表 1 冬凌草挥发油化学成分分析结果

Table 1 Chemical constituents in volatile oils from R. rubescons

峰号	t _R /min	化合物名称	分子式	峰号	$t_{\rm R}/{ m min}$	化合物名称	分子式
1	7. 05	辛基环丙烷	C ₁₁₁ H ₂₂	21	22.37	5,6,7,7a-四氢化-4,4,7a-三甲基	C ₁₁ H ₁₆ O ₂
2	9.45	5-乙烯基四氢化-α,α-5-三甲基-2-	$C_{10}H_{18}O_2$			(R)-苯并呋喃酮	
		呋喃甲醇		22	22.77	4-(1,5-二甲基-1,4-己二烯基)-1-	$C_{15}H_{24}$
3	11.53	1,7,7-三甲基二环 2.2.1 庚-2-酮	$C_{10}H_{16}\mathrm{O}$			甲基-环己烯	
4	12. 23	1,7,7-三甲基二环 2.2.1 庚-2-醇	$C_{10}H_{18}O$	23	23.33	甲基-双(1-甲基丙基)丁二酸酯	$C_{13}H_{24}O_4$
5	12.87	十二碳烯	$C_{12}H_{24}$	24	23.65	(Z)-7-十六碳烯	$C_{16}H_{32}$
6	14.63	4-乙基-3,4-二甲基-2-环己烯-1-酮	$C_{10}H_{16}\mathrm{O}$	25	24.44	α,2,6,6-四甲基-1-环己烯-1-丁醛	$C_{14}H_{24}O$
7	15.50	4-(2,6,6-三甲基-2-环己烯-1-基)-	$C_{13}H_{20}O$	26	24.78	1a,2,3,4,5,6,7,7a,7β-八氢化	$C_{15}H_{24}$
		3-丁烯-2-酮				-1,1,4,7-四甲基-1H-环丙 E 奥	
8	16.58	1-(3-甲氧基苯基)-乙酮	$C_9H_{10}O_2$	27	25.07	1,2,3,4,5,6,7,8-八氢化-α,α,3,	$C_{15}H_{26}O$
9	17.10	4-(2,6,6-三甲基-2-环己烯-1-基)-	$C_{13}H_{22}O$			8-四甲基-5-奥甲醇	
		2-丁酮		28	25.32	十氢化-α,α,4α,三甲基-2-萘甲醇	$\mathrm{C_{15}H_{26}O}$
10	17.27	2,3,4-三甲基-2-环戊烯-1-酮	$C_8H_{12}O$	29	26.18	1-碘代-十二碳烷	$C_{12}H_{25}I$
11	18.43	1-(2,6,6-三甲基-1,3-环己二烯-	$C_{13}H_{18}O$	30	27.58	檀香脑	$C_{15}H_{24}O$
		1-基)-2-丁烯-1-酮		31	28.30	(Z)-3-十六碳烯	$C_{16}H_{32}$
12	18.53	(E)-3-十四碳烯	$C_{14}H_{28}$	32	28.45	十八烷	$C_{18}H_{38}$
13	19.38	4,11,11-三甲基-8-甲基烯-二环	$C_{15}H_{24}$	33	28.68	三环 3,3,1,13,7 癸烷-2-羧酸,4,	$C_{12}H_{18}O_4$
		7. 2,0 十一碳-4-烯				10-二羟基甲酯	
14	20. 23	6,10-二甲基-(E)-5,9-十一碳二烯	$C_{13}H_{22}O$	34	29.47	6,10,14-三甲基-2-十五烷酮	$\mathrm{C_{18}H_{36}O}$
		-2-酮		35	30.05	丁基,2-甲基丙基邻苯二甲酸酯	$C_{16}H_{22}O_4$
15	20.83	4-乙烯基-4-甲基-3-(1-甲基乙烯	$C_{15}H_{24}$	36	30.62	十九烷	$C_{19}H_{40}$
		基)-环己烯		37	32.33	十六烷酸	$C_{16}H_{32}O_{2}$
16	21.28	2,6-二甲基-6-(4-甲基-3-戊烯基)-	$C_{15}H_{24}$	38	32.57	(E)-3-二十碳烯	$C_{20}H_{40}$
		二环		39	32.70	二十烷	$C_{20}H_{42}$
17	21.53	2,4a,5,6,7,8-六氢化-3,5,5,9-	$C_{15}H_{24}$	40	35.04	3,7,11,15-四甲基,R,R-(E)-十六	$C_{20}H_{40}O$
		四甲基-1H-苯并环庚烯				碳烯-1-醇	
18	21.68	5-己基-2,3-二氢化-1H-茚	$C_{15}H_{22}$	41	35.84	(Z,Z,Z)-9,12,15-十八碳三烯酸	$C_{19}H_{32}O_{2}$
19	21.82	2,4-双(1,1-二甲基乙基)-酚	$\mathrm{C}_{14}\mathrm{H}_{22}\mathrm{O}$			甲酯	
20	21.87	1,2,3,4,4a,5,6,8a-八氢化-7-甲	$C_{15}H_{24}$	42	36.52	(E)-9-二十碳烯	$C_{20}H_{40}$
		基-4-甲基乙烯-1-(1-甲基)1-萘烯					

References:

- [1] Liu C J, Zhao Z H. Advances in research of Rabdosia rubescens [J]. Chin Pharm J (中国药学杂志), 1998, 33 (10): 577-581.
- [2] Han Q B, Mei S X, Jiang B, et al. New net-kaurane diterpenoids from Isodon rubescens [J]. Chin J Org Chem (有机化学), 2003, 23(3): 270-273.
- [3] Yuan K, Hu R H, Zhang Q L, et al. Studies on different extraction processes for Blushed rabdosia (Rabdosia rubescens)
- [J]. Chin Tradit Herb Drugs (中草药), 1997, 28(7); 405-407.
- [4] Yuan K, Hu R H, Ji C R. Studies on exraction and separation process of the penoids in *Rabdosia rubescens* [J]. *Chin J Pharm* (中国医药工业杂志), 1997, 28(8): 347-350.
- [5] Cong P Z. The Application of Mass Spectrum in Organic Chemistry of Natural Products (质谱学在天然有机化学中的应用) [M]. Beijing: Science Press, 1987.

益智复方汤的化学成分研究(IV)

孙连娜1,2,陈万生2,3*,陶朝阳1,2,王瑞冬1,2,张汉明1

(1. 第二军医大学药学院,上海 200433; 2. 第二军医大学 现代中药研究中心,上海 200433; 3. 第二军医大学长征医院 药学部,上海 200003)

益智复方汤主要由何首乌、红参和淫羊藿等药材合煎而得,具有益肾助阳、补气安神、益智养精之

功效,为一临床验方,药理实验表明其具有显著防治 老年性痴呆(又称阿尔茨海默病,Alzheimer's dis-

收稿日期:2006-02-28

^{*}通讯作者 陈万生 Tel:(021)25073712 E-mail:chenwansheng@21cn.com

ease,AD)的疗效 $[1^{-3}]$ 。在进行益智复方防治 AD 药效学研究的同时,为阐明益智复方的药效物质基础,对其化学成分进行了较为系统的研究。本研究报道从复方水煎剂大孔吸附树脂 30%乙醇洗脱部分分得 7 个化合物,即 2,3,5,4'-四羟基二苯乙烯-2-O- β -D-葡萄糖苷(I)、20(S)-人参皂苷 Re(I)、20(S)-人参皂苷 Re(I)、或整定 C(V)、朝藿定 B(VI)、朝藿定 A(VII)的分离和结构鉴定。

1 仪器与材料

日本 Yanaco 显微熔点测定仪(温度计未校正);日立 275-50 红外分析仪(KBr 压片);Bruker-Spectrospin AC - 300P 型核磁共振仪及 Bruker AMX-500 型核磁共振仪;Varian MAT-212 型质谱仪。低压柱色谱硅胶 H 为青岛海洋化工厂出品;Sephadex LH-20 为 Pharmacia 公司产品;Sephadex LH-20 为 Pharmacia 公司产品;ODSRP-18 为 Merk 公司出品;大孔吸附树脂1300型为上海医药工业研究院产品;聚酰胺购自中国医药(集团)上海化学试剂公司。中压制备系统:FMI LAB泵,lobar-C₁₈中压反相柱。HPTLC 板为烟台市化工研究院产品;试剂均为分析纯。

何首乌购自广东德庆,晒干,粉碎,过 14 目筛;红参(80 支)购自吉林靖宇,切制成约 0.3 cm 厚的纵切片,阴干;淫羊藿购自四川成都,切制成约 10 cm 左右的长段;三种药材经作者鉴定分别为蓼科植物何首乌 Polygonum multiflorum Thunb. 的干燥块根;五加科植物人参 Panax ginseng C. A. Mey.的栽培品经蒸制后的干燥根;小檗科植物巫山淫羊藿 Epimedium wushanense T. S. Ying 的干燥地上部分,符合 2005 年版《中国药典》(一部)标准,标本存放于第二军医大学药学院生药学教研室。

2 提取和分离

取何首乌粗粉,红参厚片,淫羊藿长段按比例混合(合计 21 kg),加水浸泡,待药材充分吸水后,加热提取 3 次,每次 2 h,煎煮液合并浓缩至适当体积后用二氯甲烷萃取,回收溶剂后得二氯甲烷部分。应用大鼠东莨菪碱学习记忆障碍模型进行防治 AD活性筛选结果表明,二氯甲烷部分活性较弱。水部分(2.58 kg)过 1300 型大孔吸附树脂,水-乙醇梯度洗脱,得水及 10%、30%、50%、70%、95%乙醇各部分。30%乙醇洗脱部分(492 g)经反复低压硅胶柱色谱,sephadex LH20,ODSRP18,聚酰胺,及中压制备,分离得到化合物 I (332 mg)、II (68 mg)、II (57 mg)、IV (24 mg)、V (36 mg)、VI (28 mg)、VII (411

mg)。

3 结构鉴定

化合物 I:淡黄色针晶(H_2O), mp 184~186 °C。(一)ESI-MS m/z: 405 [M — H]+, EI-MS m/z (%): 244(100)。 ¹H-NMR(CD_3OD)δ: 4. 49(1H, d, J=7.9 Hz, Glc-H-1"), 6. 24(1H, d, J=2.8 Hz, H-4), 6. 61(1H, d, J=2.8 Hz, H-6), 7. 44(2H, d, J=8.6 Hz, H-2', 6'), 6. 75(2H, d, J=8.6 Hz, H-3', 5'), 6. 90(1H, d, J=16.5 Hz, H-β), 7. 68(1H, d, J=16.5 Hz, H-α)。 ¹³C-NMR(CD_3OD)δ: 130. 8(C-1), 134. 5(C-2), 152. 0(C-3), 103. 6(C-4), 155. 9(C-5), 102. 7(C-6), 133. 7(C-1'), 129. 2(C-2', 6'), 116. 4(C-3', 5'), 158. 4(C-4'), 121. 7(C-α), 130. 0(C-β), 62. 1(Glc-C-6"), 70. 8(Glc-C-4"), 74. 0(Glc-C-2"), 75. 9(Glc-C-3"), 78. 2(Glc-C-5"), 108. 2(Glc-C-1")。参考文献化合物 I为 2,3,5,4'-四羟基二苯乙烯-2-O-β-D-葡萄糖苷^[4,5]。

化合物 I:白色结晶性粉末,mp 197~199 ℃, Liebermann-Burchard 和 Molish 反应均呈阳性,推 测该合物为三萜皂苷。(-)ESI-MS m/z 质谱给出 准分子离子峰 945 [M-H]-。13C-NMR谱图可观察 到 48 个碳原子,其 DEPT 谱给出分子结构含有 9 个伯碳(CH₃),10 个仲碳(CH₂),23 个叔碳(CH),6 个季碳(C),结合质谱推定分子式为C48H82O18,δ 101. 51, 101. 51, 97. 92 3 \uparrow CH, δ 69. 13~79. 04 12 个 CH,δ 62.52、62.72 个 CH₂,δ 18.39 1 个 CH₃ 提 示存在2组葡萄糖残基和1组鼠李糖残基;余下的 碳原子信号归属于苷元部分。从1H-NMR谱中看出, δ : 5. 17 (1H, d, J = 7.0 Hz), 5. 24 (1H, d, J = 6.0Hz), 6.46(1H, br s) 为 2 个葡萄糖质子和 1 个鼠李 糖质子信号,亦证实含有2组葡萄糖和1组鼠李糖 残基。 苷元 C-5 信号为 δ 60.51, 表明苷元为原人参 三醇型; C-17、C-21、C-22 信号分别为 δ 51.37、 21.88、35.69,说明苷元为 20(S)-原人参三醇型。与 皂苷元原人参三醇对照,C-6、20 明显向低场位移, 推测该位置成苷。与 20(S)-人参皂苷-Re 对照品进 行 TLC 对照, Rf 值和显色行为相同, 混合熔点不下 降,根据以上数据,结合文献确定化合物 1 为 20 (S)-人参皂苷 Re^[6]。

化合物 II:白色结晶性粉末,mp 187~189 ℃, Liebermann-Burchard 和 Molish 反应均呈阳性,推 测该化合物为三萜皂苷。(一)ESI-MS m/z 质谱给 出准分子离子峰 799[M-H]⁻。¹³C-NMR谱图可观 察到 42 个碳原子,其 DEPT 谱给出分子结构含有 8 个伯碳(CH_3),10 个仲碳(CH_2),18 个权碳(CH),6 个季碳(C),结合质谱推定分子式为 $C_{42}H_{72}O_{14}$, δ 105.61、97.87 2 个 CH, δ 71.29~79.76 8 个 CH, δ 62.52、62.72 2 个 CH_2 ,提示存在 2 组葡萄糖残基;余下的碳原子信号归属于昔元部分。昔元 C-5 信号为 δ 61.04,表明苷元为原人参三醇型;C-17、C-21、C-22 信号分别为 δ 51.16、21.94、35.75,说明苷元为 E 20(E 2)-原人参三醇型。与皂苷元原人参三醇对 E 5,00,一人参皂苷-Rg1 对照品进行 E 7 TLC 对照,Rf 值和显色行为相同,混合熔点不下降。根据以上数据,结合文献确定化合物 E 为 20(E 2)-人参皂苷 E 80.

化合物 N: 黄色粉末(CH₃OH), mp 203~204 ℃。盐酸-镁粉反应和 Molish 反应均呈阳性, ESI-MS、¹H-NMR与¹³C-NMR光谱数据与参考文献一致[7], 化合物 N 为淫羊藿次苷 I。

化合物 V:黄色粉末(CH₃OH-H₂O),mp 170~ 174 ℃。盐酸-镁粉反应和 Molish 反应均呈阳性, ESI-MS、¹H-NMR与¹³C-NMR光谱数据与参考文献 一致^[7],化合物 V 为朝藿定 C。

化合物 V: 黄色粉末(CH_3OH-H_2O), mp $162\sim$ 164 C。盐酸-镁粉反应和 Molish 反应均呈阳性,(一)ESI-MS m/z:807[M-1]+。 1H -NMR(DMSO-d₆) $\delta:$ 5. 34(1H,s,Rha-H-1'),5. 01(1H,d,J=7. 0 Hz,Glc-H-1'),4. 20(1H,d,J=7. 6 Hz,Xyl-H-1"),7. 91(2H,d,J=9. 0 Hz,H-2',6'),7. 13(2H,d,J=9. 0 Hz,H-3',5'),6. 63(1H,s,H-6),5. 16(1H,br,H-12),3. 84(3H,s,4'-OCH3)。 13 C-NMR-DEPT (DMSO-d₆) $\delta:$ 153. 03(C-2),134. 58(C-3),178. 26(C-4),160. 43(C-5),98. 19(C-6),161. 37(C-7),108. 36(C-8),152. 86(C-9),105. 46(C-10),21. 24(C-11),122. 11(C-12),131. 13(C-13),17. 62(C-

14), 25. 14 (C-15), 122. 04 (C-1'), 130. 39 (C-2'), 114. 01 (C-3'), 159. 04 (C-4'), 114. 01 (C-5'), 130. 39 (C-6'), 55. 38 (4'-OCH₃), 100. 58 (Glc-C-1'), 73. 25 (Glc-C-2'), 76. 46 (Glc-C-3'), 69. 23 (Glc-C-4'), 77. 17 (Glc-C-5'), 60. 59 (Glc-C-6'), 101. 10 (Rha-C-1'), 80. 46 (Rha-C-2'), 70. 48 (Rha-C-3'), 71. 62 (Rha-C-4'), 70. 01 (Rha-C-5'), 17. 36 (Rha-C-6'), 105. 52 (Xyl-C-1"), 73. 54 (Xyl-C-2"), 76. 23 (Xyl-C-3"), 70. 49 (Xyl-C-4"), 65. 72 (Xyl-C-5")。参考文献报道[7], 化合物 N为朝藿定 B。

化合物 Ⅲ:黄色粉末(CH₃OH-H₂O),mp 182~ 186 C。盐酸-镁粉反应和 Molish 反应均呈阳性, ESI-MS、¹H-NMR和¹³C-NMR与参考文献报道^[7]— 致,化合物 Ⅲ确认为朝藿定 A。

References:

- [1] Wu H Y, Li L, Xu J P, et al. Effects of compound Yi-Zhi on learning and memory disorder and beta-amyloid protein induced neurotoxicity [J]. J Chin Med Mater (中药材), 2003, 26(7): 495-496.
- [2] Xu J P, Wu H Y, Li L. Effects of compound Yi-Zhi on D-galactose-induced learning and memory deficits in mice [J]. Chin J Clin Pharmacol Ther (中国临床药理学与治疗学), 2003, 8(1); 31.
- [3] Wu H Y, Xu J P, Jin Y M. Effects of Yi-Zhi compound on animal models of learning and memory dysfunction [J]. Chin Clin New Med (中华临床新医学), 2003, 3(3): 193.
- [4] Nonaka G I, Miwa N, Nishioka I. Stilbene Glyciside Gallates and Proanthocyanidins from Polygonum multiflorum
 [J]. Phytochemstry, 1982, 21(2): 429-431.
- [5] Yang X W, Gu Z M, Ma C M, et al. A new indole derivative isolated from the root of tuber fleeceflower (Polygonum multiflorum) [J]. Chin Tradit Herb Drugs (中草药), 1998, 29 (1); 5-11.
- [6] Wang B X. The Progress of Panax ginseng Research (人参研究进展) [M]. Tianjin: Science and Technology Press, 1992.
- [7] Li W Q, Zhang R Y, Xiao P G. The chemical constituents of Epimedium koreanum [J]. Chin Tradit Herb Drugs (中草药), 1995, 26(9); 453-455.

鸡树条荚蒾果实中挥发油的 GC-MS 分析

裴 毅1,2,李彦冰1,王 栋1,范 峰1

(1. 黑龙江中医药大学 药学院,黑龙江 哈尔滨 150040; 2. 天津农学院 园艺系,天津 300384)

鸡树条荚蒾 Viburnum sargentii Koehne,又名佛头花、鸡树条子、天目琼花,为忍冬科荚蒾属植物,国内分布地东北、华北地区及内蒙古、陕西、甘肃、四

川、湖北、安徽、浙江等省区。该植物为灌木,高 2~3 m,小枝褐色至赤褐色;叶对生,阔卵形至卵圆形,先端 3 中裂;复伞形花序生于枝梢顶端,花径 8~10