・药剂与工艺・

载姜黄素两亲性星状聚酯纳米粒的制备、表征及体外抗肿瘤研究

洪伟勇 1,2, 王金明 1, 王海英 1, 周雪峰 1, 郭钫元 2, 杨根生 2*

2. 浙江工业大学药学院,浙江 杭州 310032

摘 要:目的 制备载姜黄素两亲性星状聚酯纳米粒(Cur-NPs),以解决其稳定性差、生物利用度低等问题。方法 通过开 环聚合反应和酯化反应合成两亲性星状聚酯(DPE-PCL-mPEG)作为纳米粒的载体材料,傅立叶变换显微红外光谱(FT-IR)、 ¹H-NMR 和凝胶渗透色谱(GPC)表征确定其结构和相对分子质量。溶剂挥发法制备 Cur-NPs,考察其粒径、ξ电位、载药 量、包封率。对 Cur-NPs 进行稳定性、体外释放、材料安全性、体外抗肿瘤和细胞摄取能力考察。结果 成功合成 DPE-PCLmPEG,制备的 Cur-NPs 平均粒径为(86.00±2.01) nm, ξ电位为(-9.40±0.09) mV,包封率为(95.51±1.23)%,载药量 为(5.52±0.54)%。Cur-NPs 具有良好的稳定性和缓释能力。细胞毒性、细胞摄取和体外抗肿瘤实验表明,空白纳米粒(blank-NPs)具有良好的生物安全性;相对于姜黄素溶液,Cur-NPs 对人胶质瘤 U251 细胞的生长抑制作用更明显,并且具有更强 的入胞能力。结论 Cur-NPs 理化性质理想,能有效提高药物体外生物活性,为姜黄素的临床应用提供了新的解决方案。 关键词:两亲性星状聚酯;纳米粒;姜黄素;体外释放;人胶质瘤 U251 细胞;抗肿瘤;稳定性;开环聚合反应;生物利用 度;酯化反应;溶剂挥发法;缓释;细胞毒性;细胞摄取;生物安全性

中图分类号: R283.6 文献标志码: A 文章编号: 0253 - 2670(2021)08 - 2237 - 10 **DOI**: 10.7501/j.issn.0253-2670.2021.08.006

Preparation, characterization and *in vitro* anti-tumor evaluation of curcuminloaded star-shaped polyester nanoparticles

HONG Wei-yong^{1, 2}, WANG Jin-ming¹, WANG Hai-ying¹, ZHOU Xue-feng¹, GUO Fang-yuan², YANG Gensheng²

1. Department of Pharmcy, Taizhou Municipal Hospital, Taizhou 318000, China

2. College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310032, China

Abstract: Objective Curcumin loaded amphiphilic star-shaped polyester nanoparticles (Cur-NPs) were prepared to improve the bioavailability of curcumin. **Methods** Amphiphilic star-shaped polymers (DPE-PCL-mPEG) were synthesized by ring-opening polymerization and esterification and used as the polymer precursor of nanoscale drug carrier. The structures of polymers were characterized by FT-IR spectroscopy and ¹H-NMR. The molecular weights of polymers were determined via GPC. Cur-NPs were prepared by solvent evaporation. The physicochemical properties such as particle size, zeta potential, drug loading, encapsulation efficiency, stability, *in vitro* drug release behavior and cytotoxicity, anti-proliferation efficacy and cellular uptake of Cur-NPs were studied. **Results** DPE-PCL-mPEG was successfully synthesized. The particle size, ξ potential, encapsulation efficiency and drug loading of Cur-NPs was (86.00 ± 2.01) nm, ξ potential (-9.40 ± 0.09) mV, (95.51 ± 1.23)% and (5.52 ± 0.54)%, respectively. In addition, the nanoparticles exhibited good stability and sustained release ability. *In vitro* cytotoxicity demonstrated that blank nanoparticles (blank-NPs) had favorable biosafety. Cur-NPs exhibited stronger anti-proliferation efficacy and better cellular uptake ability against U251 cell. **Conclusion** Cur-NPs with ideal physicochemical properties were successfully prepared. This novel

基金项目:国家自然科学基金项目(22078297);浙江省自然科学基金项目(LY19B060012);浙江省药学会医院药学专项科研基金项目 (2017ZYY28);浙江省药学会医院药学专项科研基金项目(2016ZYY35);台州市科技计划项目(1901ky49)

^{1.} 台州市立医院 药剂科, 浙江 台州 318000

收稿日期: 2021-01-15

作者简介: 洪伟勇(1985—),男,主管药师,博士研究生,从事药物新剂型与临床药学研究。Tel: (0576)88858266 E-mail: weiyongh@126.com *通信作者:杨根生,男,教授,博士生导师,从事药物新剂型与新技术研究。Tel: (0571)88871077 E-mail: yanggs@zjut.edu.cn

nanocarrier system can effectively improve the bioavailability of curcumin and have potential applications in drug delivery. **Key words:** amphiphilic star-shaped polymers; nanoparticle; curcumin; *in vitro* release; U251 cell; anti-tumor; stability; ring-opening polymerization; bioavailability; esterification; solvent evaporation; sustained release; cytotoxicity; cellular uptake; biosafety

目前, 癌症是全球第 2 大致死疾病, 每年超过 1000 万人被确诊为癌症^[1], 90%以上的癌症在潜伏 期没有明显症状, 直到中晚期才被发现。化疗是临 床上治疗中晚期癌症的主要方式之一,可以延缓癌 症的扩散和转移; 但缺乏靶向性, 对正常组织有明 显的毒副作用^[2], 容易导致多药耐药和变态反应。 姜黄素 (curcumin, Cur)是从姜黄根茎中提取的天 然产物^[3], 经 FDA 认证具有很好的安全性, 可以通 过多种分子机制抑制肿瘤细胞的增殖、分化、侵袭 和转移^[4-5], 还可以逆转多药耐药性^[5]。但姜黄素难 溶于水、易降解、体内生物利用度低等特点^[6]严重 限制其临床应用。因此, 急需研究新剂型以解决药 物递送的一系列问题。

近年来,随着纳米技术[7-8]的发展,纳米给药体 系可以有效地改变药物在体内的药动学特征,从而 实现药物的缓释及靶向递送,减轻毒副作用、提高 疗效[9-11]。星状聚合物因其具有独特的空间形态, 自组装成粒后,内部可形成巨大的空腔;相比直链 聚合物,星状聚合物制备的纳米粒具有更高的载药 量和包封率[12-13],是一种良好的纳米载体。聚乙二 醇是广泛使用的亲水性材料[14],常与其他载体材料 共价连接[15-17],以增加纳米粒的稳定性和体内循环 时间[17]。结合星状聚合物与聚乙二醇特性,将两者 通过共价键连接成为一种新型两亲性星状聚酯,不 仅可以实现姜黄素的高效包载,还可以有效避免网 状内皮系统对纳米粒的清除,延长体内循环时间。 此外,纳米粒可以通过实体瘤的高通透性和滞留效 应(EPR 效应),使药物在肿瘤部位富集,增加药 物进入肿瘤细胞几率,从而提高药物生物利用度实 现治疗肿瘤目的。

基于此,本实验选用双季戊四醇 (dipentaerythritol,DPE)、ε-环己内酯 (ε-cyclocaprolactone,ε-CL)和聚乙二醇单甲醚 (polyethylene glycol monomethyl ether,mPEG,相 对分子质量 5000)通过开环聚合和酯化反应合成两 亲性星状聚酯 DPE-PCL-mPEG,以姜黄素为模型药 物,采用溶剂挥发法^[18]制备载姜黄素纳米粒(Cur-NPs),对其物理化学性质进行表征。选取人胶质瘤 U251 细胞为模型细胞,进一步考察该纳米粒的细胞 毒性、体外抗肿瘤活性和入胞能力。以期得到一种 粒径小、安全性高、稳定性好、抗肿瘤活性良好的 纳米给药体系,为姜黄素的临床应用提供新的解决 途径。

1 材料与仪器

1.1 材料

姜黄素,质量分数98%,杭州广林生物医药有限公司;异辛酸亚锡 [Sn(Oct)₂],化学纯,国药集团化学试剂有限公司;ε-CL,分析纯,阿拉丁公司; DPE、mPEG、*N,N*-二环已基碳二亚胺(*N,N*-dicyclohexylcarbodiimide, DCC)、4-二甲氨基吡啶(4-dimethylaminopyridine,DMAP)、聚山梨酯 80(化学纯),阿拉丁公司;丁二酸酐、三乙胺,上海凌峰化学试剂有限公司;四氢呋喃、乙腈为色谱纯;人胶质瘤 U251 细胞,中国科学院细胞库;DMEM培养基、胎牛血清,浙江天杭生物科技股份有限公司;0.25%胰蛋白酶,Gibco公司;96 孔板、细胞培养皿,耐思生物科技有限公司;MTT,索莱宝科技有限公司。

1.2 仪器

Malvern ZS90 激光纳米粒径测定仪,英国马尔 文仪器有限公司;UV-2102 紫外可见分光光度计, 美国尤尼柯公司;LGJ-10 冷冻干燥机,杭州诺丁科 学器材有限公司;傅立叶变换显微红外光谱仪(FT-IR)、XIR 高速冷冻离心机、超净台,Thermo Fisher 公司;IL-161CT 二氧化碳培养箱,施都凯仪器设备 上海有限公司;酶标仪,Biotek 公司;荧光显微镜, Olympus 公司;核磁共振波谱仪,Bruker 公司;X 射线衍射仪,PNAlytical 公司;透射电镜,日本电 子株式会社。

2 方法与结果

2.1 DPE-PCL 和 DPE-PCL-mPEG 的合成

DPE-PCL-mPEG 合成分成 3 个步骤: 首先, 通 过开环聚合反应生成 DPE-PCL。其次, 用丁二酸酐 修饰 mPEG 生成 mPEG-COOH。最后, 通过酯化反 应, 生成 DPE-PCL-mPEG。具体步骤如图 1 所示。 **2.1.1** DPE-PCL 的合成 1 mmol 的 DPE、60 mmol 的 ε -CL 和 0.06 mmol 的 Sn(Oct)₂ (催化剂)置于 50 mL 的三口瓶中, N₂ 保护下, 450 r/min 磁力搅拌,

• 2238

图 1 DPE-PCL-mPEG 的合成路线 Fig. 1 Synthesis scheme of DPE-PCL-mPEG

120 ℃反应 24 h。反应结束后,冷却至室温,加入 10 mL 二氯甲烷溶解,再逐滴加至冰乙醚中,沉淀 纯化,抽滤收集粗产物。粗产物经二次沉淀纯化后 于真空干燥箱干燥至恒定质量,称定质量计算 DPE-PCL 产率。

2.1.2 mPEG-COOH 的合成 2 mmol mPEG、3 mmol 的丁二酸酐和15 mL 的吡啶在100 mL 三口瓶 内搅拌溶解。加入 0.002 mmol DMAP (催化剂)和 0.02 mmol 三乙胺 (缚酸剂), N₂ 保护下,450 r/min 磁力搅拌,室温反应 24 h。反应结束后,逐滴加至 冰乙醚中,沉淀纯化,抽滤收集粗产物。10 mL 二 氯甲烷溶解粗产物后逐滴加至冰乙醚中,再次沉淀 纯化,抽滤收集产物,于真空干燥箱干燥至恒定质 量,称定质量计算 mPEG-COOH 产率。

2.1.3 DPE-PCL-mPEG 的合成 称取 1 mmol 的 DPE-PCL 和 1 mmol 的 mPEG-COOH 于 50 mL 的三 口瓶中,加入 1 mL 乙腈搅拌溶解。再加入 1 mmol 的 DCC (催化剂)和 0.1 mmol 的 DMAP (催化剂), N₂ 保护下,450 r/min 磁力搅拌,室温反应 48 h。反 应结束后收集产物,方法同"2.1.2"项。

2.2 DPE-PCL 和 DPE-PCL-mPEG 的表征

通过 FT-IR 和¹H-NMR 确定 DPE-PCL 和 DPE-PCL-mPEG 结构;凝胶渗透色谱(GPC)^[16]和¹H-

NMR 分别计算 DPE-PCL 和 DPE-PCL-mPEG 相对 分子质量。

DPE-PCL 的 FT-IR 结果如图 2 所示, 其酯键中 C=O 的伸缩振动峰出现在 1 726.3 cm⁻¹, -C-O-C-的不对称振动峰和对称振动峰分别出现在 1 295.5、 1 191.5 cm⁻¹。而 2 945.3、2 866.3、1 471.0、732.5 cm⁻¹ 这 4 个吸收峰归属于 PCL 片段上的亚甲基中 C-H 的特征峰。DPE-PCL 的 ¹H-NMR 分析结果如图 3-A 所示。图中-O-CH₂-、-CH₂-CH₂-CH₂-CH₂-、-CH₂-CH₂-CH₂-CH₂-2+-CH₂-CH₂-CH₂-、-CH₂-CH₂-CH₂-CH₂-2+-CH₂-CH₂-CH₂-CH₂-CH₂-的特征峰,其化学位移分别为δ2.32 (a)、1.39 (b)、 1.66 (d)、4.06 (c)。而 PCL 的末端亚甲基质子峰

 Image: State of the sector of the sector

图 3 DPE-PCL (A) 和 DPE-PCL-mPEG (B) 的核磁图 Fig. 3 ¹H-NMR spectra of DPE-PCL (A) and DPE-PCLmPEG (B)

(-CH₂-OH),由于受末端羟基的影响其化学位移向低场移至 δ 3.65(e)。此外其相对分子质量可以通过 c与e之间的峰面积积分比计算,结果见表 1。FT-IR 和¹H-NMR 的结果表明 DPE-PCL 已成功合成。

DPE-PCL-mPEG 的 FT-IR 结果如图 2 所示,与 DPE-PCL 的 FT-IR 结果相比较,DPE-PCL-mPEG 除了 PCL 片段中出现的酯键和亚甲基的特征峰,还 出现了 mPEG 中醚键(-C-O-C-)的特征峰,分别 位于 1 140.0、1 061.7 cm⁻¹。DPE-PCL-mPEG 的 ¹H-NMR 分析结果如图 3-B 所示, δ 3.65 (g)、3.39 (f) 为 mPEG 中-CH₂-CH₂O-和-OCH₃ 的特征峰。而 δ 2.32 (a)、1.39 (b)、1.66 (d)、4.07 (c)为 DPE-PCLmPEG 中 PCL 片段中亚甲基的特征峰。此外,通过

表 1 DPE-PCL 和 DPE-PCL-mPEG 的相对分子质量、PDI 与产率

Table 1Molucular weights, PDI, and yield of DPE-PCLand DPE-PCL-mPEG

样品	$M_{ m na}$	PDI	$M_{\rm nb}$	产率/%
DPE-PCL	9443	1.08	9130	87.6 ± 2.30
DPE-PCL-mPEG	16 314	1.14	15 369	78.4 ± 1.94

M_{na}为 GPC 中测得的数均相对分子质量, PDI为 GPC 中测得的多分散指数, M_{nb}为¹H-NMR 中计算得出的相对分子质量

 $M_{\rm na}$ is the number average molecular weight measured by GPC, PDI is the polydispersion index measured by GPC, and $M_{\rm nb}$ is the relative molecular weight calculated by ¹H-NMR

f 与 g 之间的峰面积积分比计算其相对分子质量, 结果见表 1。FT-IR 和 ¹H-NMR 的结果表明已成功 合成 DPE-PCL-mPEG。

DPE-PCL 和 DPE-PCL-mPEG 的 GPC 分析结果 如图 4 和表 1 所示, 2 个化合物的 GPC 曲线均是单 峰且基本对称,多分散指数 (PDI)分别为 1.08 和 1.14,相对分子质量分布均比较集中。另外 GPC 中 测得的数均相对分子质量与 ¹H-NMR 中计算得到的 相近,表明该聚合物聚合度较均匀。

图 4 DPE-PCL 和 DPE-PCL-mPEG 的 GPC 数据 Fig. 4 GPC of DPE-PCL and DPE-PCL-mPEG

2.3 姜黄素分析方法的建立

2.3.1 色谱条件 色谱柱为 Axxlaim[®] Polar Advantage II-C₁₈柱 (250 mm×4.6 mm, 5 µm); 流 动相为乙腈-0.6%乙酸水溶液 (60:40); 体积流量 1.0 mL/min; 进样量 10 µL; 检测波长 420 nm; 柱 温 30 ℃。

2.3.2 对照品溶液制备 精密称取姜黄素对照品 2.0 mg,用乙腈溶解并定容至 10 mL,配制成姜黄 素对照品储备液。

2.3.3 专属性实验 取适量的姜黄素和纳米粒,乙 腈溶解,配制成姜黄素溶液、空白纳米粒溶液 (blank-NPs)、载药纳米粒溶液,0.22 μm 微孔滤膜 滤过,按 "2.3.1"项色谱条件进样检测。HPLC 检 测图谱如图 5 所示,姜黄素保留时间为 6.9 min,峰 形较好,姜黄素与杂峰分离较好,载体材料对检测 无干扰,方法专属性好,适用于纳米粒的包封率和 载药量测定。

2.3.4 线性关系考察 取适量对照品溶液,用流动 相稀释成质量浓度分别为 0.1、0.5、1.0、2.0、4.0、 6.0、8.0 μg/mL 的系列对照品溶液, 0.22 μm 微孔滤 过,检测姜黄素含量。以姜黄素的质量浓度为横坐 标(*X*),峰面积积分值为纵坐标(*Y*)绘制标准曲 线,进行线性回归,得到回归方程 *Y*=1.566 9 *X*+

图 5 姜黄素 (A)、blank-NPs (B) 和 Cur-NPs (C) 的 HPLC 的图谱

Fig. 5 HPLC of curcumin (A), blank-NPs (B), and Cur-NPs (C)

0.008 6, *R*²=0.999 8, 结果表明姜黄素在 0.1~8.0 μg/mL 线性关系良好, 该方法适用于姜黄素的含量 测定。

2.3.5 精密度试验 在线性范围内,精密量取对照 品储备液,分别配制质量浓度为 0.5、2.0、6.0 μg/mL 的对照品溶液, HPLC 测定质量浓度并计算 RSD 分 别为 0.10%、0.20%、0.07%、RSD 均<2%,该方 法精密度良好,方法可行。

2.3.6 回收率试验 分别取质量浓度为 6.0 μg/mL 的姜黄素对照品溶液 2、3、4 mL 置于 10 mL 量瓶 中,取 0.5 mL 空白纳米粒溶液加入样品中,流动相 定容,制得质量浓度分别为 1.2、1.8、2.4 μg/mL 的 溶液,0.22 μm 微孔滤过,按 "2.3.1"项色谱条件 进样检测,每个质量浓度平行操作 3 次,计算回收 率。回收率试验结果显示,1.2、1.8、2.4 μg/mL 的 回收率分别为 98.56%、99.25%、99.12%, RSD 分 别为 1.79%、1.21%、0.98%,回收率均在 95%~ 105%, RSD 均<2%,符合方法学要求。

2.4 Cur-NPs 的制备

2.4.1 制备方法 溶剂挥发法制备 Cur-NPs 混悬 液,精密称取姜黄素和 DPE-PCL-mPEG,丙酮溶解 后缓慢滴加入纯水中,450 r/min 磁力搅拌 30 min。 40 ℃下真空干燥 3 h,4 ℃下低速离心 10 min (6000 r/min) 以除去游离姜黄素,得到 Cur-NPs。 空白纳米粒(blank-NPs)的制备除不加药物,其余 步骤相同。 2.4.2 包封率和载药量考察 取 Cur-NPs 在 15 000 r/min 的转速下高速离心 60 min,收集并干燥沉淀,精密称定质量,加丙酮溶解定容,测定姜黄素含量,根据公式计算纳米粒的载药量和包封率。

包封率= $W_{\text{bff}}/W_{\text{bff}}$

载药量=W_{姜黄素}/W_{Cur-NPs}

*W*_{姜黄素}为 Cur-NPs 中姜黄素的质量, *W*_{投药量}为投入姜黄素的质量, *W*_{Cur-NPs}为 Cur-NPs 的质量

2.4.3 单因素考察 分别考察姜黄素与 DPE-PCL-mPEG 的质量比(药材比,1:10、1:15、1:20、1:25、1:30)、有机相与水相的体积比(脂水比,1:3、1:4、1:5、1:6、1:7)及姜黄素的质量浓度(1.5、2.0、2.5、3.0、3.5 mg/mL)这3个因素对制备 Cur-NPs 的影响。以平均粒径、PDI、包封率和载药量为指标,优化制备 Cur-NPs 的处方。

单因素考察结果见表 2,姜黄素与 DPE-PCL-mPEG 的质量比、姜黄素的质量浓度、有机相与水相的体积比对纳米粒的大小、载药量和包封率均有影响,对 PDI 几乎没有影响。其中在姜黄素与 DPE-PCL-mPEG 的质量比为1:20,有机相与水相的体积比为1:5,姜黄素的质量浓度为2.5 mg/mL 的条件下,Cur-NPs 的平均粒径理想,载药量和包封率最高。

2.4.4 Box-Behnken 效应面优化 Cur-NPs 处方 使用软件 Design Expert 10 中的 Box-Behnken 效应面,

表 2 单因素实验结果 Table 2 Results of single factor experiments

			8		
因素	水平	粒径/nm	PDI	载药量/%	包封率/%
药材比	1:10	96.88	0.195	2.74	73.28
	1:15	95.32	0.211	4.86	90.27
	1:20	90.71	0.187	5.31	93.44
	1:25	88.47	0.165	3.98	92.58
	1:30	84.69	0.156	2.55	89.65
脂水比	1:3	102.74	0.141	3.04	82.78
	1:4	99.55	0.218	3.56	92.65
	1:5	94.32	0.199	4.85	94.65
	1:6	87.25	0.179	4.02	91.33
	1:7	85.11	0.195	2.98	85.12
药物浓度/	1.5	80.30	0.188	3.21	95.32
$(mg \cdot mL^{-1})$	2.0	80.50	0.171	3.98	93.21
	2.5	88.70	0.168	5.34	94.78
	3.0	92.60	0.159	4.95	92.87
	3.5	100.70	0.201	3.75	91.95

设置因素 X₁(姜黄素与 DPE-PCL-mPEG 的质量比)、 X₂(有机相与水相的体积比)和 X₃(姜黄素的质量 浓度),输入相应的平均粒径、PDI、包封率和载药 量。根据 Hassan 方法将粒径和 PDI 结果用公式 d_{max} 处理,包封率和载药量结果用公式 d_{min}处理。最后 根据公式计算总评归一值(OD),优化制备处方。

 $d_{\max} = (Y_i - Y_{\min})/(Y_{\max} - Y_{\min})$

 $d_{\min} = (Y_{\min} - Y_i)/(Y_{\max} - Y_{\min})$

 $\mathrm{OD} = (d_1 d_2 \cdots d_k)^{1/k}$

根据单因素结果确定 X₁、X₂ 和 X₃ 3 个因素的考 察范围分别为 X₁ 1:10~1:30、X₂ 1:3~1:7 和 X₃ 1.5~3.5,每个因素设置 5 个水平,OD 值和方差 分析结果见表 3、4,通过拟合得到方程:OD= 0.825 7-0.082 10 X_1 -0.017 85 X_2 +0.073 58 X_3 + 0.030 73 X_1X_2 +0.059 43 X_1X_3 -0.038 83 X_2X_3 -0.029 26 X_1^2 -0.223 50 X_2^2 -0.563 40 X_3^2 。其三维曲 线图见图 6。最终得到最优处方:姜黄素与 DPE-PCL-mPEG 的质量比为 1:17.8,有机相与水相的 体积比为 1:4.9,姜黄素的质量浓度为 2.5 mg/mL。

将 Box-Behnken 效应面中得到的处方进行验证,结果如表 5 所示,实验结果以 x ± s 表示。各指标实际值与预测值接近,表明该回归方程的建立具有统计学意义。Cur-NPs 的平均粒径为(86.00±2.01) nm,可以通过 EPR 效应进入肿瘤区域^[19]。另

	表 3	Box-Behnken 效应面制备处方和结果
Table 3	Prescriptions a	nd results of preparation of Box-Behnken response surface

试验号	X_1	<i>X</i> ₂	$X_3/(\text{mg}\cdot\text{mL}^{-1})$	平均粒径/nm	PDI	包封率/%	载药量/%	OD 值
1	1:20(0)	1:5(0)	2.5 (0)	78.48	0.158	88.83	5.24	0.825 7
2	1:15(-1)	1:5	2.0 (-1)	89.62	0.159	90.72	2.19	0.249 5
3	1:15	1:4(-1)	2.5	81.87	0.153	89.03	3.98	0.699 4
4	1:15	1:6(+1)	2.5	80.67	0.149	83.75	4.05	0.644 2
5	1:20	1:5	2.5	78.48	0.158	88.83	5.24	0.825 7
6	1:20	1:4	3.0 (+1)	87.91	0.169	76.89	5.01	0.155 3
7	1:25(+1)	1:6	2.5	79.26	0.190	86.97	4.92	0.507 9
8	1:20	1:5	2.5	78.48	0.158	88.83	5.24	0.825 7
9	1:25	1:5	3.0	86.97	0.173	79.02	4.20	0.335 5
10	1:25	1:5	2.0	91.56	0.181	83.74	2.98	$0.000\ 0$
11	1:20	1:6	2.0	82.71	0.198	92.01	2.84	$0.000\ 0$
12	1:20	1:5	2.5	78.48	0.158	88.83	5.24	0.825 7
13	1:20	1:5	2.5	78.48	0.158	88.83	5.24	0.825 7
14	1:20	1:4	2.0	85.74	0.184	97.92	2.03	$0.000\ 0$
15	1:25	1:4	2.5	83.70	0.186	85.46	4.03	0.440 2
16	1:20	1:6	3.0	79.13	0.178	76.81	3.89	$0.000\ 0$
17	1:15	1:5	3.0	90.02	0.157	80.83	4.52	0.347 3

表 4 OD 值方差分析 Table 4 Analysis of variance of OD value

方差来源	平方和	自由度	均方	<i>F</i> 值	<i>P</i> 值	方差来源	平方和	自由度	均方	F 值	<i>P</i> 值
模型	1.750	9	0.190	88.37	< 0.000 1	X_{1}^{2}	3.605×10^{-3}	1	3.605×10^{-3}	1.64	0.241 7
X_1	0.054	1	0.054	24.46	0.001 7	X_{2}^{2}	0.210	1	0.210	95.42	< 0.000 1
X_2	$2.549 imes 10^{-3}$	1	$2.549 imes 10^{-3}$	1.16	0.031 8	X_3^2	1.340	1	1.340	606.19	< 0.000 1
<i>X</i> ₃	0.043	1	0.043	19.64	0.003 0	残差	0.015	7	2.204×10^{-3}		
X_1X_2	3.776×10^{-3}	1	3.776×10^{-3}	1.71	0.231 9	失拟项	0.015	3	5.144×10^{-3}		
X_1X_3	0.014	1	0.014	6.41	0.039 2	纯差	0.000	4	0.000		
X2X3	6.030×10 ⁻³	1	$6.030 imes 10^{-3}$	2.74	0.142 1	总和	1.770	16			

图 6 OD 值与 X₁、X₂、X₃ 3 个因素的三维曲面图 Fig. 6 3D surface map of three factors of effect value OD and X₁, X₂, and X₃

	表 5 Cur-NPs 的物理化学表征 $(\bar{x} \pm s, n = 3)$
Table 5	Physicochemical characterization of Cur-NPs ($\overline{x} \pm s, n = 3$

指标	粒径/nm	PDI	电位/mV	包封率/%	载药量/%
预测值	79.43	0.152	_	87.02	5.04
实际值	86.00 ± 2.01	0.142 ± 0.034	-9.40 ± 0.09	95.51 ± 1.23	5.52 ± 0.54

外 Cur-NPs 的 PDI 小于 0.2,表明纳米粒的粒径分 布较窄,均一性良好。

2.5 Cur-NPs 的表征

2.5.1 纳米粒的平均粒径、ξ 电位、包封率和载药 量 取 Cur-NPs,在 25 ℃下,马尔文粒径仪测定 其平均粒径和ξ电位;包封率和载药量计算方法同 "2.4.2"项。结果见表 5,Cur-NPs 呈负电荷,可有 效减少血浆蛋白在粒子表面吸附^[19]和被网状内皮 系统清除^[20],增加其体内稳定性和循环能力;Cur-NPs 具有较理想的包封率和载药量。

2.5.2 Cur-NPs 的形态 取 1 滴 blank-NPs 或 Cur-NPs 置于铜网(200 目)上,2%磷钨酸钠染色,滤 纸吸去过量的染色剂,将样品在室温下干燥,在透 射电子显微镜下观察纳米粒形态(图 7),blank-NPs 和 Cur-NPs 呈较规整的球形,呈单分散状态,平均 粒径约为 80 nm 与激光粒度仪测定结果相符。

2.6 Cur-NPs 的稳定性考察

取 2 mL Cur-NPs 分别加入 8 mL 0.01 mol/L 磷 酸盐缓冲溶液 (PBS, pH 7.4) 和含 10%血清 (FBS) 的 0.01 mol/L PBS (pH 7.4), 37 ℃下静置保存,在 0、1、4、8、12、24 h 取样并测定其平均粒径和 ξ 电位。

Cur-NPs 在 PBS (pH 7.4) 和 PBS+10% FBS (pH 7.4) 中的稳定性结果如图 8 所示。24 h 内 Cur-NPs 在 PBS 中平均粒径从 86.5 nm 增大至 88 nm, 没有明显波动;但在 PBS+10% FBS 中粒径从 86.5 nm 增大至 93 nm,可能是由于血清中的蛋白在 Cur-NPs 表面少量附着导致粒径略有增大,但 10 h 后粒 径不再有明显的波动,表明 Cur-NPs 处于稳定状态。

图 8 Cur-NPs 在 PBS 和 PBS+10% FBS 中 24 h 中的平均 粒径 (A) 和 5 电位 (B) 的变化曲线图 (n = 3)

Fig. 8 Variation curve of Particle size (A) and ξ potential (B) of Cur-NPs in PBS and PBS + 10% FBS for 24 h (n = 3)

此外, Cur-NPs 在 PBS 和 PBS+10% FBS 中 ξ 电位 变化均在 1 mV 以内,没有明显改变。结果表明 Cur-NPs 稳定性良好。

2.7 X-射线衍射(X-ray diffraction, XRD)表征

取4mL Cur-NPs 和 blank-NPs 冷冻干燥,将冻 干的 Cur-NPs 和 blank-NPs,以及姜黄素粉末,用 XRD 进行表征,观察其表面结构特征。姜黄素、 Cur-NPs 和 blank-NPs 粉末的 XRD 结果如图9所示, 其中,姜黄素具有明显的特征峰;Cur-NPs 和 blank-NPs 的图谱比较相似,姜黄素特征峰基本消失;由 此可证明姜黄素被包裹在纳米粒中,而非吸附在纳 米粒表面。

图 9 姜黄素、Cur-NPs 和 blank-NPs 粉末的 XRD Fig. 9 XRD curve of curcumin, Cur-NPs, and blank-NPs powder

2.8 体外释放研究

将姜黄素溶液(Cur-DMSO,姜黄素用 1% DMSO水溶液溶解)和Cur-NPs分别用纯化水稀释 至姜黄素质量浓度为 60 µg/mL,取 1 mL 溶液至透 析袋(截留相对分子质量为 14 000)中,加入 200 mL 0.01 mol/L PBS (pH 7.4,含 0.5%聚山梨酯 80)为 释放介质,置于 37 ℃、100 r/min 的恒温震荡箱内, 在设定时间点取出 5 mL 释放介质,并补充相同体 积的新鲜介质,测定并计算药物的累积释放率,每 组平行 3 份。

累积释放率=
$$(C_n V_0 + \sum_{i=1}^{n-1} C_i V)/m_{\#\#}$$

C_n为释放各时间点测得释放介质中的姜黄素的质量浓度,V 为释放介质的总体积,V₀为每次取样的体积,m_{类黄素}为透析 袋中姜黄素的总质量

以 PBS(pH 7.4)模拟体内循环环境,Cur-DMSO 为对照,研究 Cur-NPs 中姜黄素的释放行为,结果 如图 10 所示。Cur-DMSO 在 0~12 h 内姜黄素快速

图 10 Cur-DMSO 和 Cur-NPs 在 PBS 中的体外释放曲线 (n = 3)

Fig. 10 Release curve of Cur-DMSO and Cur-NPs in PBS (*n* = 3)

释放,在12h累积释放率达到78%,其平均释放速 率约为6.50%/h;12h后释放趋于平缓,48h时基 本完全释放,累积释放率达到94.44%。Cur-NPs的 释放过程分3个阶段:在第1阶段(0~4h)姜黄 素基本没有释放,可能由于Cur-NPs表面无姜黄素 附着,姜黄素需从Cur-NPs内向外扩散才能释放, 这一现象与XRD结果相符;在第2阶段(5~48h), 随着Cur-NPs向外扩散通道的形成,姜黄素平缓释 放,累积释放率从0.3%增加到69.9%,平均释放速 率为每小时1.62%,远低于Cur-DMSO释放速率, 说明Cur-NPs具有良好的缓释能力;第3阶段(48 h后),Cur-NPs的释放速率趋于平缓,72h时累积 释放率达到80.88%。

2.9 细胞毒性考察

用 MTT 法检测 blank-NPs 对 U251 细胞的细胞 毒性,将处于对数生长期的 U251 细胞以每孔 8×10³ 个接种于 96 孔板,于 37 ℃、5% CO₂培养箱中孵 育 24 h。将 blank-NPs 用新鲜培养基稀释至 50~ 800 µg/mL,弃去原有的培养基,每孔分别加入 100 µL 含 blank-NPs 的不同浓度培养基和新鲜培养基 (对照组,细胞存活率为 100%),各组平行 5 份, 另设无细胞孔为空白组。继续培养 24 h 后,加入 10 µL MTT (5 mg/mL)。37 ℃下继续培养 4 h 后,弃 去旧培养基,加入 150 µL 的 DMSO,并在酶标仪 上于波长 490 nm 处测定吸光度 (*A*),计算细胞存 活率。

细胞存活率=(A 实验-A 空白)/(A 对照-A 空白)

 A_{xxxx} 为实验组测得的A值, A_{xxxx} 为对照组测得的A值, A_{xxxx} 为空白组测得的A值

Blank-NPs 的细胞毒性结果如表 6 所示。Blank-NPs 对 U251 细胞的生长抑制与 blank-NPs 浓度呈正 相关,当 blank-NPs 质量浓度高达 800 µg/mL 时 U251 细胞的存活率依旧保持在 80%以上。表明 NPs 体系生物安全性良好。

表 6 Blank-NPs 在 U251 细胞中的细胞毒性 (n = 5) Table 6 Cell cytotoxicity of blank-NPs in U251 cells (n = 5)

blank-NPs/	细胞存活率/	blank-NPs/	细胞存活率/
$(\mu g \cdot m L^{-1})$	%	$(\mu g \cdot m L^{-1})$	%
50	99.99 ± 5.25	400	86.55 ± 2.83
100	93.90 ± 3.49	600	83.20 ± 1.71
200	$91.58 {\pm} 2.15$	800	82.48 ± 2.09

2.10 细胞摄取实验

将处于对数生长期的 U251 细胞以每孔 1×10⁵ 个接种于 6 孔板,于 37 ℃、5% CO₂ 培养箱中孵育 24 h。弃去培养基,将 Cur-DMSO、Cur-NPs 用新鲜 培养基稀释至 20 μg/mL 后,加至 6 孔板中,每孔加 入 1 mL。于 37 ℃、5% CO₂ 培养箱中孵育培养 3 h 后,弃去含药培养基,PBS 冲洗 3 次,荧光显微镜 观察 U251 细胞的药物摄取情况。荧光显微镜观察 U251 细胞对 Cur-DMSO 和 Cur-NPs 的摄取结果如 图 11 所示,在相同条件下培养 4 h 后,可以观察到 Cur-NPs 组细胞中的绿色荧光明显要强于 Cur-DMSO 组;由此可知,相比 Cur-DMSO, Cur-NPs 具有更强的抑制肿瘤细胞侵袭能力。

2.11 体外抗肿瘤细胞增殖实验

MTT 法测定 Cur-DMSO 和 Cur-NPs 对 U251 细胞的抗增殖效果,细胞培养方法同"2.9"项。将

图 11 Cur-DMSO 和 Cur-NPs 在 U251 细胞中的细胞摄取 情况

Fig. 11 Cellular uptake in U251 cells of Cur-DMSO and Cur-NPs

Cur-DMSO、Cur-NPs 用新鲜培养基稀释至药物质量 浓度为 2.5、5.0、10.0、20.0、40.0、60.0 µg/mL, 分别加入含 U251 细胞的 96 孔板中,每孔 100 µL, 各浓度平行 5 份。另设新鲜培养基为对照组(细胞 存活率为 100%),无细胞孔为空白组。培养 24 h 后, 弃去培养基,加入含 10% MTT 的培养基 100 µL。 继续培养 4 h,弃去旧培养基,加入 150 µL 的 DMSO,酶标仪测定 490 nm 处 *A* 值。按"2.9"项 下公式计算细胞存活率,并用 SPSS 计算 Cur-DMSO 和 Cur-NPs 的半数抑制浓度(IC₅₀)。

在证实纳米载体良好的生物安全性基础上,进 一步研究 Cur-DMSO 和 Cur-NPs 对肿瘤细胞的抗增 殖能力,结果如表 7 所示。Cur-DMSO 和 Cur-NPs 对 U251 细胞抗增殖能力均随着药物浓度的升高而 上升。经计算 Cur-DMSO 和 Cur-NPs 对 U251 细胞 的 IC₅₀ 分别为 20.92、14.74 μg/mL,表明 Cur-NPs 的体外抗肿瘤活性更强。其可能原因:在相同药物 质量浓度下,Cur-NPs 可以更好地被摄取进入细胞 并实现胞内释放,使得肿瘤细胞内具有更高的姜黄 素质量浓度,因而具有更强的抗增殖能力。

表 7 Cur-DMSO 和 Cur-NPs 在 U251 细胞中的抗增殖实验 (*n* = 5)

Table 7 Anti-proliferation assay of Cur-DMSO and Cur-NPs in U251 cells (n = 5)

质量浓度/	细胞存活率/%				
$(\mu g \cdot mL^{-1})$	Cur-DMSO	Cur-NPs			
2.5	101.51 ± 5.86	90.45 ± 3.07			
5	86.86 ± 7.26	85.23 ± 2.60			
10	82.73±3.25	69.12 ± 3.77			
20	41.59 ± 2.28	35.57 ± 1.37			
40	26.40 ± 3.03	15.67 ± 3.78			
60	23.33 ± 1.77	13.01 ± 0.49			

3 讨论

本实验通过开环聚合和酯化反应成功合成了 DPE-PCL-mPEG,采用溶剂挥发法制备了 Cur-NPs, 经单因素考察和 Box-Behnken 效应面选择最优处 方,得到粒径较小,分布均匀,理化特性理想的纳 米粒。体外释放和稳定性实验表明,Cur-NPs 具有 缓释能力,且在 PBS 和 PBS+10% FBS 中稳定性良 好。体外细胞毒性实验证实,blank-NPs 具有较好的 生物安全性。而细胞摄取和体外抗肿瘤实验表明, 针对 U251 细胞,相比 Cur-DMSO, Cur-NPs 具有更 强的抗肿瘤活性和入胞能力。总之,DPE-PCL-mPEG 是理想的载体材料,Cur-NPs 能有效提高姜黄素生物利用度,是具有临床应用潜力的纳米给药系统;此外,该制剂的体内药学特性仍需进行更系统、深入的研究。

利益冲突 所有作者均声明不存在利益冲突

参考文献

- Siegel R L, Miller K D, Jemal A. Cancer statistics, 2018
 [J]. CA Cancer J Clin, 2018, 68(1): 7-30.
- [2] Miller K D, Nogueira L, Mariotto A B, et al. Cancer treatment and survivorship statistics, 2019 [J]. CA Cancer J Clin, 2019, 69(5): 363-385.
- [3] Mehanny M, Hathout R M, Geneidi A S, et al. Exploring the use of nanocarrier systems to deliver the magical molecule: Curcumin and its derivatives [J]. J Control Release, 2016, 225: 1-30.
- [4] Liu J, Xu L, Liu C, *et al.* Preparation and characterization of cationic curcumin nanoparticles for improvement of cellular uptake [J]. *Carbohyd Polym*, 2012, 90(1): 16-22.
- [5] Lelli D, Sahebkar A, Johnston T P, *et al.* Curcumin use in pulmonary diseases: State of the art and future perspectives [J]. *Pharmacol Res*, 2017, 115: 133-148.
- [6] Manjili H K, Ghasemi P, Malvandi H, et al. Pharmacokinetics and *in vivo* delivery of curcumin by copolymeric mPEG-PCL micelles [J]. Eur J Pharm Biopharm, 2017, 116: 17-30.
- [7] Miao L, Guo S, Lin C M, et al. Nanoformulations for combination or cascade anticancer therapy [J]. Adv Drug Deliv Rev, 2017, 115: 3-22.
- [8] Yu Y, Zhang X, Qiu L. The anti-tumor efficacy of curcumin when delivered by size/charge-changing multistage polymeric micelles based on amphiphilic poly (β-amino ester) derivates [J]. *Biomaterials*, 2014, 35(10): 3467-3479.
- [9] Ulbrich K, Holá K, Šubr V, et al. Targeted drug delivery with polymers and magnetic nanoparticles: Covalent and noncovalent approaches, release control, and clinical

studies [J]. Chem Rev, 2016, 116(9): 5338-5431.

- [10] Sisson A L, Ekinci D, Lendlein A. The contemporary role of ε-caprolactone chemistry to create advanced polymer architectures [J]. *Polymer*, 2013, 54(17): 4333-4350.
- [11] Wang X, Wei F, Liu A, *et al.* Cancer stem cell labeling using poly(*L*-lysine)-modified iron oxide nanoparticles
 [J]. *Biomaterials*, 2012, 33(14): 3719-3732.
- [12] Ren J, Zhang Z, Feng Y, *et al.* Synthesis of star-shaped poly(ε-caprolactone)-b-poly(*L*-lactide) copolymers: From star architectures to crystalline morphologies [J]. *J Appl Polym Sci*, 2010, 118(5): 2650-2658.
- [13] Allen R J, Mathew B, Rice K G. PEG-peptide inhibition of scavenger receptor uptake of nanoparticles by the liver
 [J]. *Mol Pharm*, 2018, 15(9): 3881-3891.
- [14] Jiao X, Yu Y, Meng J, et al. Dual-targeting and microenvironment-responsive micelles as a gene delivery system to improve the sensitivity of glioma to radiotherapy [J]. Acta Pharm Sin B, 2019, 9(2): 381-396.
- [15] Guo F, Wu J, Wu W, et al. PEGylated self-assembled enzyme-responsive nanoparticles for effective targeted therapy against lung tumors [J]. J Nanobiotechnology, 2018, 16(1): 57.
- [16] Fang L, Fan Y, Lou L, *et al.* Pharmacokinetics of pegylated liposomal doxorubicin in Chinese tumor patients [J]. *Chin Pharm J*, 2012, 47(3): 222-228.
- [17] Dai Z, Yao Q, Zhu L. MMP2-sensitive PEG-lipid copolymers: A new type of tumor-targeted P-glycoprotein inhibitor [J]. ACS Appl Mater Interfaces, 2016, 8(20): 12661-12673.
- [18] Peer D, Karp J M, Hong S, et al. Nanocarriers as an emerging platform for cancer therapy [J]. Nat Nanotechnol, 2007, 2(12): 751-760.
- [19] Ge L, Qiu L, Shan X, et al. Preparation and properties of heparosan polysaccharide-vitamin E succinate polymer micelles[J]. Acta Pharm Sin, 2017, 53(4): 621-623.
- [20] Chen B, Dai W, He B, et al. Current multistage drug delivery systems based on the tumor microenvironment [J]. Theranostics, 2017, 7(3): 538-558.

[责任编辑 郑礼胜]