甲基),1.254[s,(CH₂),],1.624[s,(CH₂),],2.353(t,R'-CH₂-COOR")。综上光谱可推出晶体 Ⅵ 为二十四碳酸二十一烷醇酯(Ⅵa)和四十四烷酸甲酯(Ⅵb)混合物。

化合物 VIIa、VIIb、VIIc(晶体 VII):白色片状(或粉 末状)晶体。mp 269~271 ℃, Liebermann-urchard 反应呈阳性, molish 反应界面有紫红色环。IR was cm^{-1} : 3 388, 2 954, 2 871, 1 650, 1 464, 1 381, 1 367, 1 163, 1 076, 1 030, 970, 890, 798. EI-MS: 576, 574, 463, 457, 442, 433, 414 (579-162), 412 (574-162), 397, 395, 381, 351, 299, 301, 273, 271, 255,229,213,161,83,55。符合甾萜苷的质谱裂解方 式。HREI-MS: 576. 439909-C₃₅H₆₀O₆, 574. 430606- $C_{35}H_{58}O_{60}^{1}H-NMR(CDCl_{3})\delta_{1}5.138(m), 5.0(m),$ 3.623 5(d,J=9.5 Hz),4.206(d,J=8 Hz),说明苷 的构型为β苷。13C-NMR (CDCl₃)δ:碳碳双键: 138.809, 137.502, 128.820, 116.858; 糖端基碳 100.669;糖环碳(76.5,76.379,76.195,73.235, 60.922);69.955 为昔元 C3 信号。苷(晶体 VI)用 5% H_zSO₄稀甲醇水解,得苷元,苷元 EI-MS m/z (%) 给出两个分子离子峰:414(100%),412(82%),399 (40%), 397(38%), 369(30%), 327(20%), 300(25%), 271(95%), 273(85%), 255(75%), 246(40%),161(32%),107(42%),81(48%)。 苷元 IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3 369, 2 956, 2 870, 1 662, 1 462, 1 383,

1 369,1 076,1 030,970,930,845,796。 苷元醋酐吡啶乙酰化,得苷元乙酰化物,苷元乙酰化物硅胶 TLC 检识:取苷元乙酰化物少量用氯仿溶解,点样于 20% AgNO。 硅胶 H 板(自制),以石油醚-二氯甲烷(1:1)展开,20%过氯乙酸喷雾,110 ℃烘烤显色,结果有 3 个不同 Rf 值的斑点。 Rf 值与文献报道^[5]的 α-菠甾醇、豆甾醇、△7-豆甾烯醇混合物一致。以上理化性质、色谱行为和光谱特征,与从党参中分出的 α-菠甾醇-β-D-葡萄糖苷(Ψα)、豆甾醇-β-D-葡萄糖苷(Ψα)、豆甾醇-β-D-葡萄糖苷(Ψα)、豆甾醇-β-D-葡萄糖苷(Ψα)、豆甾醇-β-D-葡萄糖苷(Ψα)、豆甾醇-β-D-葡萄糖苷(Ψα)、Δ7-豆甾烯醇-β-D-葡萄糖(Ψα)、3 种甾苷的混合物的文献报道^{[5~73}完全一致。

References:

- [1] Sakurai N, Yaguchi Y, Inoue J. Triterpenoids from Myrica rubra [J]. Phytochemistry, 1987, 26: 217.
- [2] Wen S, Linang H, Zhao Y Y, et al. The isolation and appraisal of the compounds from Achyranthes bidentata Blume [J]. China J Chin Mater Med (中国中药杂志), 1997, 22 (5), 293.
- [3] Mao S L, Sang S M, Lao A N, et al. Study on chemical constituents of Codonopsis lanceolata Benth. et Hook. [J]. Nat Prod Res Dev (天然产物研究与开发), 2000, 12(1): 1-2.
- [4] Cong P Z. The Applies of Mass Spectra on Natural Organic Chemistry (质谱学在天然有机化学中的应用) [M]. Beijing: Science Press, 1987.
- [5] Wang Y Z, Han C, Li F T, et al. Study on chemical constituents of Codonopsis pilosula (Franch.) Nannf. [J]. Chin Tradit Herb Drugs (中草药), 1986, 17(5); 41.
- [6] Wang H K, Zhu C Q, He K. Study on chemical constituents of Condonopsis pilosula (Franch.) Nannf. [J]. Chin Tradit Herb Drugs (中草药), 1984, 16(4): 4.
- [7] Sha D Z, Lu Y R, Shen I, S. Study on chemical constituents of Codonopsis pilosula (Franch.) Nannf. [J]. Chin J Pharm Anal (药物分析杂志), 1989, 9(1); 13-15.

两头尖的抗肿瘤活性成分研究

任风芝¹,张雪霞¹,牛桂云¹,张 丽¹,单保恩²,刘刚叁¹ (1. 华北制药集团新药研究开发中心 天然药物室,河北 石家庄 050015; 2. 河北医科大学第四医院 科研中心,河北 石家庄 050011)

两头尖为毛茛科银莲花属植物多被银莲花 Anemone raddeanin Regel 的根茎,用于治疗风寒湿痹、骨节疼痛及静脉炎等症^[1]。20 世纪 80 年代对其 化学成分研究较多,主要为皂苷类,药理活性研究发 现两头尖总皂苷有抗肿瘤、镇痛、镇静及抗惊厥作 用^[2]。本实验对其化学成分及药理活性进行了深入 研究,从根茎中分离鉴定了 6 个化合物,其中化合物 VI 为首次从该植物中得到。药理实验表明化合物 I ~ N 对人胃癌细胞株 BGC823 和人红白血病细胞株 K562 有很强的抑制作用。

1 仪器与材料

INVOA 500 型核磁共振波谱仪(Volian);ZMD Micromass 型质谱仪(Micromass 公司);柱色谱硅胶(青岛海洋化工厂);薄层色谱用硅胶板及色谱纯甲醇(Merk 公司);显色剂为 15%硫酸-乙醇溶液。其余试剂均为分析纯。HPLC 为 waters 996 型仪,固

定相用 C_{18} 柱 (Phenomenex 250 mm×21.2 mm,10 μ m)。 CO_2 恒温细胞培养箱(美国 Shellan 公司),RPMI-1640 培养液(Gibco 公司),MTT (Sigma 公司)。 药材两头尖购买于石家庄乐仁堂饮片厂。

2 提取与分离

干燥的两头尖药材 4.5 kg,粉碎,用 80%乙醇 回流提取 4次,每次 3 h,合并提取液,减压回收溶剂 得浸膏 580 g,将其溶于水,滤过,不溶物用甲醇溶解,回收溶剂得浸膏 146 g,经硅胶柱色谱(氯仿-甲醇-水)洗脱,共分成 10 个流份,流份 3、4、5 分别再 经硅胶柱色谱得到化合物 I ~ II,流份 6、8、9 分别 经硅胶柱色谱以及 HPLC 得到化合物 IV ~ VI。

3 结构鉴定

化合物 I:白色粉末,分子式 $C_{47}H_{76}O_{16}$, ESI (-):895。 ^{1}H -NMR($C_{5}D_{5}N$,500 MHz) δ :6.20(1H, brs, Rha- H_{1}),5.46(1H, brs, H-12),5.13(1H, d, J=8 Hz, Glc- H_{1}),4.73(1H, d, J=6.0 Hz, Ara- H_{1}),3.28(1H, m, H-3),1.61(3H, d, J=6.5 Hz, Rha- CH_{3})。 ^{13}C -NMR($C_{5}D_{5}N$)见表 1和2,并且与文献[3]对照一致,确定化合物 I为齐墩果酸-3-O- α -L-鼠李糖基(1-2)- β -D-葡萄糖基(1-2)- α -L-阿拉伯糖苷,命名为两头尖素 R_{3} (raddeanin R_{3})。

化合物 I:白色粉末,分子式 $C_{41}H_{66}O_{11}$, ESI (-):733。 ^{1}H -NMR $(C_{5}D_{5}N,500 \text{ MHz})\delta$:6.08(1H, d,J=1.5 Hz,Rha- H_{1}),5.44(1H,brs,H-12),4.86(1H,d,J=6 Hz,Ara- H_{1}),3.23(1H,m,H-3),1.62(3H,d,J=6.5 Hz,Rha- CH_{3})。 ^{13}C -NMR见表 1 和 2。以上数据与文献 [4]一致,确定化合物 I 为齐墩果酸-3-O- α -L-鼠李糖基(1-2)- α -L-阿拉伯糖苷(刺五茄苷 K,eleutheroside K)。

化合物 I: 白色粉末,分子式 $C_{41}H_{66}O_{12}$, ESI (+):751。 1H -NMR(C_5D_5N ,500 MHz) $\delta:3.29(1H$, m, H-3), 5.45 (1H, m, H-12), 6.24 (1H, m, Glc- H_1), 5.92(1H, d, J=5 Hz, Ara- H_1)。 13 C-NMR见表 1 和 2,并且与文献[3]对照一致,确定化合物 II 为齐墩果酸-3-O- β -D-葡萄糖基(1-2)- α -L-阿拉伯糖苷,命名为两头尖素 R_2 (raddeanin R_2)。

化合物 N: 白色粉末,分子式 $C_{47}H_{76}O_{16}$, ESI (-),895。 ^{1}H -NMR($C_{5}D_{5}N$,500 MHz) δ : 1. 61(3H, d, J=5.5 Hz, Rha-CH₃),3. 29(1H, m, H-3),4.74(1H, d, J=6.0 Hz, Ara-H₁),5. 46(1H, m, H-12),5. 10(1H, d, J=7.5 Hz, Glc-H₁),6. 16(1H, d, J=6.5 Hz, Rha-H₁)。 ^{13}C -NMR见表 1和 2,并且与文献

[4]对照一致,确定化合物 N 为齐墩果酸-3-O-β-D-鼠李糖基(1-2)-[β-D-葡萄糖基(1-4)]-α-L-阿拉伯糖 苷 (oleanolic acid 3-O-α-L-rhamanopyranosyl-(1→ 2)-[β-D-glucopyranosyl-(1→ 4)]-α-L-arabinopyranoside)。

化合物 VI:白色粉末,分子式C₆₅H₁₀₆O₃₀,ESI

表 1 化合物 $I \sim VI$ 的 13 C-NMR(125 MHz, C_5D_5N)

Table 1 13 C-NMR data for compounds I = VI (125 MHz, C_5D_5N)

	· · · · · · · · · · · · · · · · · · ·					
序号]	ı	I	IV	v	VI
1	39. 0	38.8	38. 6	38. 9	38. 9	38. 9
2	27.2	26.4	27.1	26.7	26.6	26.7
3	89.0	88.6	88. 7	88.7	88.8	88.7
4	39.8	39. 4	39.5	39-5	39.5	39.6
5	56.3	55.8	56.0	56.0	56.0	56.0
6	18.9	18-5	18.4	18.5	18.6	18.7
7	33.7	33. 2	33.1	33. 2	33.2	33.2
8	39.2	39.6	39. 7	39.8	39. 9	39.9
9	48.3	47.9	48.0	48.0	48.1	48.1
10	37.5	37.0	37.0	37.1	37-1	37.1
11	24.2	23.7	23.8	23.7	23.4	23.4
12	122.9	122-4	122.5	122.6	122.9	122.9
13	145.2	144.7	144.8	144.9	144.2	144.2
14	42.4	42.0	42.1	42.2	42.2	42.2
15	28.6	28. 2	28.3	28.4	28. 3	28.3
16	24.1	23.8	23.7	23.9	23.8	23.8
17	47.0	46.6	46.5	46.7	47.1	47.1
18	42.0	41.9	41.9	42.0	41.7	41.7
19	46.8	46-4	46.6	46.5	46.3	46.3
20	31.3	30. 9	30. 9	31.0	30.8	30.8
21	34.6	34.2	34.2	34.2	34.0	34.0
22	33.9	33. 1	33. 3	33.2	32.6	32.6
23	28. 4	28.0	28.1	28. 1	28. 1	28.1
24	17.2	16.9	16.8	17.1	17.1	17.1
25	15.9	15.4	15.5	15.6	15.7	15.7
26	17.7	17.3	17.4	17.4	17.5	17.5
27	26.5	26.1	33.1	26.3	26.1	26.1
28	180-6	180.2	180.2	180.4	176-6	176.6
29	33. 6	33.0	33.2	33.4	33. 2	33. 2
30	24.0	23.6	23.8	23.8	23.7	23. 7

表 2 化合物 I \sim VI 精部分 13 C-NMR(125 MHz, C_5D_5N)
Table 2 13 C-NMR data for sugar moleties of compounds
I - VI (125 MHz, C_5D_5N)

	I	1	I	īV	v	VI
3-Ага	104.9	104.8	104.9	105.0	104.9	105.0
J-MIA	76.4	75.8	76.4	76.4	75.9	76.4
	72.4	73.9	72.5	75.5	73.9	75. 5
	69.5	68.7	68-6	79.7	68.8	79.8
	64.7	64.8	64.7	64.6	64.8	64.6
Glc	106.1	01.0	105.8	106-5	01.0	106.5
	79.3		74.6	74.2		74.1
	75.5		78.2	78-6		78.8
	71.4		71.5	71.3		71.3
	78-6		78. 3	78-8		78. 9
	62.5		63.9	62.6		62.6
Rha	101.8	101.6		101.8	101.8	101.8
	72.4	72.3		72.4	72.8	72.3
	72.2	72.5		72.6	72.6	72.8
	74.0	74.0		74.1	74.0	74.1
	70.0	69.8		69.9	69.2	69.8
	18.8	18.4		18.8	18.6	18.6
28-Glc					95.7	95.7
(内)					74.0	73.9
					78.1	78. 2
					70.8	70.9
					78.2	78. 1
					69.9	69.2
Glc					104.9	104.9
					75.4	75.4
					76.5	76. 5
					78.8	78-6
					77. 2	77.1
					61.3	61.3
Rha					102.8	102.8
					72.6	72.6
					72-4	72.5
					74.1	74.0
					70.3	70.3 18.6
() 1 (oca III		CDN		18. 6	

 glucopyranosyl-(1-6)- β -D-glucopyranoside]}.

4 对 BGC823 和 K562 细胞的抑制作用[6]

采用体外抑瘤实验研究了 6 个化合物对两种肿瘤细胞增殖的抑制作用。收集处于对数生长期的肿瘤细胞,贴壁细胞弃去上清,用 0.25%胰蛋白酶消化细胞,然后用 10%PRMI-1640 培养液调整细胞浓度为 1.0×10⁵/mL,接种于 96 孔细胞培养板,每孔100 μL,分别加入不同质量浓度的样品,阳性对照为20 μg/mL 的顺铂,阴性对照为磷酸盐缓冲液。每组均设 3 个复孔。置于 37 ℃、5% CO₂ 培养箱中培养72 h,于培养结束前 4 h,各培养孔加人 10 μL MTT (5 mg/mL),培养结束后,吸去培养上清,每孔加入10% SDS 100 μL,震荡 10 min,使结晶物充分溶解,放置过夜,最后用酶标仪于 490 nm 波长处测定各孔吸光度(A)值,计算抑制率。

抑制率=(对照组 A 值-实验组 A 值)/对照组 A 值×100%

根据上述方法,对从两头尖中得到的6个化合物进行了活性评价,结果显示有4个化合物对肿瘤细胞增殖有很强的抑制作用,实验结果见表3。

表 3 化合物 I ~Ⅳ 对 BGC823 和 K562 细胞 增殖的抑制作用

Table 3 Inhibition of compounds 1 - IV on BGC823 and K562 cell proliferation

ᄻᄗᅜᅼᄞᅧ	-//I =1)	BGC823 细胞	K562 細胞	
组别	$\rho/(\mu g \cdot mL^{-1})$	抑制率/%	抑制率/%	
阴性对照	_	0.0	0.0	
顺铂	20	89.1	69.0	
化合物I	25	89.2	89.0	
	12.5	54.3	76.2	
	6.25	30.3	62.8	
	3. 13	21.9	44.9	
	1.56	5.6	15.3	
化合物 1	25	88- 1	94.0	
	12.5	65.9	80.0	
	6.25	44.3	48.8	
	3.13	41.2	46.3	
	1.56	22.3	13.7	
化合物Ⅱ	25	88. 9	90.8	
	12.5	67.7	80.8	
	6. 25	34.7	18.6	
	3.13	29.1	16.0	
	1.56	19.7	9.5	
化合物 N	25	90.0	97.6	
	12.5	82.3	97.2	
	6. 25	41.4	96.2	
	3.13	11.7	76.8	
	1.56	9.5	48.1	

从表 3 中可以看出,化合物 I ~ N 对肿瘤细胞 BGC823 和 K562 的增殖都有非常强的抑制作用。4 个化合物在质量浓度为 25 μg/mL 时,对细胞 BGC823 增殖的抑制作用与阳性对照药顺铂相当;对细胞 K562 增殖的抑制作用强于阳性对照药。随着药物质量浓度增高,抑制率也随之增高,并且与阴性对照组相比差异显著。说明化合物 $I \sim \mathbb{N}$ 对肿瘤细胞增殖的抑制作用与药物质量浓度呈正相关。

References:

- [1] Ch P (中国药典) [S]. Vol 1. 2000.
- [2] Zhang E X, Wu F E. Studies on CAMP-PDE inhibition activities of Anemone radde glycoside and some natural polysaccharides []]. Chin J Biochem Pharm (中国生化药物

- 杂志), 1993, 63(1); 61-64.
- [3] Wu F E, Zhu Z Q. Studies on the chemical constituents of the China medicind herb anemone raddcana Regel [J]. Acta Chem Sin (化学报), 1984, 42(3): 253-258.
- [4] Liao X, Li B G, Gao X P. Bioactive triterpenoid saponins from Anemone davidii [J]. Chin Tradit Herb Drugs (中草 药), 2001, 32(6): 493-496.
- [5] Kuang H X, Tian Z K, Zhang N. Studies on the chemical constituents of rhizoma of Radde anemone [J]. Chin Tradit Herb Drugs (中草药), 1996, 27(6); 328-330.
- [6] Xu S Y, Bian R L. Methodology in Pharmacological Experiment (药理实验方法学) [M]. Beijing; People's Medical Publishing House, 2002.

GC-MS 法分析狗肝菜中的脂肪酸及其脂溶性成分

高毓涛1,杨秀伟1.2,艾铁民1*

(1. 北京大学药学院,北京 100083; 2. 北京大学 医药卫生分析中心,北京 100083)

狗肝菜 Dicliptera chinensis (L.) Nees 别名猪 肝菜、羊肝菜、六角英、青蛇菜等,为爵床科狗肝菜属一年生草本植物,我国南方各省区皆有分布。狗肝菜的嫩茎和嫩叶可以食用,既可做炒菜,也可做汤,味道鲜美。狗肝菜味淡、甘、微苦,性寒,具清热解毒,利尿生津之功效。临床用于治疗肺热咳嗽、咳血、感冒发热、暑热烦渴、目赤肿痛、急性肝炎、流行性乙型脑炎、斑诊发热、眼结膜炎、便血赤痢等[1]。狗肝菜中主要含氨基酸、有机酸和多糖类成分[1,2]。近年来康笑枫等[3]对狗肝菜中所含的挥发油成分进行了分析,但有关狗肝菜中脂肪酸的化学成分分析尚未见详细报道。本实验首次运用 GC-MS 联用技术对狗肝菜中的脂肪酸成分进行了分析和鉴定。

1 材料与仪器

- 1.1 主要试剂:无水乙醚、苯、氢氧化钾、无水甲醇 等均为分析纯,蒸馏水。
- 1.2 实验药材:干燥的狗肝菜全草购于广西桂林六合路市场,经北京大学药学院艾铁民教授鉴定为爵床科狗肝菜属植物狗肝菜 D. chinensis (L.) Nees。凭证标本现存放于北京大学药学院药用植物标本室。
- 1.3 主要仪器:美国 Finnigan 公司 TRACE MS 气相色谱-质谱联用仪。

2 实验方法

- 2.1 狗肝莱脂肪酸及其脂溶性成分的提取:取干燥的狗肝菜全草将其粉碎,过10目筛。称取16.62g,放入锥形瓶中加入200 mL乙醚,超声提取30 min,计两次。回收乙醚,得油状物0.2g,用少量乙醚溶解并转移至10 mL量瓶中,挥干乙醚,备用。
- 2.2 脂肪酸的甲酯化^[4]:在上述备用样品中加入 2 mL 乙醚-苯(1:1)混合溶剂,使之溶解后加入 0.5 mol/L 氢氧化钾-甲醇溶液摇匀,于常温下放置 10 min,然后加入蒸馏水至刻度,待分层清晰后取上清液作色谱分析试样。
- 2.3 脂肪酸组成及脂溶性成分 GC-MS 分析测定 2.3.1 GC-MS 条件:色谱柱为 DB-5(30 m×0.25 mm×0.25 μ m)石英毛细管色谱柱;进样口温度为 230 °C;程序升温 80~250 °C(维持 5 min),升温速率为 6 °C/min;载气为高纯氮气,流量为 1 μ L/min;分流比为 25:1;进样量为 1 μ L;溶剂延迟 3 min;气化室温度为 270 °C。EI 电离源,70 eV;离子源温度为 210 °C;加速电压为 210 eV;扫描质量范围为 40~560 amu。
- 2.3.2 狗肝菜中脂肪酸、烷烃及其衍生物成分的分析:对总离子流图中的各峰经质谱扫描后得到质谱图,通过 Xcalibur 工作站 NIST 标准质谱图库进行检索,确认各化合物;通过 Xcalibur 工作站数据处理系统,按峰面积归一化法计算各化合物相对的量。

收稿日期:2005-07-14

作者简介:高毓涛(1979-),男,辽宁丹东人,北京大学 2002 级硕士研究生,主要研究方向为天然药物的化学成分研究。

^{*}通讯作者 艾铁民 Tel:(010)82802685