elsholtzia densa*, a herb with volatile aroma component [J]. *Mitochondrial DNA B Resour*, 2020, 5(1): 595-596.
- [27] 张庆滢,陈璇,郭孟璧,等.野生大麻叶绿体基因组分子多态标记的筛选与开发 [J].分子植物育种,2017,15(3):979-985.
- [28] Zhang T W, Fang Y J, Wang X M, et al. The complete chloroplast and mitochondrial genome sequences of *Boea hygrometrica*: Insights into the evolution of plant organellar genomes [J]. PLoS One, 2012, 7(1): e30531.
- [29] Ding L L, Zhao X M, Su L, et al. The complete chloroplast genome of copper-tolerance plant Elsholtzia splendens [J]. Mitochondrial DNA B Resour, 2019, 4(2): 2729-2730.
- [30] 宋菊, 龙月红, 林丽梅, 等. 五加科植物叶绿体基因组 结构与进化分析 [J]. 中草药, 2017, 48(24): 5070-5075.
- [31] 王小柯,郑乾明,罗怿,等. '惠水金橘'的叶绿体基 因组特征分析 [J]. 果树学报, 2019, 36(3): 257-265.
- [32] 于涛,张宇阳,高健,等.极小种群濒危植物盐桦叶
 绿体基因组特征分析 [J].林业科学,2019,55(2):
 41-49.
- [33] Yang J B, Tang M, Li H T, et al. Complete chloroplast genome of the genus Cymbidium: Lights into the species identification, phylogenetic implications and population genetic analyses [J]. BMC Evol Biol, 2013, 13: 84.
- [34] 刘玉萍, 吕婷, 朱迪, 等. 青藏高原特有种--藏扇穗茅
 叶绿体基因组测序及序列分析 [J]. 植物研究, 2018, 38(4): 518-525.
- [35] Li B, Cantino P D, Olmstead R G, et al. A large-scale chloroplast phylogeny of the Lamiaceae sheds new light on its subfamilial classification [J]. Sci Rep, 2016, 6: 34343.
- [36] 沈立群. 唇形科三种药用植物叶绿体全基因组及科内的比较与进化分析 [D]. 杭州:浙江大学,2018.
 [责任编辑 时圣明]