复方骨碎补接骨片一步制粒工艺条件优选

陶德林

慈溪市第三人民医院, 浙江 慈溪 315324

摘 要:目的 优选复方骨碎补接骨片一步制粒的工艺条件。方法 以制得颗粒的粒度合格率、含水量为指标,应用 $L_9(3^4)$ 正交试验法,考察优选影响复方骨碎补接骨片一步制粒过程的各因素。结果 最佳一步制粒工艺条件是将一定量的辅料置于一步制粒机中,开启引风机和加热器,使物料在流化状态下均匀升温至 $60 \, ^{\circ}$ 、开启喷雾按钮,喷入中药浸膏,进料速率 $500 \, ^{\circ}$ g/min,雾化压力 $0.25 \, \text{MPa}$,进风温度 $90 \, ^{\circ}$ C,物料温度 $60 \, ^{\circ}$ C,观察物料流化状态,直至浸膏全部喷入。继续干燥 $30 \, \text{min}$,降温出料。结论 一步制粒技术应用于该产品的生产中,工艺先进,改变了传统制粒工艺多环节、辅料用量大、劳动强度大等不足,提高了制剂水平,可用于复方骨碎补接骨片的工业化生产。

关键词:复方骨碎补接骨片;一步制粒;骨碎补;正交试验;含水量

中图分类号: R283.6 文献标志码: A 文章编号: 0253 - 2670(2012)02 - 0293 - 03

Optimum one-step granule technology of Compound *Drynariae Rhizoma* Tablets with Bone-knitting Effect

TAO De-lin

Third Cixi City People's Hospital, Cixi 315324, China

Key words: Compound *Drynariae Rhizoma* Tablets with bone-knitting effect; one-step granule; *Drynariae Rhizoma*; orthogonal test; water content

复方骨碎补接骨片由骨碎补、续断、土鳖虫、 牛膝、三七、五加皮、刘寄奴、川木通、威灵仙、 香附、陈皮、凤凰衣、木香、砂仁、沉香、桂枝、 枳壳、自然铜十八味药材组成,具有和营接骨之功 效,主要用于骨折中、后期。是一种纯中药制剂, 多年来作为慈溪市第三人民医院医院制剂应用效果 良好。复方骨碎补接骨片如采用传统的湿法制粒法 制粒,则存在颗粒烘干时间长,有效成分破坏大, 辅料用量过多、操作步骤烦琐等问题[1]。为解决上 述问题,本实验采用当前新兴的一步制粒技术,对 流浸膏与辅料进行混合、制粒、成型、干燥、整粒 等多道工序合而为一。影响一步制粒的因素较多, 有浸膏的相对密度、进料速率、雾化压力, 进风温 度、出风温度、物料温度等[2-3]。根据压片所需物料 性质,以颗粒粒度、含水量^[4]为指标,考察上述因 素条件,优选了该产品的一步制粒的工艺条件。

1 仪器与材料

DPL-20型一步制粒机(重庆精工制药设备有

限公司); DHS20 型多功能红外水分测定仪(上海精密仪器仪表有限公司)。

复方骨碎补接骨片流浸膏(相对密度 1.14~1.20), 慈溪市第三人民医院制剂室提供; 羧甲基淀粉钠(批号 080815), 上海华壹生物科技有限公司生产; 微晶纤维素(MCCPH101, 批号 20080149), 湖州展望化学药业有限公司。

2 方法与结果

2.1 预试验

取微晶纤维素、羧甲基淀粉钠(3:0.3)细粉混合物 100 g,置一步制粒机底部,开启引风机和加热器,使流浸膏在流化状态下均匀升温,开启喷雾按钮,按进料速率 500 g/min,雾化压力 0.25 MPa,进风温度 80 ℃,物料温度 60 ℃的条件喷入 200 g流浸膏^[2],所得颗粒粒度均匀,继续喷入流浸膏,颗粒粘团。初步确定一步制粒处方为:流浸膏-微晶纤维素-羧甲基淀粉钠(12:3:0.3),并以该处方考察一步制粒工艺条件。

收稿日期: 2011-07-27

作者简介: 陶德林 (1972—),男,主管中药师,从事医院制剂研究。Tel: 13456133968 E-mail: cxxiaotao@163.com

2.2 正交试验设计

在预试验的基础上,确定进料速率(A)、雾化压力(B)、进风温度(C)、物料温度(D)为考察因素,以粒度合格率和含水量为指标,采用4因素3水平正交试验设计优化工艺,因素水平见表1。

表 1 正交试验因素水平表
Table 1 Factors and levels of orthogonal test

水平 -	因素						
	$A/(g \cdot min^{-1})$	B / MPa	C / °C	D / °C			
1	400	0.20	90	60			
2	500	0.22	95	70			
3	600	0.25	100	80			

每次取处方量辅料细粉置一步制粒机底部,开启引风机和加热器,使流浸膏在流化状态下均匀升温,开启喷雾按钮,按设计条件(进料速率、雾化压力、进风温度、物料温度)喷入处方量的流浸膏,制备各样品,并测定各样品的粒度合格率和含水量。按 L₉(3⁴) 正交表设计试验方案并进行试验,各工艺条件重复 1 次,对结果进行统计分析。试验结果见表 2,方差分析见表 3。

表 2 正交试验设计及结果 (n=2) Table 2 Results of orthogonal test (n=2)

序号	因 素				粒度合格	含水量 /
万 与	A	В	С	D	率 /%	%
1	1	1	1	1	85.2	4.29
2	1	2	2	2	85.9	4.12
3	1	3	3	3	87.8	4.21
4	2	1	2	3	95.3	3.98
5	2	2	3	1	97.8	3.87
6	2	3	1	2	99.1	4.19
7	3	1	3	2	89.7	4.03
8	3	2	1	3	91.2	4.17
9	3	3	2	1	92.1	3.76
K_1	258.9	270.2	275.5	275.1		
K_2	292.2	274.9	273.3	274.7		
K_3	273.0	279.0	275.3	274.3		
$R_{\rm K}$	99.9	26.4	6.6	2.4		
J_1	12.62	12.30	12.65	11.92		
J_2	12.04	12.16	11.86	12.34		
J_3	11.96	12.16	12.11	12.36		
$R_{ m J}$	1.98	0.42	2.37	1.32		

表 3 方差分析表
Table 3 Analysis of variance

来源	平方和	自由度	方差	F 值	显著性			
粒度合格率								
A	186.26	2	93.13	3 547.8	P < 0.01			
В	12.93	2	6.46	246.2	P < 0.01			
C	0.99	2	0.49	18.8				
D	0.11	2	0.053	2.0				
误差	0.21	8	0.027					
含水量								
A	0.086	2	0.043	19.2	P < 0.05			
В	0.004	2	0.002	1.0				
C	0.109	2	0.054	24.2	P < 0.05			
D	0.041	2	0.021	9.1				
误差	0.018	8	0.0023					

 $F_{0.05}(2, 8) = 19.00$ $F_{0.01}(2, 8) = 99.00$

2.3 评价指标

2.3.1 粒度合格率 精确称量样品颗粒 (W_1) 约 10 g,使之先后通过 20、40 目筛网,称量通过 20 目而未通过 40 目筛网的颗粒量 (W_2),则:

粒度合格率= W_2/W_1

2.3.2 含水量测定 称量样品颗粒约 2 g,置于水分测定仪的天平称上,设定加热温度为 105 ℃,加热时间为 30 min,读取水分的量。

2.4 结果分析

上述实验结果表明,以粒度合格率为指标,影响一步制粒的因素大小为 A>B>C>D,且 $A\times B$ 因素有极显著影响(P<0.01), $C\times D$ 因素的影响无显著性(表 3),最佳工艺参数为 $A_2B_3C_1D_1$;以颗粒含水量为指标,影响一步制粒的因素大小为 C>A>D>B,且 $A\times C$ 因素有显著影响(P<0.05), $B\times D$ 因素的影响无显著性(表 3),但综合考虑其含水量均处于 $3\%\sim5\%$ 内对压片无大的影响。且可以通过干燥时间控制颗粒含水量,使含水量达到要求。因此确定复方骨碎补接骨片一步制粒的最佳工艺参数为 $A_2B_3C_1D_1$,即进料速率 500 g/min,雾化压力 0.25 MPa,进风温度 $90\ C$,物料温度 $60\ C$ 。

2.5 验证试验

按复方骨碎补接骨片一步制粒最佳工艺条件生产 3 批,结果粒度合格率分别为 99.1%、99.5%、99.3%,含水量分别为 3.88%、4.23%、4.41%。所制得颗粒外形圆整,流动性好,色泽一致,大小均匀,松实适宜,压成素片后硬度好,平均脆碎度为

0.3%, 崩解时限短 (15~20 min), 符合生产要求。 **3** 讨论

流浸膏作为粘合剂,其进料速率的控制是一步制粒过程中决定成型颗粒大小的重要因素。进药速率的快慢决定给液量的多少,当其他参数不变时,进药速率越快,给液量越多,溶液对粉末底料的润湿渗透程度大,形成的颗粒大而密,过快时物料易过湿结团粘壁;反之,所成的颗粒小而疏松、密度小,过慢则会产生过多粉末。因此,应根据制粒情况,温度和沸腾状态的变化情况随时调节。一般开始时速率宜大些,随着喷入液量和生成颗粒量的增加而逐渐降低进料速率。雾化压力越大,喷出的液滴越小,反之雾滴则越大。如果雾化液滴过小,可能在喷到辅料粉体前就被热风吹成粉末状,不易形成颗粒;反之,如果雾化液滴太大,则不易喷洒均匀,易结块,形成颗粒也困难。

流浸膏作为粘合剂,物料温度、进口热风温度 过高,易造成中药有效成分破坏而降低药效,也易 造成喷雾药液不能与辅料粉体接触,过早干燥而失去湿度粘合作用,不能凝聚成粒;反之,若温度过低,则易造成凝聚颗粒难以及时干燥而结块成团。

主风道风阀开启程度、风量、流化床内物料量、 浸膏的相对密度、浸膏黏度大小,喷嘴位置,粉末 性质等因素,对颗粒形成及颗粒性状也有一定影响, 需根据不同产品具体研究。

参考文献

- [1] 胡 杰,于华芝,陈 颖,等. 干湿法制粒技术在片剂 生产中的对比应用 [J]. 齐鲁药事,2009,28(4): 249-251.
- [2] 史同生, 郭 俊, 林彤慧, 等. 影响一步制粒机制粒因素探讨 [J]. 世界科学技术—中药现代化, 2002, 4(1): 50-51.
- [3] 庞凤华,郑 捷,罗佩霞. 一步制粒法在补肾强身片生产中的应用 [J]. 中成药, 2006, 28(4): 570-571.
- [4] 饶小勇, 黄 恺, 张国松, 等. 感冒退热泡腾片的干法制粒工艺研究 [J]. 中草药, 2009, 40(12): 1890-1893.