# • 药材与资源 •

# ITS 和 psbA-trnH 序列鉴别绿绒蒿属藏药植物

倪梁红<sup>1</sup>, 赵志礼<sup>1\*</sup>, 孟千万<sup>1</sup>, 嘎 务<sup>2</sup>, 米 玛<sup>2</sup>

- 1. 上海中医药大学中药学院, 上海 201203
- 2. 西藏藏医学院, 西藏 拉萨 850000

摘 要:目的 应用核基因 ITS 和叶绿体 psbA-trnH 序列对绿绒蒿属 Meconopsis Vig. 藏药进行鉴别。方法 采集欧贝(图字叫) 3 种基原植物罂粟科绿绒蒿属毛瓣绿绒蒿 Meconopsis torquata、红花绿绒蒿 Meconopsis punicea、全缘叶绿绒蒿 Meconopsis integrifolia,才温(黃寶河) 2 种基原植物罂粟科绿绒蒿属总状绿绒蒿 Meconopsis racemosa、多刺绿绒蒿 Meconopsis horridula,对植物核糖体 DNA 内转录间隔区、叶绿体 psbA-trnH 非编码区序列进行测定与分析。结果 ITS 序列分析显示,总状绿绒蒿与多刺绿绒蒿序列一致,其余任意两种间具有变异位点;psbA-trnH 序列分析显示,任意两种间均有变异位点;两者结合可有效对所有 5 种植物进行区分鉴定。结论 ITS 和 psbA-trnH 序列相结合可用于绿绒蒿属藏药欧贝和才温的分子鉴定。 关键词: ITS; psbA-trnH; 藏药; 绿绒蒿属; 欧贝; 才温; 毛瓣绿绒蒿; 红花绿绒蒿; 全缘叶绿绒蒿; 总状绿绒蒿; 多刺绿绒蒿

中图分类号: R282.12 文献标志码: A 文章编号: 0253 - 2670(2014)04 - 0541 - 05

DOI: 10.7501/j.issn.0253-2670.2014.04.017

# Identification of Tibetan medicinal plants of *Meconopsis* Vig. using ITS and *psbA-trnH* sequence

NI Liang-hong<sup>1</sup>, ZHAO Zhi-li<sup>1</sup>, MENG Qian-wan<sup>1</sup>, GAAWE Dorje<sup>2</sup>, MI Ma<sup>2</sup>

- 1. Department of Pharmacognosy, Shanghai University of Traditional Chinese Medicines, Shanghai 201203, China
- 2. Tibetan Traditional Medical College, Lhasa 850000, China

**Abstract: Objective** To identify the common Tibetan traditional medicine of *Meconopsis* Vig. using nuclear gene internal transcribed spacer (ITS) and chloroplast *psbA-trnH* sequence. **Methods** Ethnopharmacological study was carried out, three species of Ou-Bei (*M. torquata, M. punicea*, and *M. integrifolia*) and two species of Cai-Wen (*M. racemosa* and *M. horridula*) were collected. The ribosomal DNA ITS and chloroplast *psbA-trnH* noncoding region sequences were determined and analyzed. **Results** The ITS sequences of *M. racemosa* and *M. horridula* were completely the same, while variable site could be detected in each pairwise comparison of ITS sequences in other species; The *psbA-trnH* sequence analysis showed that the variable sites could be detected in each pairwise comparison of the sequences. The combination of them could be used to identify all the five species. **Conclusion** The combination of ITS and *psbA-trnH* sequence could be used to identify the Tibetan traditional medicine Ou-Bei and Cai-Wen in *Meconopsis* Vig.

**Key words:** ITS; psbA-trnH; Tibetan traditional medicine; Meconopsis Vig.; Ou-Bei; Cai-Wen; Meconopsis torquata Prain; Meconopsis punicea Maxim.; Meconopsis integrifolia (Maxim.) Franch.; Meconopsis racemosa Maxim.; Meconopsis horridula Hook. f. et Thoms.

绿 绒 蒿 属 *Meconopsis* Vig. 是 罂 粟 科 (Papaveraceae) 的第二大属,我国有 38 种,集中分 布于西南部,是一类具有较高经济、药用价值的高 山植物<sup>[1]</sup>。藏医药学是传统医学宝库的重要组成部 分,具有丰富的民族特色,自古以来就以该属多种

植物入药<sup>[2]</sup>。藏药"欧贝"(蜀至[1])来源于本属多种植物,可清肝热、肺热,并能治热邪引起的喉阻塞。根据花色不同,欧贝又分为不同品种,其中蓝色花的称为"欧贝完保",红色花的称为"欧贝玛保",黄色花的称为"欧贝赛保"<sup>[2-3]</sup>。藏药"才温"(南河 [3-3])

收稿日期: 2013-10-15

基金项目: 国家自然科学基金资助项目(81173654); 上海市教委预算内科研项目(2011JW11)

作者简介: 倪梁红(1980—), 男, 讲师, 主要从事中药资源与品种鉴定工作。E-mail: nlhtcm@126.com

<sup>\*</sup>通信作者 赵志礼,教授,博士生导师,主要从事中药资源与品种鉴定工作。E-mail: zhilzhao@sohu.com

网络出版时间: 2014-01-08 网络出版地址: http://www.cnki.net/kcms/doi/10.7501/j.issn.0253-2670.2014.01.html

来源于本属植物,可清骨中之热,治头伤、骨折、 跌打损伤等症<sup>[2-3]</sup>。近年来,本课题组开展了藏药的 品种整理及民族植物学调研工作<sup>[4-5]</sup>。因本属植物种 类较多,不同地区欧贝来源的多样性及传统鉴定方 法的局限性,需深入进行整理鉴定工作。

随着分子生物学技术的快速发展,植物 DNA 序列被大量应用于药材品种的分子鉴定,因其能准确、快速鉴定物种,因此对于药材原植物鉴定、解决长久以来原植物辨识错误的现状,具有极为明显的优势<sup>[6-7]</sup>。其中植物核糖体 DNA 内转录间隔区(rDNA ITS 区)序列进化速率较快,可提供较为丰富的变异位点和信息位点<sup>[8-10]</sup>;叶绿体 psbA-trnH 非编码序列,因其变异程度相对较高,变异显著且容易扩增,现已被广泛用于分子鉴定<sup>[11-12]</sup>。对于亲缘极为相近的物种,单一序列有时无法提供很好的分辨率,通过应用多个基因片段区分,尝试多个分子标记相结合的办法,可提供更全面的信息,使物种间的鉴别效率更高<sup>[6]</sup>。

本实验在民族植物学考察、经典分类学鉴定基础上,采集欧贝完保、欧贝玛保、欧贝赛保、才温基原植物,分别测定其ITS、psbA-trnH序列并分析其差异,以期为藏药欧贝和才温的分子鉴定方法建立提供基础资料。

## 1 材料

实验材料均为自采,其中毛瓣绿绒蒿从西藏自

治区藏药厂药材库房收集,产地为拉萨市堆龙德庆县,同时取新鲜叶片经硅胶快速干燥,备用。药材凭证标本经上海中医药大学赵志礼教授鉴定,存放于上海中医药大学中药学院药用植物标本室,样品信息见表 1。

## 2 方法

#### 2.1 序列测定

在 CTAB 法<sup>[13]</sup>的基础上略做改进提取总 DNA。 ITS、psbA-trnH 序列的扩增引物分别参考 Yuan<sup>[14]</sup>和 Sang<sup>[11]</sup>。ITS 序列引物分别为 YP1: 5'-GGAAGT-AGAAGTCGTAACAAGG-3'; YP4: 5'-TCCTCCGC-TTATTGATATGC-3'。PCR 条件为 95 °C,5 min; 95 °C,1 min, 52 °C,1 min, 72 °C,1.5 min,共31 个循环; 72 °C,10 min。psbA-trnH 序列引物分别为 PA: 5'-GTTATGCATGAACGTAATGCTC-3'; TH: 5'-CGCGCATGGTGGATTCACAATCC-3'。PCR 条件为 94 °C,5 min; 94 °C,1 min; 55 °C,1 min; 72 °C,1.5 min; 30 个循环,72 °C,7 min。扩增产物送上海英骏生物技术有限公司纯化并测序(Axygen 胶回收试剂盒,ABI 3730xl 型测序仪)。

#### 2.2 序列数据分析

ITS 及 psbA-trnH 序列起止范围参考 GenBank 中罂粟科序列。所得序列输入计算机后,采用 MEGA5.0、MegAlign7.1.0(44)软件进行分析。

表 1 样品与凭证标本 Table 1 Samples and voucher specimens

| 样品                           | 凭证标本号       | 采集地         |
|------------------------------|-------------|-------------|
| 毛瓣绿绒蒿 M. torquata            | 2011XZ003   | 西藏自治区藏药厂    |
| 全缘叶绿绒蒿(居群 1) M. integrifolia | 2010LRH02-1 | 四川若尔盖辖曼乡草坡  |
|                              | 2010LRH02-2 | 四川若尔盖辖曼乡草坡  |
| 全缘叶绿绒蒿 (居群 2)                | 2011XZ228-1 | 西藏拉萨夺底沟山坡草地 |
|                              | 2011XZ228-2 | 西藏拉萨夺底沟山坡草地 |
| 红花绿绒蒿 M. punicea             | 2010LRH01-1 | 四川若尔盖辖曼乡草坡  |
|                              | 2010LRH01-2 | 四川若尔盖辖曼乡草坡  |
|                              | 2010LRH01-3 | 四川若尔盖辖曼乡草坡  |
| 总状绿绒蒿 M. racemosa            | 2010LRH03-1 | 西藏拉萨夺底沟山坡草地 |
|                              | 2010LRH03-2 | 西藏拉萨夺底沟山坡草地 |
|                              | 2010LRH03-3 | 西藏拉萨夺底沟山坡草地 |
| 多刺绿绒蒿 M. horridula           | 2011XZ219-1 | 西藏拉萨夺底沟山坡石缝 |
|                              | 2011XZ219-2 | 西藏拉萨夺底沟山坡石缝 |
|                              | 2011XZ219-3 | 西藏拉萨夺底沟山坡石缝 |

#### 3 结果与分析

# 3.1 分类位置的确定

经标本的形态学观察与分类学鉴定,并查阅 中国科学院西北高原生物研究所标本馆相关标 本,确定欧贝完保基原植物为毛瓣绿绒蒿、欧贝 玛保基原植物为红花绿绒蒿、欧贝赛保基原植物 为全缘叶绿绒蒿,才温基原植物为总状绿绒蒿、 多刺绿绒蒿。

# 3.2 序列的获得

应用 PCR 产物直接测序的方法,获得各样本的 ITS、psbA-trnH 完整序列,各居群内部序列皆一致。各序列长度见表 2。

表 2 ITS 及 psbA-trnH 序列长度

Table 2 Sequence lengths of ITS and psbA-trnH

| 物种            | ITS1 / bp | 5.8 S / bp | ITS2 / bp | 总长 / bp | <i>psbA-trnH</i> / bp |
|---------------|-----------|------------|-----------|---------|-----------------------|
| 毛瓣绿绒蒿         | 251       | 162        | 252       | 665     | 248                   |
| 全缘叶绿绒蒿 (居群 1) | 251       | 162        | 250       | 663     | 245                   |
| 全缘叶绿绒蒿 (居群 2) | 251       | 162        | 249       | 662     | 251                   |
| 红花绿绒蒿         | 254       | 162        | 252       | 668     | 242                   |
| 总状绿绒蒿         | 252       | 162        | 250       | 664     | 238                   |
| 多刺绿绒蒿         | 252       | 162        | 250       | 664     | 238                   |

# 3.3 种间、居群间分辨率的评价

应用 ClustalW 软件对所有 ITS、psbA-trnH 序列分别进行对位排列,MEGA 5.0 分析软件计算序列变异值。

ITS 序列分析结果显示,任意 2 组序列比较,除总状绿绒蒿与多刺绿绒蒿无位点差异,其余均有位点变异情况,其中全缘叶绿绒蒿两个居群序列间存在 11 个变异位点。K2P 遗传距离变异幅度为: 0 (总状绿绒蒿与多刺绿绒蒿)、0.120 (毛瓣绿绒蒿与红花绿绒蒿)(表 3)。

psbA-trnH序列分析结果显示,任意 2 组序列比较时,均出现变异情况,其中全缘叶绿绒蒿 2 个居群序列间存在 6 个变异位点。K2P 遗传距离变异幅度为 0.026 (全缘叶绿绒蒿居群 1 与居群 2;总状绿绒蒿与多刺绿绒蒿)、0.109 (毛瓣绿绒蒿与红花绿

绒蒿)(表4)。

# 3.4 UPGMA 系统树

从 Genbank 下载罂粟科罂粟属虞美人 Papaver rhoeas L. 序列为外类群(ITS 序列号 DQ912886; psbA-trnH 序列号 JN584665),分别以 ITS 序列、psbA-trnH 序列构建 UPGMA 系统树(Kimura 2-parameter 模型, bootstrap 1 000 次重复)。基于 ITS 序列的系统树显示,外类群首先区分开;其余,全缘叶绿绒蒿 2 个居群聚在一起,多刺绿绒蒿和总状绿绒蒿聚在一起,然后与红花绿绒蒿聚类,毛瓣绿绒蒿单独为一支,见图 1。基于 psbA-trnH 序列的系统树显示,外类群首先区分开;其余,全缘叶绿绒蒿两个居群聚在一起,多刺绿绒蒿和总状绿绒蒿聚在一起,然后与红花绿绒蒿聚为一大支,毛瓣绿绒蒿单独为一支,见图 2。

表 3 6 个分类群 ITS 序列成对比较时的位点变异值(上三角: 变异位点; 下三角: 遗传距离)

Table 3 Numbers of site mutations (above diagonal) and pairwise K2P genetic distance (below diagonal) of six taxa based on ITS sequence

| 物种            | 毛瓣绿绒蒿 | 全缘叶绿绒蒿 (居群 1) | 全缘叶绿绒蒿 (居群 2) | 红花绿绒蒿 | 总状绿绒蒿 | 多刺绿绒蒿 |
|---------------|-------|---------------|---------------|-------|-------|-------|
| 毛瓣绿绒蒿         | _     | 66            | 62            | 72    | 70    | 70    |
| 全缘叶绿绒蒿 (居群 1) | 0.108 | _             | 11            | 42    | 41    | 41    |
| 全缘叶绿绒蒿 (居群 2) | 0.101 | 0.017         | _             | 42    | 42    | 42    |
| 红花绿绒蒿         | 0.120 | 0.067         | 0.067         | _     | 44    | 44    |
| 总状绿绒蒿         | 0.116 | 0.065         | 0.067         | 0.070 | _     | 0     |
| 多刺绿绒蒿         | 0.116 | 0.065         | 0.067         | 0.070 | 0     | _     |

| 衣 4     | 6 个分类群 psbA-trnH 序列成对比较时的位点变异值(上二用:变异位点;下二用:速传起离)                                                        |
|---------|----------------------------------------------------------------------------------------------------------|
| Table 4 | Values of site mutations (above diagonal) and pairwise K2P genetic distance (below diagonal) of six taxa |
|         | based on psbA-trnH sequence                                                                              |

| 物种            | 毛瓣绿绒蒿 | 全缘叶绿绒蒿 (居群 1) | 全缘叶绿绒蒿 (居群 2) | 红花绿绒蒿 | 总状绿绒蒿 | 多刺绿绒蒿 |
|---------------|-------|---------------|---------------|-------|-------|-------|
| 毛瓣绿绒蒿         | _     | 23            | 22            | 24    | 21    | 15    |
| 全缘叶绿绒蒿 (居群 1) | 0.104 | _             | 6             | 12    | 14    | 19    |
| 全缘叶绿绒蒿 (居群 2) | 0.100 | 0.026         | _             | 14    | 14    | 20    |
| 红花绿绒蒿         | 0.109 | 0.053         | 0.062         |       | 15    | 21    |
| 总状绿绒蒿         | 0.095 | 0.062         | 0.062         | 0.067 | _     | 6     |
| 多刺绿绒蒿         | 0.067 | 0.085         | 0.090         | 0.095 | 0.026 | _     |

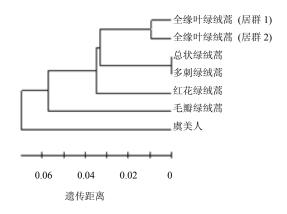



图 1 基于 ITS 序列构建的 UPGMA 系统发育树 Fig. 1 UPGMA systematic tree based on ITS sequences

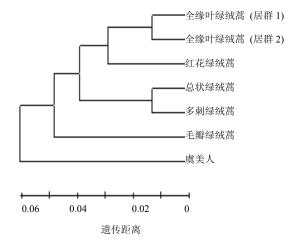



图 2 基于 psbA-trnH 序列构建的 UPGMA 系统发育树 Fig. 2 UPGMA systematic tree based on psbA-trnH sequences

# 4 讨论

欧贝和才温类藏药来源于绿绒蒿属多个近缘种,是重要的藏药品种,欧贝又分为欧贝完保等不同品种,其主要治疗的病症各有差异<sup>[3]</sup>,因此品种的正确鉴定对于安全用药具有重要的意义。在调研中发现,实际用药和药厂收购中存在品种错误和混

乱的现象,因此,本实验收集不同品种欧贝和才温 类药材的 5 种基原植物,测定并分析其 ITS 和 psbA-trnH 序列,以期为本属藏药植物的分子鉴定提 供依据和基础工作。

植物 DNA 序列现被大量应用于药材的分子鉴定,目前已成为植物分类和鉴定研究的热点<sup>[6]</sup>。对于亲缘很近的物种,单一片段的分析存在局限性,应用多个片段结合的方法可以获得更全面的信息。本实验中,ITS 区序列分析显示,不同物种序列间总体存在较多变异位点,但总状绿绒蒿和多刺绿绒蒿的序列一致,结合叶绿体 psbA-trnH 序列可有效将两者区分。同时,这两个片段对于全缘叶绿绒蒿不同居群间有区分意义。基于两种序列的系统树均分为两支,一支为毛瓣绿绒蒿(具盘绿绒蒿亚属),其他 4 种(绿绒蒿亚属)聚为一支,与传统分类学观点完全一致。利用多片段相结合,如双亲遗传的核基因序列和母系遗传的叶绿体基因序列相结合,可使对物种的鉴别效率更高。

总状绿绒蒿与多刺绿绒蒿的主要区别在于前者 具高的茎,茎除上部外均具叶,有时有基生花葶混 生,《西藏植物志》将其处理为多刺绿绒蒿的变种 Meconopsis horridula Hook. f. et Thoms. var. racemosa (Maxim.) Prain<sup>[15]</sup>。在野外观察及标本查阅 中发现,多刺绿绒蒿极少,典型的总状绿绒蒿具单 一且高的总状花序,较易鉴别,有些个体的总状花 序短且混生有大量基生花葶,与多刺绿绒蒿极为 相似。本实验中,两者的 ITS 区序列完全一致, psbA-trnH 序列有差异,但因两个物种分别采自不同 的生境,不确定是否为环境影响导致位点变异。下 一步需加大样本量,选取更多的序列进行比较分析。

根据文献报道<sup>[2]</sup>,欧贝的传统药用部位为花。 但调研中发现,因环境破坏、过量采挖等影响,绿 绒蒿属资源量日益减少。为满足市场药材需求,现 大多采用整个地上部分入药。对这些珍贵的藏药资源,在开发利用的同时,应进行有效保护。

欧贝为典型的多来源藏药,品种较多,来源复杂。根据文献报道<sup>[3]</sup>,欧贝完保的正品来源为五脉绿绒蒿,毛瓣绿绒蒿作为代用品。根据调研,现拉萨地区欧贝完保的主流品种来源为毛瓣绿绒蒿。因自然、人为等多方面因素影响,现今藏药品种与传统来源存在差异,需结合文献和实际调研进行整理考证。

# 参考文献

- [1] 中国科学院中国植物志编辑委员会. 中国植物志(第32卷) [M]. 北京: 科学出版社, 1999.
- [2] 帝玛尔•丹增彭措. 晶珠本草 [M]. 上海: 上海科学技术出版社, 1986.
- [3] 杨永昌,何廷农,卢生莲,等. 藏药志 [M]. 西宁:青海人民出版社,1991.
- [4] Zhao Z L, Dorje G, Wang Z T. Identification of medicinal plants used as Tibetan traditional medicine Jie-Ji [J]. *J Ethnopharmacol*, 2010, 132(1): 122-126.
- [5] 赵志礼, 赵汝能. 藏药川布的原植物考订 [J]. 中国药学杂志, 1992, 27(5): 269-270.
- [6] 陈士林, 姚 辉, 宋经元, 等. 基于 DNA barcoding (条 形码) 技术的中药材鉴定 [J]. 世界科学技术—中医药 现代化, 2007, 9(3): 7-12.
- [7] Kres W J, Wurdack K J, Zimmer E A, *et al.* Use of DNA barcodes to identify flowering plants [J]. *Proc Natl Acad*

- Sci USA, 2005, 102: 8369-8347.
- [8] 李 栎, 肖 憬, 苏振宇, 等. ITS2 条形码序列对茜草 科 黎 药 植 物 的 鉴 定 [J]. 中 草 药, 2013, 44(13): 1814-1818.
- [9] China Plant BOL Group. Comparative analysis of a large dataset indicates that ITS should be incorporated into the core barcode for seed plants [J]. *Proc Natl Acad Sci USA*, 2011, 108: 19641-19646.
- [10] 蒋 明, 李嵘嵘, 管 铭, 等. 悬钩子属植物rDNA ITS 序列的克隆与分析 [J]. 中草药, 2013, 44(15): 2143-2149.
- [11] Sang T, Crawford D, Stuessy T. Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae) [J]. Am J Bot, 1997, 84(8): 1120-1136.
- [12] 夏 至,李贺敏,张红瑞,等. 紫苏及其变种的分子鉴定 和亲缘关系研究 [J]. 中草药,2013,44(8):1027-1032.
- [13] Stewart C N, Laura E V. A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications [J]. *Biotechniques*, 1993, 14(5): 748-749.
- [14] Yuan Y M, Küpfer P. Molecular phylogenetics of the subtribeGentianinae (Gentianaceae) inferred from the sequences of internal transcribed spacers (ITS) of nuclear ribosomal DNA [J]. *Plant Syst Evol*, 1995, 196(3/4): 207-226.
- [15] 吴征镒, 关克俭, 王文采, 等. 西藏植物志 (第 2 卷) [M]. 北京: 科学出版社, 1985.