香鳞毛蕨中1个新的色原酮苷(Ⅱ)

彭 冰1,高增平2,何 薇1,王 宏1,韩旭阳1,曾祖平1*

- 1. 首都医科大学附属北京中医医院 北京市中医研究所, 北京 100010
- 2. 北京中医药大学中药学院,北京 100102

摘 要:目的 研究香鳞毛蕨 *Dryopteris fragrans* 全草的化学成分。方法 采用各种柱色谱方法分离,通过理化鉴别及波谱分析技术鉴定化合物的结构。结果 从香鳞毛蕨全草水提取物中分离得到 3 个化合物,分别鉴定为 2-异丙基-5,7-二羟基-1'-O-β-D-吡喃葡萄糖基色原酮苷(1)、(6R, 9R)-3-酮- α -紫罗兰醇-9-O- β -D-吡喃葡萄糖苷(2)和红豆杉苷(3)。结论 化合物 1 为新化合物,命名为香蕨色原酮 B,化合物 2 和 3 为首次从该科植物中分离得到。

关键词: 香鳞毛蕨; 2-异丙基-5, 7-二羟基-1'-O-β-D-吡喃葡萄糖基色原酮苷; 香蕨色原酮 B; (6R, 9R)-3-酮-α-紫罗兰醇-9-O-β-D-吡喃葡萄糖苷; 红豆杉苷

中图分类号: R284.1 文献标志码: A 文章编号: 0253 - 2670(2014)15 - 2136 - 03

DOI: 10.7501/j.issn.0253-2670.2014.15.003

A new chromone glycoside from Dryopteris fragrans (II)

PENG Bing¹, GAO Zeng-ping², HE Wei¹, WANG Hong¹, HAN Xu-yang¹, ZENG Zu-ping¹

- 1. Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010, China
- 2. School of Chinese Materia Medica, Beijing University of Traditional Chinese Medicine, Beijing 100102, China

Abstract: Objective To study the chemical constituents from the whole plants of *Dryopteris fragrans*. **Methods** The chemical constituents were isolated by various column chromatographic methods. The structures of the compounds were elucidated on the basis of physiochemical properties and spectral analyses. **Results** Three compounds named 2-isopropyl-5, 7-dihydroxy-1'-O-β-D-glucopyranosyl chromone (1), (6R, 9R)-3-oxo-α-ionol-9-O-β-D-glucopyranoside (2), and taxicatin (3) were isolated and identified. **Conclusion** Compound 1 is a new compound named frachromone B, compounds 2 and 3 are reported for the first time from family Dryopteridaceae.

Key words: *Dryopteris fragrans* (L.) Schott.; 2-isopropyl-5, 7-dihydroxy-1'-*O*- β -*D*-glucopyranosyl chromone; frachromone B; (6*R*, 9*R*)-3-oxo-α-ionol-9-*O*- β -*D*-glucopyranoside; taxicatin

香鳞毛蕨 Dryopteris fragrans (L.) Schott. 为鳞毛蕨科鳞毛蕨属植物,落叶性多年生草本,生长于高寒地区的滑石坡、森林中的碎石坡和火山周围的岩浆缝隙中,我国东北、华北地区和俄罗斯、日本、欧美均有分布^[1]。黑龙江省北部居民用香鳞毛蕨的水提取液涂擦患处治疗牛皮癣、皮疹、皮炎、痤疮等皮肤病,香鳞毛蕨也被当地人称为"皮肤病克星"^[2]。然而迄今为止,香鳞毛蕨治疗皮肤病的主要有效成分还不清晰。为研究其治疗皮肤病的物质基础,本实验对香鳞毛蕨水提取物的化学成分进行

了研究,前期研究^[3]从黑龙江五大连池产香鳞毛蕨中分离得到 2-乙基-5, 7-二羟基-1'-O-β-D-吡喃葡萄糖基色原酮苷、牡荆苷、异槲皮苷和 3-羟基-5-丙基苯基-O-β-D-吡喃葡萄糖苷。本实验又从中分离得到 3 个化合物,分别鉴定为 2-异丙基-5, 7-二羟基-1'-O-β-D-吡喃葡萄糖基色原酮苷(2-isopropyl-5, 7-dihydroxy-1'-O-β-D-glucopyranosyl chromone, 1), (6R, 9R)-3- \mathbf{m} - α -紫罗兰醇-9-O-β-D-吡喃葡萄糖苷 [(6R, 9R)-3-oxo- α -ionol-9-O-β-D-glucopyranoside, 2] 和红豆杉苷(taxicatin, 3),其中,化合物 1 为新化

收稿日期: 2014-05-27

基金项目: 北京市自然科学基金资助项目(7144200)

作者简介: 彭 冰, 男, 博士, 助理研究员, 研究方向为中草药物质基础。Tel: (010)52176919 E-mail: pengbing123@hotmail.com

^{*}通信作者 曾祖平, 主任药师。Tel: (010)52176919 E-mail: zzp600@sohu.com

合物,命名为香蕨色原酮 B,化合物 2 和 3 为首次 从该科植物中分离得到。

1 材料

YZN50 型液体真空浓缩煎药机 (北京东华原医疗设备有限责任公司), Bruker AV500 型核磁共振仪 (瑞士 Bruker 公司); Waters Xevo G2 QTof MS 质谱仪 (美国 Waters 公司); LC—6AD 半制备高效液相色谱仪 (日本岛津公司); Shim-pack PREP-ODS (H) KIT 制备型色谱柱 (日本岛津公司, 250 mm×20 mm, 5 μ m); 凝胶 Sephadex LH-20 为美国 GE公司产品; D-101 大孔树脂柱为天津海光化工有限公司产品; 色谱用硅胶、预制 GF₂₅₄ 硅胶板均为青岛海洋化工厂出品。

香鳞毛蕨全草于2011年8月采自黑龙江五大连 池市,经北京中医药大学中药学院高增平教授鉴定 为香鳞毛蕨 *Dryopteris fragrans* (L.) Schott.,凭证标 本(DF0110801)保存于北京市中医研究所。

2 提取分离

取香鳞毛蕨干燥全草 4.0~kg,适当粉碎后,投入真空浓缩煎药机,用水煎煮 3 次,每次 25~L,提取液浓缩后,上 D-101 大孔树脂柱,依次用 30%、60%、95%乙醇洗脱,得 <math>60%乙醇部位 115~g。取 60% 乙醇部位 110~g 反复硅胶柱色谱,以醋酸乙酯-甲醇 $(10:1\rightarrow 0:1)$ 和氯仿-甲醇 $(12:1\rightarrow 0:1)$ 溶剂系统梯度洗脱,再经 Sephadex LH-20 柱色谱,制备液相色谱纯化得到化合物 1 (甲醇-水 33:67, 10.3~mg)、2 (甲醇-水 29:71, 29.5~mg)、3 (甲醇-水 26:74, 11.4~mg)。

3 结构鉴定

 5.5, 12.0 Hz, H-6"β), 其中糖端基质子的耦合常数值 为 8.0 Hz, 判断葡萄糖的构型为 β 型。在 ¹³C-NMR (125 MHz, CD₃OD) 谱中, 共可见 18 个碳信号, 结 合 1 H-NMR 和 HMQC 谱可推测 $\delta_{\rm C}$ 62.6、71.5、75.1、 78.1、78.5 和 99.5 为葡萄糖的碳信号, $\delta_{\rm C}$ 25.5 和 26.5 为甲基碳信号, $\delta_{\rm C}$ 184.3 为羰基碳信号, 4 个芳香连 氧碳信号 ($\delta_{\rm C}$ 173.1、166.4、163.2 和 159.7),1 个 氧取代季碳信号 $\delta_{\rm C}$ 77.7, 4 个芳碳信号 ($\delta_{\rm C}$ 107.2、 105.4、100.2 和 95.1)。化合物 1 与香蕨色原酮 A[3] 的 NMR 谱非常相似,不同之处在于,化合物 1 多 1个甲基碳信号和1个甲基单峰质子信号,少1个 氧取代质子信号。提示香蕨色原酮 A 侧链氧取代乙 基的1'位氢被甲基取代,推断化合物1可能为连有 异丙基的色原酮葡萄糖苷类化合物。从 HMBC 谱 (图 1) 可以看出, 葡萄糖端基质子信号 $\delta_{\rm H}$ 4.45 (1H, d, J = 8.0 Hz) 与季碳信号 $\delta_{\rm C}$ 77.7 (C-1') 存在远程 相关,提示葡萄糖连接在 C-1'上,H-3 质子信号 $\delta_{\rm H}$ 6.50 (1H, s) 与季碳信号 $\delta_{\rm C}$ 77.7 (C-1') 存在远程相 关,质子信号 $\delta_{\rm H}$ 1.58 (3H, s, H-2') 和 1.60 (3H, s, H-3') 与 $\delta_{\rm C}$ 173.1 (C-2) 存在远程相关,提示异丙基 与 C-2 相连。综合以上分析,结合 ${}^{1}H-NMR$ 、 ¹³C-NMR、HMQC 及 HMBC 谱,将该化合物的 ¹H-NMR 谱中的质子信号和 ¹³C-NMR 谱中的碳信号 进行了准确归属 (表 1)。最后鉴定化合物 1 为 2-异丙基-5, 7-二羟基-1'-O-β-D-吡喃葡萄糖基色原酮 苷。经文献检索与查新确定为新化合物,命名为香 蕨色原酮 B。

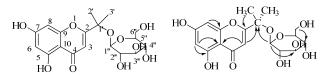


图 1 化合物 1 的结构和主要 HMBC 相关图 Fig. 1 Structure and key HMBC correlations of compound 1

表 1 化合物 1 的 ¹H-NMR 和 ¹³C-NMR 的波谱数据 Table 1 ¹H-NMR and ¹³C-NMR data of compound 1

碳位	$\delta_{ m H}$	$\delta_{ m C}$	HMBC (H→C)
2	_	173.1	
3	6.50 (1H, s)	107.2	C-2, 4, 5, 10, 1'
4	_	184.3	
5	_	163.2	
6	6.13 (1H, s)	100.2	C-5, 7, 8, 10
7	_	166.4	
8	6.31 (1H, s)	95.1	C-6, 7, 9, 10
9	_	159.7	
10	_	105.4	
1′	_	77.7	
2'	1.58 (3H, s)	26.5	C-2, 1'
3'	1.60 (3H, s)	25.5	C-2, 1'
1"	4.45 (1H, d, J = 8.0 Hz)	99.5	C-1', 2", 3", 5"
2"	3.17 (1H, m)	75.1	C-1", 3", 4"
3"	3.30 (1H, m)	78.5	C-1", 2", 4", 5"
4"	3.26 (1H, m)	71.5	C-2", 3", 6"
5"	3.12 (1H, m)	78.1	C-4", 6"
6"	3.52 (1H, dd, J = 2.0, 12.0 Hz)	62.6	C-4", 5"
	3.61 (1H, dd, J = 5.5, 12.0 Hz)		

(1H, m, H-2'), $3.22\sim3.30$ (3H, m, H-3' \sim 5'), 3.76 (1H, dd, J=11.5, 2.0 Hz, H-6' α), 3.60 (1H, dd, J=11.5, 5.5 Hz, H-6' β); ¹³C-NMR (CD₃OD, 125 MHz) δ : 37.1 (C-1), 202.0 (C-3), 126.1 (C-4), 165.9 (C-5), 56.8 (C-6), 128.8 (C-7), 138.2 (C-8), 77.0 (C-9), 21.0

(C-10), 27.6 (C-11), 28.1 (C-12), 23.8 (C-13), 102.5 (C-1'), 75.3 (C-2'), 78.0 (C-3'), 71.5 (C-4'), 78.1 (C-5'), 62.7 (C-6')。以上数据与文献报道基本一致^[4],故鉴定化合物 **2** 为 (6R, 9R)-3-酮- α -紫罗兰醇-9-O- Ω -吡喃葡萄糖苷。

化合物 **3**: 无色胶状物。¹H-NMR (500 MHz, CD₃OD) δ : 6.25 (2H, d, J = 2.0 Hz, H-2, 6), 6.10 (1H, d, J = 2.0 Hz, H-4), 4.80 (1H, d, J = 7.5 Hz, H-1'), 3.68 (6H, s, 2×-OCH₃), 3.83 (1H, dd, J = 12.0, 2.5 Hz, H-6' α), 3.62 (1H, dd, J = 12.0, 6.0 Hz, H-6' β), 3.25 \sim 3.41 (4H, m, H-2' \sim 5'); ¹³C-NMR (125 MHz, CD₃OD) δ : 161.0 (C-1), 96.5 (C-2, 6), 162.9 (C-3, 5), 95.8 (C-4), 102.4 (C-1'), 74.9 (C-2'), 78.0 (C-3'), 71.5 (C-4'), 78.3 (C-5'), 62.6 (C-6')。以上数据与文献报道基本一致^[5],故鉴定化合物 **3** 为红豆杉苷。

参考文献

- [1] 沈志滨, 金哲雄, 张德连, 等. 香鳞毛蕨治疗银屑病的 药理作用研究 [J]. 中草药, 2002, 33(5): 448-449.
- [2] 沈志滨, 金哲雄, 张德连, 等. 香鳞毛蕨的生药学研究 [J]. 中草药, 2002, 33(7): 661-663.
- [3] 彭 冰,曾祖平,李 萍,等. 香鳞毛蕨中 1 个新的色原酮苷 [J]. 中草药, 2013, 44(17): 2347-2349.
- [4] Pabst A, Barron D, Sémon E, *et al.* Two diastereomeric 3-oxo-α-ionol β-*D*-glucosides from raspberry fruit [J]. *Phytochemistry*, 1992, 31(5): 1649-1652.
- [5] 张君增, 方起程, 梁晓天. 中国特有植物白豆杉的化学成分研究 [J]. 植物学报, 1996, 38(5): 399-405.