不同生长期菊茎叶中黄酮类成分的动态变化

钱大玮',朱玲英',段金廒',张 健',吴 肖',孙晓东'*

(1. 南京中医药大学 江苏省方剂研究重点实验室,江苏 南京 210046; 2. 江苏省中医药研究院,江苏 南京 210028; 3. 江苏苏阳药材集团公司,江苏 盐城 224300)

摘 要:目的 探索不同栽培类型菊茎中黄酮类成分在不同生长期量的变化。方法 采用高效液相色谱法,分别测定不同栽培类型不同生长期菊茎叶中木犀草素、金合欢素-7-0-葡萄糖苷、木犀草素-7-0-葡萄糖苷和金合欢素-7-0-(6-0-鼠李糖)--D葡萄糖苷的量。结果 不同栽培类型菊茎叶中黄酮类成分的量差别较大,随着生长期的改变菊茎叶中黄酮类成分的量也有较大的变化。结论 采用高效液相色谱法测定菊茎叶中黄酮类成分的量,方法简单、可靠。本研究结果为测定菊茎叶中黄酮类成分的量,菊采花后茎叶的综合利用提供了一定的依据。

关键词:菊;黄酮类成分;高效液相色谱法;不同生长期;不同栽培类型

中图分类号:R286.1 文献标识码:A 文章编号:0253-2670(2009)08-1317-03

菊 花 系 菊 科 植 物 菊 *Chrysanthemum morif olium* Ramat. 的干燥头状花序,为一种常用中药,同时又被广泛用于保健茶饮,具有疏风、清热、明目、解毒功效,主要治疗头痛、眩晕、目赤、心胸烦热、疗疮、肿毒等症[1]。菊花中主要含有挥发油、黄酮类、有机酸类等成分[2~4],《中国药典》(2005 年版)以氯原酸为对照品对菊花进行质量控制。在采摘菊花的同时,大量的茎、叶被丢弃,但经初步研究,发现菊采花后的茎叶中仍含有大量的黄酮类成分,并对它们进行了药理的筛选工作,发现有一定的药理活性,因此对菊进行综合开发利用是必要的。通过对菊茎叶中的黄酮类成分的分析比较,了解其在生长期内量的变化规律,对于深入研究和综合开发利用菊资源具有十分重要的意义。

菊花的产地不同,品种不同,其化学成分及质量分数也有差异,江苏省射阳县是我国药用白菊花的主产区之一,在栽培群体中,经多年的系统选育,筛选出4个已基本稳定的白菊花分化栽培类[5,6],分别为红心菊、长瓣菊、大白菊、小白菊。笔者对射阳县产4种栽培类型菊茎、叶中木犀草素、金合欢素-7-0-葡萄糖苷、木犀草素-7-0-葡萄糖苷和金合欢素-7-0(6-0鼠李糖)--D-葡萄糖苷不同生长期的量进行测定,为充分利用菊花资源提供了依据。

1 仪器与试药

1.1 仪器: Waters 高效液相色谱仪 (510 泵,2487 检测器,717 自动进样器,Empower 色谱工作站);

Millipore Milli —Q 纯水器; METTLER 万分之一及十万分之一电子天平。

- 1. 2 试药:木犀草素 (L)、金合欢素-7-O-葡萄糖苷 (AG)、木犀草素-7-O-葡萄糖苷 (LG)、金合欢素-7-O-(6-O-鼠李糖)--D-葡萄糖苷 (ARG) 对照品均由江苏省中医药研究院中药化学研究室提供,各对照品质量分数均大于 98%,乙腈为色谱纯,水为超纯水,其余试剂均为分析纯。
- 1. 3 菊茎叶样品:于2004年8月26日至2004年11月5日采于江苏省射阳县洋马镇。实验样品均经江苏省中医药研究院线士辉研究员鉴定为菊科植物菊 C. morifolium 的以下几种栽培类型:红心菊、长瓣菊、大白菊、小白菊。各批样品经统一处理:置阴凉通风处,晾至近干,置鼓风干燥箱于50 烘干,粉碎过40目筛,真空包装。

2 方法与结果

- 2.1 色谱条件
- 2. 1. 1 L、AG、ARG 色谱条件:色谱柱为 Alltima C₁₈ (250 mm ×4.6 mm, 5 µm);流动相为乙腈-0.4% 磷酸水 (25 75);体积流量:1 mL/min;柱温:30 ;检测波长:L:347 nm, AG、ARG:333 nm。色谱图见图 1。
- 2. 1. 2 LG 色谱条件: 色谱柱为 Alltima C₁₈ (250 mm x4. 6 mm, 5 µm);流动相为乙腈-0. 4 % 磷酸水 (15 85);体积流量: 1 mL/min;柱温: 30 ;检测波长: 347 nm。色谱图见图 2。

Tel: (025) 85811916 E-mail: Qiandw05 @yahoo.com.cn

^{*} 收稿日期:2008-12-10

基金项目:江苏省自然科学基金 (B K2001219); 江苏省公益研究项目 (BM2004525) 作者简介:钱大玮(1962 —) 男,江苏人,研究员,主要从事中药质量控制研究工作。

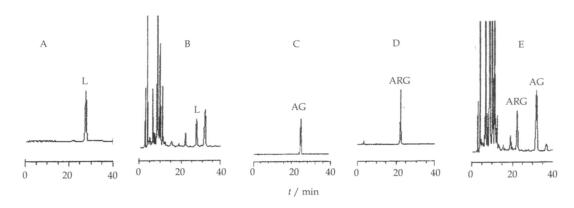


图 1 L、AG、ARG 对照品 (A, C, D) 及样品 (B, E) 色谱图

Fig. 1 Chromatogram of L, AG, and ARG reference substance (A, C, and D) and samples (B and E)

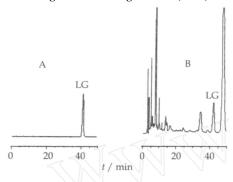


图 2 LG对照品(A)及样品(B)色谱图 Fig. 2 Chromatograms of LG reference substance (A) and sample (B)

- 2. 2 供试品溶液的制备:取菊茎、叶粗粉约 1 g,精密称定,置圆底烧瓶中,加 80 % 甲醇 25 mL,称质量,加热回流 1 h,放冷,以 80 % 甲醇补质量,摇匀,静置,取上清液微孔滤膜(0. 45 µm),滤过,即得。
- 2.3 对照品溶液的制备:取各对照品适量,加甲醇分别制成含L:44.4 µg/mL、AG:27.2 µg/mL、LG:42.4 µg/mL、ARG:121 µg/mL 的对照品溶液。
- 2. 4 标准曲线制备:分别精密吸取各对照品溶液 2. 0、5. 0、10. 0、20. 0、30. 0、40. 0 µL ,按确定的色谱条件测定其峰面积。以进样量 (µg) 为横坐标,峰面积积分值为纵坐标,分别求得回归方程,L: $Y=5. 28 \times 10^6 \ X-1. 42 \times 10^5$, $r=0. 999 \ 3$,线性范围 0. 089~1. 78 µg; AG: $Y=2. 81 \times 10^6 \ X-1. 24 \times 10^5$, $r=0. 999 \ 9$,线性范围 0. 212~4. 24 µg; LG: $Y=2. 78 \times 10^6 \ X-6. 48 \times 10^5$, $r=0. 999 \ 6$,线性范围 0. 424~8. 48 µg; ARG: $Y=1. 47 \times 10^6 \ X-6. 88 \times 10^4$, $r=0. 999 \ 9$,线性范围 0. 242~4. 84 µg。 2. 5 精密度试验:精密吸取 L 44. 4 µg/ mL、AG 27. 2 µg/ mL、LG 42. 4 µg/ mL、ARG 121 µg/ mL 的 对照品溶液 20 µL,连续进样 6 次,L 峰面积的 RSD

- 为 1. 8 %, A G 峰面积的 RSD 为 1. 3 %, L G 峰面积的 RSD 为 1. 8 %, A R G 峰面积的 RSD 为 0. 7 %, 以上结果表明,精密度良好。
- 2. 6 重现性试验:取同一样品 6 份按样品测定方法测定,测得 L 质量分数的 RSD 为 1. 3 %, A G 质量分数的 RSD 为 0. 9 %, L G 质量分数的 RSD 为 1. 4 %, A R G 质量分数的 RSD 为 0. 6 %。结果表明本方法有较好的重现性。
- 2.7 稳定性试验:对同一供试品溶液每隔 2 h 进样 1 次,依法测定,计算各峰面积积分值 RSD (%)。测得 L 的 RSD 为 1.8%,AG的 RSD 为 1.6%,LG的 RSD 为 1.9%,ARG的 RSD 为 1.5%,以上结果表明,供试液在 12 h 内稳定。
- 2.8 回收率试验:采用加样回收法,取已测定的样品粗粉,精密称定,定量加入 L、A G、L G、A R G 对照品,按供试品液制备法制备供试液,按确定的HPLC条件测定,计算回收率。各黄酮的加样回收率分别为:L 96.6,RSD 为 1.8%;A G 97.7%,RSD 为 1.8%;L G 99.8%,RSD 为 1.5%;AR G 97.4%,RSD 为 1.9%。
- 2.9 样品测定:将不同生长期采集的样品,分别按 2.2 项制备供试品溶液,在上述色谱条件下测定,采 用外标一点法计算各生长时期菊花茎、叶中 L、A G、 AR G、L G 的量,结果见表 1、2。

3 分析与讨论

- 3. 1 4 种栽培类型菊茎、叶中在不同生长期均含有所测的 4 种黄酮成分,叶中的量远高于茎,菊在采花后的茎叶中仍含有大量的黄酮类成分,有进一步开发利用的价值。
- 3. 2 大白菊、小白菊、长瓣菊茎、叶中所含单黄酮成分规律基本相似,金合欢素-7-O(6-O鼠李糖)--D-葡萄糖苷(ARG)的量远高于其他黄酮,木犀草

表 1 不同生长期不同栽培类型菊叶中黄酮的量

Table 1 Flavonoids in chrysanthemum leaves from different growth period and various cultivated types

采收	大白菊	有叶黄酮	i / (mg	·g - 1)	小白菊叶黄酮/(mg ·g ·1)				长瓣菊叶黄酮/(mg ·g ·1)				红心菊叶黄酮/(mg ·g ⁻¹)			
日期	L	AG	LG	ARG	L	AG	LG	ARG	L	AG	LG	ARG	L	ΑG	LG	ARG
08-26	0. 364	0. 184	0. 581	2. 528	0. 382	0. 700	0. 338	7. 324	0. 783	0. 440	1. 188	7. 519	0. 038	3. 477	0. 524	4. 480
09-06	0. 465	0. 441	1. 365	4. 495	0.800	0. 745	0. 505	8. 744	0. 507	1. 259	1. 108	10. 359	0. 044	4. 948	0. 739	5. 481
09-16	0. 551	0. 171	1. 166	4. 669	1. 132	0. 459	0. 414	6. 379	1. 118	0. 314	0. 982	5. 727	0. 119	4. 778	0. 478	4. 557
09-27	0.054	1. 061	0. 493	0. 449	0. 165	1. 489	0. 749	7. 954	1. 596	0. 319	0. 983	4. 014	0.070	6. 508	0. 707	5. 742
10-09	0. 487	1. 177	1. 707	4. 310	0. 548	0. 863	1. 076	7. 435	0. 290	1. 553	1. 337	5. 468	0. 442	4. 627	0. 946	4. 528
10-18	0.094	0.053	2. 275	4. 022	0. 190	0. 317	1. 379	7. 235	0. 134	0. 043	2. 170	3. 587	0.087	3. 383	1. 436	4. 332
10-26	0. 124	0.030	2. 266	3. 401	0. 145	0. 493	1. 372	6. 315	0.063	0.075	2. 660	3. 246	0.030	3. 108	1. 722	3. 089
10-05	0. 239	0. 042	3. 036	3. 632	0. 406	0. 282	0. 960	6. 282	0. 279	0. 088	2. 873	5. 736	0.098	2. 958	1. 086	2. 939

表 2 不同生长期不同栽培类型菊茎叶中黄酮的量

Table 2 Flavonoids of chrysanthemum stems from various growth period and different cultivated types

采收	大白菊茎黄酮/(mg ·g ·1)				小白菊茎黄酮/ (mg ⋅g ⁻¹)				- 长瓣菊茎黄酮 / (mg ⋅g ⁻¹)				_ 红心菊茎黄酮 / (mg ⋅g - 1)			
日期	L	AG	LG	ARG	L	AG	LG	ARG	L	AG	LG	ARG	L	ΑG	LG	ARG
08-26	0. 034	0. 212	0. 124	1. 394	0. 010	0. 124	-	1. 741	0. 07	2 0. 178	0. 131	1. 673	0.004	0. 827	0. 061	1. 485
09-06	0. 011	0. 236	0. 271	1. 152	0.006	0. 151	0.029	1. 901	0. 07	4 0. 254	0.079	2. 317	- ,	0. 724	-	1. 004
09-16	0.036	0. 151	0. 085	1. 208	0. 031	0. 143	-	1. 846	0.09	0. 119	0.062	1. 883	0.007	0. 575	-	0. 902
09-27	0.005	0. 303	-	0. 273	0. 022	0. 225	-	1. 619	0.05	0.081	0.074	1. 674	0.009	0. 564	-	0. 838
10-09	0. 037	0. 449	0. 117	1. 075	0. 018	0. 181	0.051	1. 510	0. 02	3 0. 251	0. 088	1. 375	0. 015	0. 534	0. 025	0. 660
10-18	0. 021	0.078	0. 183	1. 168	0.046	0.086	0. 083	1. 864	0. 03	5 0.027	0. 300	1. 525	0. 015	0. 477	0. 033	0. 738
10-26	0. 028	0. 134	0. 196	0. 877	0. 022	0.090	0. 044	1. 314	0. 03	7 0. 027	0. 374	1. 052	0. 010	0. 439	-	0. 571
11-05	0.061	0.090	0. 511	1. 173	0. 057	0. 081	0. 133	1. 831	0. 09	0. 023	0. 170	1. 418	0. 019	0. 886	0. 163	0. 915

- "-"低于检测限
- " "below testing limit

素-7-*O*-*D*葡萄糖苷 (LG) 的量随着生长期的延长逐渐增加,木犀草素 (L) 和金合欢素-7-*O*-*D*葡萄糖苷 (AG) 的量在整个生长期中由小变大又变小。

3. 3 红心菊中金合欢素-7-*O*-*D*-葡萄糖苷的量明显高于其他几种栽培类型,几乎和金合欢素-7-*O* (6-*O*-鼠李糖)--*D*-葡萄糖苷的量相同,这一点与其他几种菊花明显不同,其成因有待进一步研究,各黄酮随着采花期邻近有所下降。

参考文献:

- [1] 中国药典 [S]. 一部. 2005.
- [2] 张 健,钱大玮,李友宾,等. 菊花的化学成分研究[J]. 天然产物研究与开发,2006,18(1):71-73,91.
- [3] 吕 琳,秦民坚,吴 刚,等.不同种源野菊及菊花脑花的 挥发油成分分析 [J]. 植物资源与环境学报,2007,16(1): 53-57.
- [4] 刘金旗, 吴德林, 王 兰, 等. 菊花中黄酮苷的含量分析 [J]. 中草药, 2001, 32(4): 308-310.
- [5] 贾凌云,孙启时,黄顺旺.八大品种菊花中不同成分的含量比较[J].中草药,2004,35(10):1180-1183.
- [6] 郭巧生、钱大玮、何先元、等. 药用白菊花 4 个栽培类型内在质量的比较研究 [J]. 中国中药杂志、2002、27(12): 896-

山西大学 —荷兰莱顿大学 代谢组学国际合作交流研讨班通知

时间:2009年10月19~21日 地点:山西省太原市 山西大学

上课内容:代谢组学仪器分析技术、多元数据统计及在中医药研究中的应用。

收费标准:注册费 1000 元/人(含资料费、学费),食宿统一安排,费用自理。中国药学会、中国药理学会、中国植物学会会员(凭会员证)800 元/人,学生(凭学生证)500/人。

研讨班组织者:秦雪梅 教授,山西大学,中国太原

Robert Verpoorte 教授,莱顿大学,荷兰

报名方法:将报名表回执通过 E-mail 发送到 qinxm @sxu.edu.cn 或传真至(0351)7011202。

联系人:张丽增 电话(传真):(0351) 7011202