一测多评法同时测定预知子中 4 种三萜皂苷

宋永贵 1,2 , 张武岗 1,2* , 刘岩庭 2 , 侯雄军 2 , 李志峰 1,2 , 苏 丹 1,2 , 冯育林 1,2* , 杨世林 1,2

- 1. 中药固体制剂制造技术国家工程研究中心, 江西 南昌 330006
- 2. 江西中医学院, 江西 南昌 330006

关键词: 预知子; 一测多评; 相对校正因子; 皂苷 P_D; 皂苷 X; 皂苷 B; 皂苷 A; HPLC 中图分类号: R286.02 文献标志码: A 文章编号: 0253 - 2670(2012)07 - 1418 - 04

Quantitative analysis of multi-assessment by single marker on four triterpenoid saponins in *Akebiae Fructus*

SONG Yong-gui^{1, 2}, ZHANG Wu-gang ^{1, 2}, LIU Yan-ting², HOU Xiong-jun², LI Zhi-feng^{1, 2}, SU Dan^{1, 2}, FENG Yu-lin^{1, 2}, YANG Shi-lin^{1, 2}

- 1. National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Nanchang 330006, China
- 2. Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China

Key words: *Akebiae Fructus*; quantitative analysis of multi-assessment by single marker (QAMS); relative correction factor (RCF); saponins P_D; saponin X; saponin B; saponin A; HPLC

预知子为木通科木通属植物五叶木通 Akebia quinata (Thunb.) Decne.、三叶木通 A. trifoliate (Thunb.) Koidz. 和白木通 A. tridoliata (Thunb.) Koidz. var. australis (Diels) Rehd. 的成熟果实 $^{[1]}$ 。具有舒肝和胃、活血止痛、散结、利尿功效。用于脘胁胀痛、痛经经闭、痰核痞块、小便不利 $^{[2]}$ 。三萜皂苷类成分是预知子中的主要成分,具有抗癌、抗菌、抗炎等 $^{[3-5]}$ 广泛的生物活性。目前对预知子质量控制标准方面,王家明等 $^{[6]}$ 对皂苷 P_K 进行了 HPLC 分析,《中国药典》2010 版将 α-常春藤皂苷作为测定指标 $^{[2]}$,而关于预知子中其他三萜皂苷的多成分测定尚未见报道。

由于中药成分的复杂性,多指标综合质量控制模式已成为中药质量评价的发展趋势。但在实际工作中,由于多种原因中药化学对照品常常很难获得,这就限制了一般外标法或内标法实现多指标质量控制。一测多评法(QAMS)利用中药有效成分内在的函数关系和比例关系,实现了采用一种易得对照品对多个成分的同步测定。该法在茶叶^[7]、大黄^[8]、人参^[9]等药材中得到发展和验证,黄连的一测多评标准已被《中国药典》2010年版收录^[2]。本实验采用一测多评法建立的校正因子,提高了方法的实用性,可用于预知子的质量评价,更准确、方便地实现多成分同步测定,更好地控制该药材质量。

收稿日期: 2011-11-19

基金项目: 国家"重大新药创制"科技重大专项(2012ZX09103201-008); 江西省科技支撑计划项目(20111BBG70005-2)

作者简介: 宋永贵 (1979—), 男, 讲师。

^{*}通讯作者 冯育林 Tel: (0791)87119632 E-mail: fengyulin2003@hotmail.com 张武岗 Tel: (0791)87119650 E-mail: zwgchf98@foxmail.com

1 材料与仪器

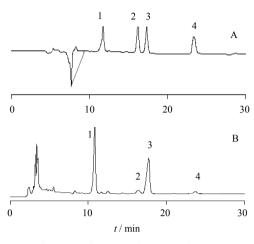
Waters 高效液相色谱仪; Millipore Simplicity 超纯水器; AUW220D 型电子分析天平(上海天平仪器厂); AB135—S 十万分之一天平(Mettler Toledo)。

乙腈 (色谱纯),甲醇 (分析纯)。常春藤皂苷元 3-O-α-L-吡喃鼠李糖基-(1→2)-α-L-吡喃阿拉伯糖苷 (皂苷 P_D)、常春藤皂苷元 3-O-β-D-吡喃葡萄糖基-(1→3)-α-L-吡喃鼠李糖基-(1→2)-α-L-吡喃阿拉伯糖苷 (皂苷 X)、常春藤皂苷元 3-O-β-D-吡喃木糖基-(1→2)-α-L-吡喃阿拉伯糖苷 (皂苷 B)、常春藤皂苷元 3-O-α-L-吡喃阿拉伯糖苷 (皂苷 A) 由本实验室分离纯化,质量分数>98%。预知子收集自不同产地,经江西中医学院杨世林教授鉴定为三叶木通 Akebia trifoliate (Thunb.) Koidz. 的成熟果实,见表 1。

表 1 样品来源
Table 1 Sources of samples

编号	产地	编号	产地	
1	江苏灌南	6	河南商城	
2	江苏赣榆	7	安徽滁州	
3	江苏洪泽	8	安徽金寨	
4	湖北宜昌	9	安徽霍山	
5	河南西峡	10	四川通江	

2 方法与结果


2.1 方法原理

在一定的范围内成分的量(质量或浓度)与检测器响应成正比,可得响应因子 f=A/C。在预知子的多指标质量评价时,以皂苷 P_D 为内标,建立皂苷 P_D 与其他 3 种三萜皂苷成分(皂苷 X、B、A)之间的相对校正因子(RCF 值, f_{sa} , f_{sb} , f_{sc} …),通过相对校正因子计算皂苷 X、皂苷 B、皂苷 A 的量 $^{[10]}$ 。同时用常规外标法进行同步测定,以验证计算值的正确性和可行性。

2.2 一测多评方法学考察

2.2.1 色谱条件 色谱柱为 Alltech Apollo C_{18} 色谱柱(250 mm×4.6 mm,5 μ m);流动相为乙腈-0.1% 磷酸水溶液(45:55);体积流量为 1.0 mL/min;检测波长为 203 nm;柱温 30 °C;进样量 20 μ L。在上述色谱条件下,各待测峰的分离度均大于 1.5,理论塔板数大于 5 000,色谱图见图 1。

2.2.2 对照品溶液制备 精密称取各对照品适量,

1-皂苷 X 2-皂苷 B 3-皂苷 P_D 4-皂苷 A 1-saponin X 2-saponin B 3-saponin P_D 4-saponin A

图 1 对照品 (A) 和样品 (B) 的 HPLC 图
Fig. 1 HPLC chromatograms of reference substances
(A) and sample (B)

置于同一25 mL 量瓶中,加甲醇溶解并稀释至刻度,摇匀,制成皂苷 P_D 、皂苷 X、皂苷 B 和皂苷 A 的质量浓度分别为 0.310 $2 \cdot 0.210$ $4 \cdot 0.25 \cdot 0.15$ mg/mL。 **2.2.3** 供试品溶液制备 取本品粉末(过 60 目筛)约 1 g,精密称定,置具塞锥形瓶中,精密加入 70% 乙醇 100 mL,密塞,称定质量,超声处理(功率 300 W,频率 50 kHz)30 min,放冷,再称定质量,用 70%乙醇补足减失的质量,摇匀,滤过,取续滤液,经 0.45 μ m 微孔滤膜滤过,10 μ L 进样。

2.2.4 线性关系考察 精密量取对照品溶液各 0.5、1、2、4、8、10 mL,分别置 10 mL 量瓶中,用甲醇定容至刻度,摇匀。分别精密吸取上述各混合溶液 10 μ L 进样,按上述色谱条件测定。以峰面积 (Y) 对质量浓度 (X) 进行线性回归,得皂苷 P_D 、皂苷 X、皂苷 B、皂苷 A 的标准曲线,见表 2,各标准曲线在线性范围内线性关系良好。

2.2.5 相对校正因子(RCF)计算 以皂苷 P_D 为 内标,RCF 值按照公式 $f_{si}=f_s/f_i=A_s\times C_i/C_s\times A_i$ (式

表 2 预知子中 4 种三萜皂苷类成分的标准曲线 Table 2 Calibration curves of four triterpenoids from Akebiae Fructus

成分	标准曲线	线性范围 / (μg·mL ⁻¹)	r
皂苷 P _D	$Y = 8.38 \times 10^3 X - 1.674$	15.51~310.2).999 9
皂苷 X	$Y = 6.961 \times 10^3 X + 2.641$	10.52~210.4).999 7
皂苷 B	$Y = 8.01 \times 10^3 X - 0.953$	12.50~250.0).999 8
皂苷 A	$Y = 9.50 \times 10^3 X - 6.597$	7.500~150.0).999 9

中 A_s 为内参物对照品峰面积, C_s 为皂苷 P_D 质量浓度, A_i 为某待测成分对照品 i 峰面积; C_i 为某待测成分对照品 i 质量浓度),结合"2.2.4"项下系列浓度对照品溶液所得峰面积数据,计算皂苷 P_D 对皂苷 X、皂苷 P_D 和皂苷 P_D 的 P_D 的 P_D 的 P_D 的 P_D 化 P_D 的 P_D P_D

- **2.2.6** 精密度试验 精密吸取同一供试品溶液(6号),在上述色谱条件下,连续进样 6次,测定峰面积。皂苷 P_D 、皂苷 X、皂苷 B 和皂苷 A 的峰面积 RSD 分别为 1.9%、2.7%、2.0%、1.5%。表明仪器的精密度良好。
- **2.2.7** 稳定性试验 取 2 号供试品溶液,室温下放置,分别于 0、2、4、6、8、10、12、24 h 测定,皂苷 P_D 、皂苷 X、皂苷 B 和皂苷 A 峰面积的 RSD分别为 2.7%、2.1%、1.9%、1.2%。表明供试品溶液在 24 h 内稳定。
- **2.2.8** 重复性试验 称取 2 号样品粉末 6 份,按 "2.2.3" 项下方法操作,在上述色谱条件下进行分析 测定,计算皂苷 P_D 、皂苷 X、皂苷 B 和皂苷 A 质

量分数的 RSD 分别为 2.5%、2.7%、1.7%、1.8%。 表明该方法的重复性良好。

2.2.9 加样回收率试验 取已测定的 2 号样品共 9 份,每份取约 0.5 g,精密称质量,3 份为 1 组,每 3 组按低、中、高质量浓度分别精密加入相当于药材 50%、100%、150%的对照品溶液,依 "2.2.3" 项下方法操作,测定,计算加样回收率。皂苷 P_D 、皂苷 X、皂苷 B 和皂苷 A 的平均加样回收率分别为 100.0%、102.0%、99.1%、98.2%,RSD 分别为 2.3%、2.0%、2.1%、1.5%。

2.3 不同色谱柱和高效液相色谱仪校正因子的重现性考察

精密吸取 "2.2.4" 项下系列混合对照品溶液,进样 $10\,\mu$ L 测定,按照 "2.2.5" 项下分别计算皂苷 P_D 对皂苷 X、皂苷 B 和皂苷 A 的 R CF d 。试验考察了 A gilent 1100 和 Shimadazu L C—10 AT 型高效液相色谱仪和 Diamonsil C_{18} (250 mm×4.6 mm,5 μ m),Elite Hypersil DBS (250 mm×4.6 mm,5 μ m),Phemomenex Gemini C_{18} (250 mm×4.6 mm,5 μ m) 3 种色谱柱,见表 3。

RCF 值 仪 器 色谱柱 皂苷A 皂苷X 皂苷 B Agilent 1100 Diamonsil 0.862 1.231 1.029 Agilent 1100 Elite 1.238 0.872 1.019 Agilent 1100 Phemomenex 1.226 1.010 0.875 Shimadazu LC-10AT Diamonsil 1.215 1.019 0.870 Shimadazu LC-10AT Elite 1.222 1.022 0.878 Shimadazu LC-10AT Phemomenex 1.224 1.028 0.875 RSD/% 2.5 2.5 2.1

表 3 不同仪器和色谱柱测定 RCF(n=6)

Table 3 Determination of RCFs by different instruments and columns (n = 6)

2.4 预知子定量测定一测多评法与常规外标法的结果比较

分别称取预知子粉末(过 60 目筛)约 1 g(n= 3),精密称定,按 "2.2.3"项下方法制备各供试品溶液,在上述色谱条件下进样测定。采用外标法和一测多评法计算不同产地及不同种类的预知子中皂苷 P_D 、皂苷 X、皂苷 B 和皂苷 A 量,结果见表 4。常规的外标法实测值与一测多评计算的含量值经配对 t 检验,表明两种方法测得结果没有显著性差异(P>0.05)。由此说明一测多评法可用于预知子的多成分质量评价研究。

2.5 预知子一测多评方法的再验证

随机选择另外的预知子3批(产地分别为安徽

滁州,安徽金寨和湖北宜昌),分别按"实测法"和"一测多评法"(按建立的校正因子)计算皂苷 P_D 、皂苷 X、皂苷 B 和皂苷 A 的量,两种方法所测结果的 Pearson 相关系数均大于 0.99,表明本实验建立的一测多评法具有科学性和实用性。

3 讨论

三萜及其皂苷类成分为预知子的特征性成分,有较强专属性,皂苷 P_D 为三萜皂苷,具有多方面的药理活性,尤其对肝脏具有较强的保护作用,这与预知子的临床药效是相一致的,同时,其对照品价廉易得,因此本方法选用皂苷 P_D 为内参物,建立预知子中 4 种三萜皂苷成分的一测多评法。

本实验采用超声提取方法并考察了溶媒(水、

编号	皂苷 X	$(\mu g \cdot g^{-1})$	皂苷B	皂苷 B / (μg·g ⁻¹)		$(\mu g \cdot g^{-1})$	皂苷 P _D /(μg·g ⁻¹)
	外标法	一测多评法	外标法	一测多评法	外标法	一测多评法	外标法
1	1.812	1.820	8.900	8.92	1.342	1.313	2.743
2	1.591	1.611	7.612	7.638	0.982	0.945	2.512
3	1.415	1.433	8.400	8.430	1.252	1.222	2.382
4	5.153	5.107	19.17	19.13	5.151	5.228	3.931
5	6.052	6.000	2.181	2.170	3.099	3.113	3.815
6	8.040	7.960	2.233	2.223	3.183	3.209	3.369
7	1.771	1.780	1.510	1.506	1.583	1.561	2.620
8	1.832	1.842	1.624	1.621	1.665	1.644	2.553
9	1.652	1.666	1.442	1.439	1.486	1.457	2.701
10	10.61	10.47	12.61	12.54	7.382	7.499	25.22

表 4 2 种方法所得的预知子中三萜皂苷类成分量 (n=3)

Table 4 Comparison on contents of triterpenoids in Akebiae Fructus by two methods (n = 3)

甲醇、70%甲醇、70%乙醇、50%甲醇)和超声时间 (15、30、45 min) 对提取效率的影响。结果显示,70%乙醇为溶媒,超声 30 min 为最佳提取条件。

采用二极管阵列检测器对待测的皂苷 P_D 、皂苷 X、皂苷 B 和皂苷 A 成分进行全波长扫描发现,4 种皂苷类成分吸收相似,均在 203 nm 处有最大吸收,故选取 203 nm 为检测波长。

参考文献

- [1] 宋立人, 洪 恂, 丁渚亮, 等. 现代中药学大词典 (II) [M]. 北京: 人民卫生出版社, 2001.
- [2] 中国药典 [S]. 一部. 2010.
- [3] 吴立军. 天然药物化学 [M]. 第 4 版. 北京: 人民卫生出版社, 2003.
- [4] 赵春彦,成 慧,贾冬梅,等. 龙牙楤木三萜皂苷合成途径关键酶 AeFPS 基因的克隆及原核表达[J]. 中草药,2011,42(10): 2092-2096.

- [5] 张佳佳. 黑乳海参三萜皂苷的提取分离及其结构鉴定 [J]. 中草药, 2011, 42(8): 1467-1472.
- [6] 王家明, 高慧敏, 王智民. 预知子中 saponins PK 的 HPLC 分析 [J]. 中国药学杂志, 2007, 42(12): 896-898.
- [7] Wang H F, Gordon J. Provan, K H, et al. HPLC determination of catechins in tea leaves and tea extracts using relative response factors [J]. Food Chem, 2003(81): 307-312.
- [8] Gao X Y, Jiang Y, Lu J Q, et al. One single standard substance for the determination of multiple anthraquinone derivatives in rhubarb using high-performance liquid chromatography-diode array detection [J]. J Chromatogr A, 2009(1216): 2118-2123.
- [9] 朱晶晶,王智民,匡艳辉,等.一测多评法同步测定人参和三七药材中多种人参皂苷的含量 [J]. 药学学报, 2008, 43(12): 1211-1216.
- [10] 王智民, 钱忠直, 张启伟, 等. 一测多评法建立的技术 指南 [J]. 中国中药杂志, 2011, 36(6): 657-658.