• 化学成分 •

黔产金钗石斛中1个新的杜松烷型倍半萜

肖世基,钱 怡,张 良,唐艳芬,朱雪梅,周惠黠,赵忠能,张茂生,徐德林遵义医学院药学院,贵州遵义 563000

摘 要:目的 研究贵州道地药材金钗石斛 *Dendrobium nobile* 的化学成分。**方法** 采用硅胶、MCI 柱色谱及制备液相色谱等方法进行分离纯化,经质谱和核磁共振等波谱技术进行结构鉴定。**结果** 从贵州道地药材金钗石斛茎的乙醇提取物中分离得到 1 个新的倍半萜类化合物,鉴定为 δ-杜松萜烯-12,14-二醇(1)。**结论** 化合物 1 为新化合物。

关键词:金钗石斛;兰科;杜松烷型;倍半萜类;δ-杜松萜烯-12,14-二醇

中图分类号: R284.1 文献标志码: A 文章编号: 0253 - 2670(2016)17 - 2972 - 03

DOI: 10.7501/j.issn.0253-2670.2016.17.002

A new sesquiterpene from *Dendrobium nobile*

XIAO Shi-ji, QIAN Yi, ZHANG Liang, TANG Yan-fen, ZHU Xue-mei, ZHOU Hui-xia, ZHAO Zhong-neng, ZHANG Mao-sheng, XU De-lin

School of Pharmacy, Zunyi Medical University, Zunyi 563000, China

Abstract: Objective To investigate the chemical constituents of *Dendrobium nobile* from Guizhou province. **Methods** The constituents were isolated and purified by silica gel, MCI column chromatography, and preparative HPLC technology. The structure of the isolated compound was elucidated by MS and NMR spectra. **Results** A new sesquiterpene, identified as δ -cadinen-12,14-diol (1), was isolated from the stem of *D. nobile*. **Conclusion** Compound 1 is a new compound.

Key words: Dendrobium nobile Lindl.; Orchidaceae; cadinane; sesquiterpene; δ -cadinen-12,14-diol

金钗石斛 Dendrobium nobile Lindl. 又名吊兰花、扁金钗、小黄草,为兰科(Orchidaceae)石斛属 Dendrobium Sw. 植物,是贵州省道地药材,也是我国传统名贵中药。其主要生长于海拔800~1 700 m的山坡、林中、树上或路边岩石上,分布于我国西南及台湾、湖北、广东、海南、广西等省。金钗石斛以茎入药,味甘,性微寒,益胃生津、滋阴清热,用于阴伤津亏、口干烦渴、食少干呕、病后虚热、目暗不明[1]。研究表明,石斛属植物具有抗肿瘤、增强机体免疫能力、抗氧化、抗血小板凝集及降血糖等作用[2-3]。金钗石斛含有的化学成分复杂多样,主要有生物碱类、芳香类和倍半萜类化合物[4-6]。为了阐明黔产金钗石斛的化学成分,为贵州道地药材的

利用奠定坚实的物质基础,本实验进一步对采自遵义赤水的金钗石斛进行了研究,从其乙醇提取物非生物碱部位中分离得到 1 个新倍半萜类化合物,鉴定为 δ -杜松萜烯-12,14-二醇(图 1)。

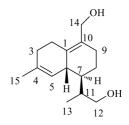


图 1 化合物 1 的结构

Fig. 1 Structure of compound 1

收稿日期: 2016-04-26

基金项目: 国家自然科学基金资助项目 (31560102); 贵州省教育厅招标项目 (黔教合 KY 字 [2015] 362); 贵州省科技重大专项子项目 (黔科合重大专项字 [2015] 6010-2); 遵义医学院招标项目 (F-684); 遵义医学院大学生创新创业训练计划 (遵医 [2015] 5036); 遵义医学院学科建设经费资助

作者简介: 肖世基,男,博士,副教授,主要从事天然药物化学研究。E-mail: sjxiao@zmc.edu.cn

1 仪器与材料

Finnigan LCQ^{DECA}型质谱仪 (美国 Thermo 公司); Agilent DD2400-MR 型核磁共振仪,TMS 为内标 (美国 Agilent 公司); Bruker BiOTOF Q 型质谱仪 (德国 Bruker 公司); UV3600 紫外可见近红外分光光度计 (日本岛津公司); Varian1000 红外光谱仪,KBr 压片 (美国 Varian 公司); Sepacore 中压制备系统 (瑞士 BÜCHI 公司); LC3000 型高效液相色谱仪 (中国北京创新通恒公司); C_{18} 半制备HPLC 柱 (250 mm×10 mm,5 μ m,日本 YMC 公司); 20~45 μ m ODS 填料 (日本 Fuji Silysia 公司); 薄层色谱硅胶 GF_{254} 和柱色谱硅胶 (100~200,300~400 目,青岛海洋化工公司); MCI 树脂 (日本 Mitsubishi 公司)。

金钗石斛茎于 2014 年 9 月采自遵义赤水,由遵义医学院生药学教研室杨建文教授鉴定为金钗石斛 Dendrobium nobile Lindl.,样品标本(20141011)保存在遵义医学院天然药物实验室。

2 提取与分离

金钗石斛干燥品 50 kg 粉碎后用乙醇回流提取 3 次,减压浓缩提取液得乙醇提物 4.8 kg,将其分散于 2.0%盐酸水溶液中,减压滤过得酸水不溶物。该酸水不溶物用乙醇溶解后拌入 $100\sim200$ 目硅胶,挥干溶剂后先用石油醚(3 L)提取,脱脂后以石油醚-醋酸乙酯(1:1,3 L)和醋酸乙酯(3 L)分别提取 3 次,减压浓缩得石油醚-醋酸乙酯(1:1)部位浸膏 350 g。该浸膏经中压硅胶柱色谱(70 mm×460 mm,石油醚-醋酸乙酯梯度洗脱)分为 10 个部分 Fr. $1\sim10$ 。 Fr. 3 经 MCI 柱(90% 甲醇-水洗脱)除去色素后经 ODS 柱色谱(甲醇-水梯度洗脱)分为 7 个部分 Fr. $3.1\sim3.7$; Fr. 3.2 经半制备 HPLC 分离(乙腈-水,55:45,体积流量 4 mL/min)得到化合物 1 ($t_R=16.5$ min,15 mg)。

3 结构鉴定

化合物 1 为浅黄色胶状物, $[\alpha]_D^{20}$ +12 (c 0.18, MeOH)。HR-ESI-MS 给出其准分子离子峰 $[M+Na]^+$ 峰 m/z: 259.166 0($C_{15}H_{24}O_2Na^+$,计算值 259.166 9),确定其分子式为 $C_{15}H_{24}O_2$,不饱和度为 4。紫外光谱显示在 245 nm 处有最大吸收。红外光谱显示 3 422 cm⁻¹ 处有羟基伸缩振动。¹H-NMR (400 MHz, CDCl₃)谱(表 1)显示有 1 个烯氢 δ_H 5.41 (1H, brs),4 个连氧的仲氢 $[\delta_H$ 3.56 (2H, m); δ_H 4.03, 4.24 (各 1H, d, J=11.4 Hz)],2 个甲基氢信号 $[\delta_H$ 1.66 (3H,

表 1 化合物 1 的 ¹H-NMR、¹³C-NMR 和 HMBC 数据 Table 1 ¹H-NMR, ¹³C-NMR, and HMBC data of compound 1

碳位	$\delta_{ m H}$	$\delta_{ m C}$	HMBC (H→C)
1		128.3	
2	2.81 (1H, d, J = 8.4 Hz)	26.6	C-1, 3, 4, 6, 10
	2.01 (1H, overlap)		
3	2.05 (2H, overlap)	32.6	C-2, 4
4		134.6	
5	5.41 (1H, brs)	123.5	C-3, 4, 6, 15
6	2.63 (1H, d, J = 8.4 Hz)	39.1	
7	2.07 (1H, overlap)	35.2	
8	1.59 (1H, m)	21.7	C-7, 9
	1.24 (1H, m)		
9	2.24 (1H, m)	28.1	C-8, 10
	2.07 (1H, overlap)		
10		135.5	
11	1.36 (1H, m)	39.8	
12	3.56 (2H, m)	67.0	C-7, 11, 13
13	0.83 (3H, dd, J = 6.9, 1.3 Hz)	10.6	C-7, 11, 12
14	4.03 (1H, d, J = 11.4 Hz)	62.4	C-1, 9, 10
	4.24 (1H, d, J = 11.4 Hz)		
15	1.66 (3H, s)	23.4	C-3, 4, 5

s); $\delta_{\rm H}$ 0.83 (3H, dd, J = 6.9, 1.3 Hz)]. ¹³C-NMR (100 MHz, CDCl₃) 谱中显示有 15 个碳信号分别为 4 个 sp^2 杂化碳 δ_C 135.5, 134.6, 123.5, 128.3; 2 个连氧的 仲碳 $\delta_{\rm C}$ 67.0, 62.4; 3 个叔碳 $\delta_{\rm C}$ 39.8, 39.1, 35.2; 4 个仲碳 $\delta_{\rm C}$ 32.6, 28.1, 26.2, 21.7; 2 个甲基碳 $\delta_{\rm C}$ 23.4, 10.6。分析波谱数据推测其可能为萘环型倍半萜骨 架[7]。进一步通过 HMBC 谱推测其可能为杜松烷型 倍半萜骨架,分析化合物 1 的 NMR 数据发现其和 化合物 agripilol C 及 tyromol B 相似[8-9],相比而言 多了一个双键。HMBC 谱中(表 1)H-14 ($\delta_{\rm H}$ 4.03, 4.24) 和 C-1 ($\delta_{\rm C}$ 128.3), C-10 ($\delta_{\rm C}$ 135.5), C-9 ($\delta_{\rm C}$ 28.1) 相关,可以得出 1 个双键处于 C-1 和 C-10 上, 1 个羟基处于 C-14 上; H-15 ($\delta_{\rm H}$ 1.66) 和 C-3 ($\delta_{\rm C}$ 32.6), C-4 ($\delta_{\rm C}$ 134.6), C-5 ($\delta_{\rm C}$ 123.5) 相关,H-5 ($\delta_{\rm H}$ 5.41) 和 C-3 ($\delta_{\rm C}$ 32.6), C-4 ($\delta_{\rm C}$ 134.6), C-6 ($\delta_{\rm C}$ 39.1), C-15 (δ_C 23.4) 相关,可以推断另外 1 个双键处于 C-4 和 C-5 上; H-12 ($\delta_{\rm H}$ 3.56) 和 C-7 ($\delta_{\rm C}$ 35.2), C-11 $(\delta_{\rm C} 39.8)$, C-13 $(\delta_{\rm C} 10.6)$ 相关,可以判定另外 1 个羟 基处于 C-12 上。最后,通过 H-6 的邻位偶合常数 J=8.4 Hz 推测 H-6 和 H-7 处于反式 α 键上, 进一步通 过和 (+)- δ -杜松萜烯对比旋光度得出化合物构型。 综上, 化合物 1 的结构得到确定, 命名为 (+)- δ -杜 松萜烯-12,14-二醇。

4 讨论

倍半萜类是天然产物中一类重要的化合物,其 骨架在萜类化合物中最为多变,活性也很广泛。杜 松烷型倍半萜属于萘环倍半萜类,在药用植物中分 布并不普遍,其活性也有待深入研究。本实验从贵 州道地药材金钗石斛茎中分离得到1个新的杜松烷 型倍半萜类化合物,为金钗石斛用药提供了科学依 据,也进一步丰富了其物质基础研究。

参考文献

- [1] 张惠源, 张志英. 中国中药资源志要 [M]. 北京: 科学出版社, 1994.
- [2] Xu J, Han Q B, Li S L, et al. Chemistry, bioactivity and quality control of *Dendrobium*, a commonly used tonic herb in traditional Chinese medicine [J]. *Phytochem Rev*, 2013, 12(2): 341-367.
- [3] 宋广青, 刘新民, 王 琼, 等. 石斛药理作用研究进展

- [J]. 中草药, 2014, 45(17): 2576-2580.
- [4] Yang H, Sung S H, Kim Y C. Antifibrotic phenanthrenes of *Dendrobium nobile* stems [J]. *J Nat Prod*, 2007, 70(12): 1925-1929.
- [5] Zhang X, Xu J K, Wang J, et al. Bioactive bibenzyl derivatives and fluorenones from *Dendrobium nobile* [J]. J Nat Prod, 2007, 70(1): 24-28.
- [6] Zhang X, Liu H W, Gao H, *et al.* Nine new sesquiterpenes from *Dendrobium nobile* [J]. *Helv Chim Acta*, 2007, 90(90): 2386-2394.
- [7] 龚运淮,丁立生.天然产物核磁共振碳谱分析 [M]. 昆明:云南科技出版社,2006.
- [8] 郭 华, 冯 涛, 李正辉, 等. 担子菌薄皮干酪菌中两个新的倍半萜 (英文) [J]. 药学学报, 2014, 49(11): 1578-1581.
- [9] Shan W G, Chen X X, Ying Y M, et al. Sesquiterpenoids from Fusarium sp., an Endophytic fungus in Agriminia pilosa [J]. Helv Chim Acta, 2011, 94(7): 1254-1259.