1.49%)

- 2. 2. 6 重现性试验: 精密称取同一批样品各 6 份, 按 "供试品溶液的制备"项下进行操作测定, 枝叶、根茎 芳樟醇的平均质量分数分别为 73 6. 6 Lg/g (RSD= 2. 17%)、6. 77 Lg/g(RSD= 2. 05%)。
- 2. 2. 7 加样回收率试验: 分别精密称取已测知量的枝叶、根茎样品各6份(枝叶25 g/份、根茎35 g/份),置于1000 mL 圆底烧瓶中, 分别在枝叶部分精密加入上述对照品储备溶液各 0. 84 mL、根茎部分各 0. 011 mL。按定量测定方法提取测定, 计算平均回收率, 结果枝叶、根茎的平均回收率分别为99. 04% (RSD=2.48%)、98. 03% (RSD=2.79%)。
- 2. 2. 8 样品测定: 取岗松枝叶、根茎, 精密称取不同的药材样品各约 50、70 g, 以上述方法进行测定, 结果见表 1。
- 3 讨论
- 3.1 本实验建立了岗松中芳樟醇的定性定量分析方法,方法简便、快速,专属性强,重现性好,可作为岗松药材的质量控制方法。
- 3.2 芳樟醇为挥发性成分,因此采用了水蒸气蒸馏法进行定量提取,在提取器的水层中加入适量的醋酸乙酯,可使提取更完全,日芳樟醇溶解于醋酸乙酯

表 1 样品测定结果(n=3)

Table 1 Sample determination (n= 3)

样品	芳樟醇/(Lg·g ⁻¹)	
	 枝叶	根茎
隆安县	740	6. 79
灵山县	735	6. 83
钦州市	738	6. 76
合浦县	692	6. 43
博白县	701	6. 21
兴业县	687	6. 07
玉林市	634	5. 68
桂平市	666	6. 24
南宁市	726	6. 81
贵港市	677	6. 11

中更利于定量转移。

3.3 本实验分别对岗松枝叶和根茎进行了测定, 结果表明岗松枝叶中芳樟醇的量明显高于根茎, 也说明挥发性成分主要存在于枝叶中。

参考文献:

- [1] (中国药典》[S]. 一部.1977.
- [2] 广西壮族自治区卫生厅编.广西中药材标准[M].第二册. 南宁:广西科学技术出版社,1996.
- [3] 刘布鸣, 赖茂样, 梁凯妮, 等. 岗松油的质量分析研究 [J]. 中国中药杂志, 2004, 29 (6). 539.
- [4] (中国药典》[S]. 一部. 2005. 附录 31.
- [5] (中国药典》[S]. 一部. 2005. 附录 57.

高效液相色谱法测定藤黄药材中藤黄酸

江再茂¹,李遐方¹,李 克²,王曙东^{2X}

(1. 解放军第 171 医院、江西 九江 332000; 2. 南京军区南京总医院、江苏 南京 210002)

摘 要: 目的 建立藤黄酸高效液相色谱分析方法用于测定藤黄药材中藤黄酸的量。方法 藤黄药材经碾粉、无水 乙醇超声提取后,以 L ichrospher C_8 化学键合硅胶为固定相,甲醇 - 水、冰醋酸(83-17-0.1)为流动相,20- 柱温进行色谱等度分离,在 362~ nm 波长下进行液相色谱定量检测。结果 藤黄酸的保留时间为 28.5~ min,在 35~ min 即可完成一次分离分析过程。色谱峰形对称,与药材中其余内源性物质分离完全,定量准确。藤黄酸在 $13.13 \sim 420~$ mg/L 线性良好,回收率为 $96.5\% \sim 101.5\%$ 。结论 建立了一种简便实用的高效液相色谱法用于测定藤黄酸的量。

关键词: 藤黄酸; 藤黄; 高效液相色谱

中图分类号: R 282. 6

文献标识码: A

文章编号: 0253- 2670(2008) 03- 0445- 03

藤黄Resina Garciniae Morellae 为藤黄科(Guttiferae) 植物藤黄树 Garcinia hanburyi Hook. f. 的树干被割伤后流出的胶状树脂。呈红黄色或橙红色,质脆易碎,主产柬埔寨、泰国和越南,我国广东省和海南省有栽培。藤黄酸为藤黄的主要活性成分之一,质

量分数22.75%~36.59%^[1,2]。中医药记载藤黄具有破毒蚀疮、破血散结之功效。中医用于攻毒、消肿、祛腐敛疮、止血、杀虫。 主治痈疽肿毒、溃疡、湿疮、肿瘤、顽癣、跌打损伤、创伤出血及烫伤。近年实验研究发现,藤黄酸可显著抑制人肝癌及胃腺癌细胞的增

X 收稿日期: 2007-05-20

作者简介: 江再茂(1964-), 男, 江西九江人, 药学学士, 副主任药师, 从事医院药学研究。 Tel: (0792)7166091

殖,诱导肿瘤细胞分化和凋亡^[3,4]。用于肿瘤治疗,具有活性成分性质稳定,疗效显著且不良反应少的特点,有望开发为一种高效低毒的抗肿瘤药物。临床用于治疗乳腺癌、淋巴肉瘤、皮肤癌等均有疗效,已引起广泛关注^[2,5]。为配合该药物的研制开发,本实验采用HPLC 法建立了藤黄酸定量方法,并应用本法测定了藤黄药材中藤黄酸的量,为该药物的进一步的研制开发奠定了基础。

1 材料

高效液相色谱仪系统包括LC- 10AT 输液泵、SPD- 10AVP 紫外检测器(日本岛津公司)。N-2000 色谱数据工作站(浙江大学智能信息工程研究所)。光谱扫描采用U- 3010 紫外/可见分光光度计(日本岛津公司)。藤黄酸对照品(质量分数> 98%)由江苏汉邦科技有限公司精制。10 批藤黄药材为进口药材,经南京军区南京总医院王玉玺副主任药师鉴定为藤黄 G. hanbaryi Hook, f.。

流动相采用色谱纯甲醇配制。其余试剂均为分析纯、试验用水使用超纯净水。

2 方法与结果

2. 1 色谱条件: 色谱柱: Lichrospher C₈ 高效液相色谱分离柱(250 mm×4.6 mm, 5 Lm)(江苏汉邦科技有限公司)。流动相: 甲醇-水-冰醋酸(83 17 0.1),使用前以 0.45 Lm 滤膜减压滤过。检测波长: 362 nm。体积流量: 1.0 mL/min。定量管体积: 20 LL。色谱分离柱温: 20 。色谱图见图 1。在本实验建立的分析条件下, 藤黄酸的色谱保留时间为 28.5 min, 色谱峰形对称, 待测藤黄酸与药材中其余内源性物质分离完全, 在 35 min 内即可完成一次分离分析过程。

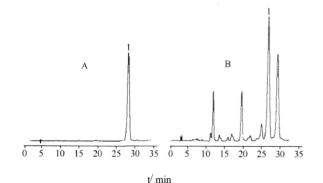


图1 藤黄酸(A)和样品(B)HPLC图

Fig. 1 Chromatograms of gambogic acid (A) and Resina Garciniae Morellae (B)

2. 2 供试品溶液制备: 取干燥藤黄药材碾粉, 精密称取约25 mg, 置10 mL 量瓶中, 以无水乙醇作提取剂, 超声提取8 min, 加无水乙醇至刻度, 摇匀, 滤过。

取滤液2.0 mL 于10 mL 量瓶中,以流动相稀释至刻度,摇匀,得供试品溶液。进样前以0.22 Lm 针式滤器滤过。

- 2.3 对照品贮备液制备:精密称取置干燥器减压干燥48 h 精制藤黄酸对照品10.5 mg,置25 mL 量瓶中,加无水乙醇溶解并稀释至刻度,摇匀,得质量浓度为0.420 g/L 对照品贮备液,工作液用流动相稀释配制。
- 2.4 精密度试验:配制适宜浓度的藤黄酸对照品溶液,按2.1 项色谱条件,连续6次测定。结果显示,以藤黄酸色谱峰面积计,其RSD为1.4%。
- 2.5 重现性试验: 取同一份藤黄药材研细, 称取 6份, 每份约 25 mg, 制备供试品溶液, 在建立的色谱条件下, 每份试液各连续进样 2次测定, 结果显示药材中藤黄酸质量分数的 RSD 为 1.81%。
- 2.6 稳定性试验: 取藤黄药材研细, 制备供试品溶液。在建立的色谱条件下, 分别于样品处理后 0、2、4.5、7、9.5、12 h 时进样测定。结果显示, 供试样品溶液在 12 h 内测定结果稳定, 其色谱峰面积RSD 为 0.2%。
- 2.7 标准曲线制备:精密吸取对照品贮备液 5 mL 于 10 mL 量瓶中稀释定容,依次用二倍稀释法配制不同质量浓度的对照品溶液,进样测定。以色谱峰面积(Y)对待测样品中藤黄酸质量浓度 X 回归计算,藤黄酸质量浓度与色谱峰面积线性关系良好,其线性回归方程为: Y= $26\ 665\ X+\ 17\ 560$, r= $0.999\ 9$,线性范围为 $13.13\sim420\ mg/L$ 。
- 2.8 加样回收率试验: 在已知量(228.4 mg/g)的 藤黄药材中分别加入已知量约80%、100%、120%的 藤黄酸对照品,制备供试品溶液,计算藤黄药材中藤黄酸的测定回收率,结果平均回收率为(98.7 ± 2.8)%(n=4), RSD 为 2.84%。
- 2.9 样品测定: 分别自10个不同批次藤黄药材中随机取3批适量, 碾细后每批各精确称量4份, 每份约25 mg。制备供试品溶液, 测定其中藤黄酸的量, 结果显示本法检测结果与蒸发光散射检测法^[6]报道基本一致(表1)。

表 1 藤黄药材中藤黄酸测定结果(n=4)

Table 1 Determination of gambogic acid in Resina Garciniae Morellae (n= 4)

药材编号	藤黄酸/(mg·g ⁻¹)	
1	228.4 ± 1.3	
2	216.1 ± 1.8	
3	231.9 ± 1.7	

- 3 讨论
- 3.1 检测波长选择: 光谱扫描结果显示, 藤黄酸最

大紫外吸收波长为362 nm,与文献报道基本一致,本实验选用检测波长为362 nm。

- 3. 2 分离条件优化: 已报道常用的藤黄酸测定方法有TLC法^[7]和HPLC法。前者用于药材分析时难以对单一活性成分准确定量, 且由于使用碱性流动相, 使藤黄酸极易氧化, 造成检测量偏高, 不易重复^[6]。HPLC法用于测定注射剂^[8]及血浆中藤黄酸^[9]的量已有文献报道, 但应用于藤黄药材中藤黄酸测定时, 因其所含成分复杂, 往往难以取得满意的分离和分析结果。为了选择较佳的藤黄药材中藤黄酸测定条件, 本实验研究了分离温度、色谱固定相、流动相等因素改变时对分离和分析情况的影响。
- 3. 2. 1 分离温度的影响: 分别研究了相同条件下, 柱温选择为20、30、45 时对藤黄药材中藤黄酸测 定的影响。结果显示, 随着柱温升高, 藤黄酸色谱峰 保留值呈缩短趋势, 且与前、后相邻共存物质的分离 度下降。本实验选择色谱柱分离温度为20 。
- 3. 2. 2 色谱柱固定相的选择: 分别研究了相同条件下, 十八烷基键合硅胶、八烷基键合硅胶以及苯基键合硅胶3 种色谱固定相对藤黄药材中藤黄酸测定的影响。结果显示, 虽然使用十八烷基键合硅胶固定相可得到较好的色谱分离度, 是分析藤黄酸较常采用的色谱分析柱^[6,8,9], 但藤黄酸与色谱固定相保留过强, 不仅使分析时间延长, 而且峰形扩散较为严重。苯基键合硅胶固定相虽可缩短藤黄酸色谱保留时间, 但其与前、后相邻共存物质的分离度却明显下降。 使用八烷基键合硅胶柱分析藤黄药材中藤黄酸时, 通过实验筛选, 在本实验条件下, 35 min 便可完成藤黄药材的

一次分析。分析时间不仅可比使用十八烷基键合硅胶固定相缩短约1/2,且藤黄酸色谱峰对称,与药材中其余内源性物质完全分离,易准确定量。

3.2.3 流动相选择:考察了流动相组成对藤黄酸分离检测的影响。实验结果表明,改变流动相中水相比例,可明显影响藤黄酸的色谱保留时间。当水相组分增加时,藤黄酸的保留时间呈延长趋势,且与前、后相邻共存物质的分离度提高。研究还发现,当流动相中加入少量冰醋酸时,可明显减少藤黄酸色谱峰的拖尾,改善峰的对称性和分离度。综合考虑,实验选择较为适宜的流动相体系为甲醇-水-冰醋酸,其3者的体积比例为83 17 0.1。

参考文献:

- [1] 杨企铮, 贾淑杰, 李德华. 中药藤黄的近代研究 [J]. 中国肿瘤临床, 1994, 21 (6): 464-466.
- [2] 王 鸣,冯 煦,赵友谊,等.中药藤黄的研究和应用[J].中 国野生植物资源,2003,22(1): 1-4.
- [3] 张 谨,张 洵,王永泉,等.藤黄酸对肿瘤细胞诱导分化作用的探讨[J].实用癌症杂志,2003,18(1):9-10.
- [4] 刘静冰,秦叔逵,李进.藤黄酸抗胰腺癌作用的实验研究[J]. 临床肿瘤学杂志,2005,10(3):274-277.
- [5] Kasibhatla S, Jessen K, A, Maliartchouk S, et al. A role for transferrin receptor in triggering apoptosis when targeted with gambogic acid [J]. Proc Natl Acad Sci USA, 2005, 102 (34): 12095-120100.
- [6] 杨虹, 丛晓东, 蒋王林, 等. 高效液相色谱蒸发光散射检测法 对藤黄中藤黄酸及其衍生物的含量测定[J]. 中国药科大学 学报, 1999, 30(3): 202-205.
- [7] 刘辛平,叶定江,路长珍.薄层扫描法测定不同地区藤黄炮制 品中藤黄酸及新藤黄酸的含量[J].中成药,1995,17(10): 20-21
- [8] 柳文媛,冯 锋,尤启冬,等.藤黄总酸注射液中藤黄酸的高效液相色谱法测定[J].江苏药学与临床研究,2003,11(1):16-18.
- [9] 郝 琨, 柳晓泉, 王广基. 犬血浆中藤黄酸 HPL C 测定及其药 代动力学 [J]. 中国天然药物, 2005, 3 (5): 312-315.

仲国医院药学杂志》2008年征订启事

他国医院药学杂志》系中国科协主管 中国药学会主办的综合性医院药学专业性学术核心期刊。本刊为湖北省优秀期刊,2006年中国科协精品科技期刊工程资助期刊,主要面向全国医院药学工作者 医务人员和广大药学工作者,主要介绍国内外医院药学创新性成果 药学先进技术 临床合理用药 中西药制剂 药剂科的科学管理与改革 药学基础知识及理论等。

本刊为半月刊, 大16 开, 每期为80页, 定价8.00元, 全年192元。每月15, 30 号出版, 国内邮发代号38-50, 国外代号: M65-38。欢迎广大读者订阅。

本刊现已开通网上在线投稿,欢迎广大作者踊跃投稿(网址: http://www.zgyyyx.com)。

编辑部地址: 武汉市胜利街155号(邮政编码: 430014)

电话/传真: 027-82836596 E-mail: pharmacy@vip. 163. com