HPLC 法测定千金子中 4 个二萜类化合物

郑飞龙1,宁火华1,马双成2,罗跃华1*

(1. 江西省食品药品检验所,江西 南昌 330029; 2. 中国药品生物制品检定所,北京 100050)

摘 要:目的 为进一步探讨千金子中药材的质量标准,建立了千金子中4个二萜类化合物的正相高效液相色谱 测定法,对千金子中该4种成分进行定量分析。方法 色谱柱为 Agilent zorbax rx-C18,流动相为正己烷-醋酸乙酯-乙腈(87.5 10 2.5),体积流量 1.0 mL/min,柱温 30 ,检测波长为 275 nm。结果 千金二萜醇-3,15-二乙酸-5-苯甲酸酯 ;7-羟基-千金二萜醇-二乙酸-二苯甲酸酯 ;17-羟基-异千金二萜醇-5 ,15 ,17-三乙酸-3-苯甲酸酯 ;6 ,20-环 氧千金二萜醇苯乙酸二乙酸酯的线性范围分别为0.0301~3.011 μg,0.0103~1.028 μg,0.0050~0.990 μg, 0.0205~2.052 µg,平均回收率分别为104.85%,101.81%,100.30%,101.86%(n=6)。结论 该法操作简便,快 速,结果准确。二萜类成分是千金子的毒性成分,又是活性成分,本法为进一步控制千金子毒性提供了测定标准。

关键词:千金子:高效液相色谱:千金二萜醇酯

中图分类号:R282.6 文献标识码:A

文章编号:0253-2670(2009)10-1656-03

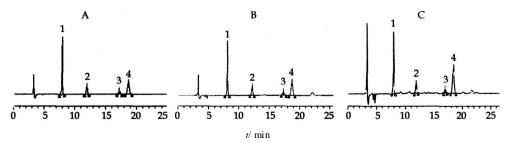
千金子为大戟科植物续随子 Euphorbia lathyris L. 的干燥成熟种子,是一种传统中药材。其地 域分布广泛、主产地为河南、河北、浙江、四川、吉林 等省。千金子具有导泻、抗炎、镇静等生理活性,主 要功效为泻下逐水、破血通经,用于治疗水肿、痰饮、 积滞胀满、二便不通、血瘀经闭,外治顽癣、疣赘[1]。 现代药理研究发现千金子在抗肿瘤和治疗白血病方 面有确切疗效[2,3];在治黑子、去疣赘、美白等护肤 美容方面有一定效果[4]。另一方面,千金子辛、温, 有毒,有剧烈的泻下作用,属有毒中药。急性毒性试 验显示其毒性较大[5]。在化学成分方面,已对其萜 类成分,尤其是二萜类化合物进行了大量研究[6~8]; 千金子泻下药的主要成分是脂肪油,为了防止千金 子油脂润肠致泻作用过猛影响健康,采用去油制霜 的炮制方法以减低毒性、缓和其峻泻作用,故临床多 使用千金子霜而少用千金子。但是,目前千金子霜 炮制品的去油程度都是凭经验掌握,没有统一的标 准,因此在炮制过程中也没有科学有效的质控办法。

有关千金子中化学成分的定量测定,仅见秦皮 乙素[9]、秦皮甲素[10]的测定及气质联用定量测定其 挥发油的量。本实验测定了千金子的 4 个二萜化合 物,即千金二萜醇-3,15-二乙酸-5-苯甲酸酯、7-羟基-千金二萜醇-二乙酸-二苯甲酸酯、17-羟基-异千金二 萜醇-5,15,17-三乙酸-3-苯甲酸酯、6,20-环氧千金 二萜醇苯乙酸二乙酸酯 ,建立了千金子中 4 个二萜 类化合物的定量测定方法。

1 材料

Waters 2695 型高效液相色谱仪, Waters 2487 型检测器:BUG25-06型超声波清洗机(上海必能 信超声有限公司)。

4种对照品均为从该属植物中提取、分离并经 波谱鉴定,质量分数均在95%以上。乙腈为色谱 纯,其他试剂均为分析纯;千金子(河南:08051004-08051006,0806007;广西:0806002-0806005;新疆: 0806006; 河北: 0806008); 千金子霜(河南: 08051007-08051009、0806001、080813; 广西: 08051010-08051012;新疆:080812;河北:080814)均 由江西省食品药品检验所袁桂平副主任药师鉴定。


2 方法与结果

2.1 色谱条件与系统适应性试验:色谱柱为 Agilent Zorbax rx-C₁₈ (250 mm ×4. 6 mm ,5 µm) ;流动 相:正己烷-醋酸乙酯-乙腈(87.5 10 2.5);体积 流量: 1.0 mL/min。检测波长: 275 nm,柱温: 30 。理论塔板数按二萜峰计算应不低于3 000。在上 述色谱条件下,峰呈较好分离,色谱图见图 1。

2.2 对照品溶液的制备:分别精密称取千金二萜 醇-3,15-二乙酸-5-苯甲酸酯()、7-羟基-千金二萜 醇-二乙酸-二苯甲酸酯()、17-羟基-异千金二萜 醇-5,15,17-三乙酸-3-苯甲酸酯()、6,20-环氧千 金二萜醇苯乙酸二乙酸酯()对照品10.81、

收稿日期:2008-11-27 基金项目:国家"十一五 "科技支撑项目(2006BAII4B00)

作者简介:郑飞龙(1984 —),男,江西鹰潭人,硕士,从事药品检验工作,研究方向为天然活性产物分析。 Tel:(0791)8158656 E-mail:feilongok21 @163.com *通讯作者 罗跃华

1-千金二萜醇-3,15-二乙酸-5-苯甲酸酯 2-7-羟基-千金二萜醇-二乙酸-二苯甲酸酯 3-17-羟基-异千金二萜醇-5,15,17-二乙酸-3-苯甲酸酯 6,20-环氧千金二萜醇苯乙酸二乙酸酯 1- Euphorbia factor L₃ 2- Euphorbia factor L₂ 3- Euphorbia factor L_{7b} 4- Euphorbia factor L₁

图 1 混合对照品(A)、千金子(B)和千金子霜(C) HPLC图

Fig 1 HPLC Chromatograms of mixed reference substances (A), Semen Euphorbiae (B), and Semen Euphorbiae Pulveratum (C) 11. 65、11. 24、9. 48 mg,置于 100 mL 量瓶中,用醋 酸乙酯溶解并定容,制成对照品储备液;依次准确吸 取 5、2、1、4 mL 置于 25 mL 量瓶中,混匀,制成混合 对照品储备液(使质量浓度分别为 49.14、21.18、 10. 22 $\sqrt{34}$. 47 μ g/ mL) $_{\circ}$

2.3 供试品溶液的制备;取千金子粉末,精密称定 0.2 g,置具塞锥形瓶中,精密加醋酸乙酯 25 mL,称 定质量,超声处理(功率 250 kW,频率 25 kHz) 20 min,放冷,再称定质量,用醋酸乙酯补足减失的质 量,摇匀,滤过,取续滤液,即得。

2.4 线性关系考察:分别精密称取 30. 11、10. 28、9. 90 和 20. 52 mg,置于 50 mL 量瓶 中,用醋酸乙酯溶解并定容,制成对照品储备液;分 别将上述对照品储备液用醋酸乙酯稀释成 1、2、5、 10、25、100倍,形成6个质量浓度梯度的标准溶液。 依次吸取 5 µL 进样,在 275 nm 处检测,以峰面积 (X)为横坐标,进样质量(Y)为纵坐标,得回归方程、 相关系数及线性范围,结果见表1。

表 1 化合物 \sim 的线性关系(n=6)

Table 1 Calibration data of compounds — (n=6)

对照品	保留时间/ min	回归方程	R^2	线性范围/ µg
	8. 23	$Y = 6.3834 \times 10^{-7} X - 9.5552 \times 10^{-3}$	0. 999 9	0. 030 1 ~ 3. 011
	12. 38	$Y = 8.3879 \times 10^{-7} X - 4.0244 \times 10^{-3}$	0. 999 9	0. 010 3 ~ 1. 028
	17. 36	$Y = 7.5297 \times 10^{-7} X - 5.8548 \times 10^{-5}$	0. 999 9	0. 005 0 ~ 0. 990
	18. 65	$Y = 7.1708 \times 10^{-7} X + 1.4739 \times 10^{-4}$	0. 999 9	0. 020 5 ~ 2. 052

- 2.5 精密度试验:精密吸取同一对照品溶液5 µL, 连续重复进样 6 次 .测定峰面积积分值。结果 RSD 分别为 0.47 %、0.42 %、0.56 %、0.44 % (n=6)。
- 2.6 稳定性试验:精密吸取同一供试品溶液(批号: 08051006) 5 µL,分别于配制后 0、4、8、12、16、20 h 进样,测定峰面积积分值。结果 RSD 分别为 1. 82 %、1. 77 %、1. 24 %、1. 80 %(n=6),表明供试品 溶液在 20 h 内基本稳定。
- 2.7 重现性试验:分别称取同一批样品(批号: 08051006) 共 6 份,每份约 0. 2 g,精密称定,制备供 试品溶液,依法测定二萜的量。结果 RSD 分别为 1. 84 %, 1. 67 %, 1. 78 %, 1. 22 % (n = 6)
- 2.8 加样回收率试验:取样品(批号:08051006)约 0.1 g,共 6 份,精密称定,分别精密加入二萜对照品 溶液(二萜质量浓度分别为 22 94、10 15、5 30、19 76 µg/ mL) 25 mL,制备供试品溶液,进样测定,计算回收 率。结果化合物 ~ 平均回收率和 RSD 值分别为 104. 85 %, 1. 30 %; 101. 81 %, 1. 62 %; 100. 30 %,

- 1. 46 %; 101. 86 %, 1. 88 % (n=6)
- 2.9 样品测定:分别精密吸取对照品溶液与供试品 溶液各 5 µL,注入液相色谱仪,测定,用外标法计算 样品的量。千金子测定结果见表 2,千金子霜测定 结果见表3。

表 2 10 批千金子中二萜测定结果

Table 2 Determination of diterpene in ten batches

of Semen Euphorbiae

批 号 -		质量分数/	(mg ·g · 1)			
11L 5						
08051004	5. 49	2. 60	1. 11	3. 77		
08051005	6. 19	2. 29	0. 99	3. 95		
08051006	6. 29	2. 71	1. 15	4. 57		
0806002	6. 58	3. 13	1. 32	5. 27		
0806003	5. 17	2. 60	1. 12	4. 18		
0806004	5. 96	2. 84	1. 19	4. 77		
0806005	6. 09	2. 46	1. 04	4. 71		
0806006	6. 14	2. 66	1. 14	4. 80		
0806007	6. 39	2. 61	1. 13	4. 82		
0806008	6. 12	2. 47	1. 04	4. 39		

表 3 10 批千金子霜中二萜测定结果
Table 3 Determination of diterpene in ten batches

of Semen Euphorbiae Pulveratum

#11.		质量分数/	(mg ·g · 1)	
批号 -				
08051007	2. 60	0. 98	0. 43	2. 97
08051008	2. 43	0. 93	0. 42	2. 80
08051009	2. 15	0. 82	0. 38	2. 01
08051010	2. 61	0. 98	0. 46	2. 45
08051011	1. 88	0. 73	0. 34	1. 50
08051012	1. 89	0. 75	0. 34	1. 54
0606001	2. 51	0. 76	0. 38	2. 03
080812	2. 52	0. 85	0. 37	1. 86
080813	2. 61	0. 94	0. 40	1. 82
080814	2. 71	1. 08	0. 46	2. 40

3 讨论

- 3.1 本实验在液相方法的选择过程中,运用反相高效液相系统分离,流动相分别为乙腈-0.1%磷酸系统,甲醇-水系统,乙腈-0.1%甲酸系统,分离效果都不理想。换用正相高效液相系统分离,流动相为正己烷-醋酸乙酯系统,峰分离效果改善,最后选择流动相为正己烷-醋酸乙酯-乙腈(87.5 10 2.5)。此次实验中,由于千金子中二萜类化合物的极性较小,用正相柱分离效果优于反相柱。
- 3. 2 检测波长的选择:取二萜对照品,加甲醇制成对照品溶液,照分光光度法(《中国药典》2005 年版一部附录 VA),在 190~400 nm 进行扫描。结果 4个化合物分别在 276. 5、273. 4、275. 3、272. 3 nm 波长处有吸收峰,结合本品 HPLC 色谱分析条件,选择 275 nm 作为检测波长。
- 3. 3 样品预处理方法的选择:提取溶剂,笔者选用了甲醇、正己烷及醋酸乙酯;提取方法,加热回流提取和超声提取2种方法;提取时间20、40、60 min。结果发现,甲醇提取样品中干扰测定的杂质较多,而正己烷和醋酸乙酯提取效率差异不明显,加热回流提取和超声提取效率差异不明显。3种提取时间提取效率差异不明显。决定采用醋酸乙酯超声提取20 min,该法提取效率高,既溶剂毒性小于正己烷,所得样品干扰杂质少,且操作也较为简单,是一种较

为理想的样品处理方法。

药理试验表明,千金子具有泻下和抗肿瘤作用[11]。脂肪油含有的千金子甾醇能产生峻泻,其泻下作用为蓖麻油的 3 倍[12],既是千金子中的有毒成分,也是有效成分,故需炮制入药。千金子传统炮制方法多为(去油)制霜法,制霜的目的是减毒、缓和其峻泻之性。《中国药典》2005 年版要求"去皮取净仁,研碎如泥状,经微热后,压去部分油脂"、"含脂肪油应为 18.0%~20.0%"。实验结果显示,千金子中二萜总量高于千金子霜。对千金子及千金子霜中的二萜类化合物进行了测定,从化合物角度来监测千金子及千金子霜脂肪油成分,初步探讨了千金子炮制去油的合理性,为其炮制工艺的制定和炮制意图的揭示奠定基础。

参考文献:

- [1] 江苏新医学院 中药大辞典 [M]. 上海:上海科学技术出版 社,1985.
- [2] 沈绍英 临床应用千金子体会 [J]. 中医外治杂志,1995,4 (1):42.
- [3] 黄晓桃,黄光英,薛存宽,等.千金子甲醇提取物抗肿瘤作用的实验研究[]].肿瘤防治研究,2004,31:556-558.
- [4] 房子婷,付建明,梁晓军.千金子美白祛痘霜的制备及疗效观察[J]. 医药世界,2007,2:105-106.
- [5] 李 滨,刘石磊,邹存珍,等.千金子急性毒性实验研究 [J]. 黑龙江医药,2006,19:2.
- [6] Gao S, Liu H Y, Hao XJ, et al. Lathyranone A: A diterpenoid possessing an unprecedented skeleton from Euphorbia lathyris [J]. Org Lett, 2007, 9: 3453-3455.
- [7] Appendino G, Conseil G, Pietro A D, et al. A new p-cglyco-protein inhibitor from the caper spurge (Euphorbia lathyris)
 [J]. J Nat Prod, 2003, 66: 140-142.
- [8] Jiao W, Mao Z H, Lu R H. Euphorbia factor L2: An ester of 7-hydroxylathyrol [J]. Org Compounds Acta Cryst, 2007, F63: 04613.
- [9] 李振国,孙信功,周可范,等.薄层扫描法测定千金子中七叶树内酯的含量及不同产地的质量比较[J].中国中药杂志,1993,18:8.
- [10] 李 群,王 琦,李 涛. 高效液相色谱法测定千金子中七叶树甙的含量 [J]. 中国中药杂志,1994,19:7.
- [11] 黄晓桃,黄光英,薛存宽,等.千金子 号体内外抗肿瘤药 理作用的实验研究 [J]. 中国药理学通报,2004,20(1):82-85.
- [12] 王本祥 现代药物药理 [M]. 天津: 天津科学技术出版社, 1999.