- [2] Jilin Institute of Traditional Chinese Medicine. Flora of Changbaishan (长白出植物药志) [M]. Changchun; Jilin People's Publishing House, 1982.
- [3] Chang X Q. Handbook of Active Constituents Analyse in Chinese Traditional Medicine (中药活性成分分析手册)
 [M]. Beijing; Xueyuan Press, 2002.
- [4] Lu Y H, Wang Z T, Xu L S, et al. Anthraquinones from Polygonum rumex Patientia L. [J]. J Northwest Normal
- Univ (西北师范大学学报), 2000, 36(3): 46-49.
- [5] Zheng S Q, Cheng W S, Tao Z Y, et al. Study on the chemical constituents of Rumex japonicus Houtt (1) [J]. Acad J Second Mil Med Univ (第二军医大学学报), 2000, 21(10): 910-913.
- [6] Xiao G G, Shen X J, Jiu B D. Studies on the antifungal substance of crude drug (1) Rumex japonicus Houtt. [J]. JPN J Pharmacognosy, 1977, 31(2): 151-154.

崖藤中生物碱 aromoline 的结构及 NMR 研究

张庆英,梁 鸿,蔡少青,刘洪宇 (北京大学药学院 天然药物学系,北京 100083)

崖藤 Albertisia laurifolia Yamamoto 为防已科 崖藤属植物。本属植物全世界有17种,大部产于非 洲,亚洲东南部有5种,我国仅崖藤1种,产于海南 中部及南部,广西南部以及云南。崖藤为木质藤本, 其根人药,主要用于治疗感冒发热、痧症及小便短小 黄赤等症。从崖藤的根中分离得到一个双苄基异喹 啉类生物碱 aromoline。该化合物由 Bick 和 Whallev[1]于 1948 年首次从毛茛科植物 Daphnandra aromatica 中分离得到,1960年通过化学方法确定 了其化学结构[2]。以后又从防己科、毛茛科和小檗科 等科的多种植物中分离得到。但是文献有关其波谱 数据报道非常简单而且存在错误,如'H-NMR数据 少而且没有给出正确归属[3.4];13C-NMR数据虽然也 有报道[5],但是其信号主要根据取代基对苯环化学 位移的取代效应理论并结合全偶合碳谱的偶合裂分 情况进行归属的,存在一些错误;CD 谱的数据未见 报道。由于现代结构研究多采用 NMR 技术,因此 NMR 数据的错误或欠缺会给结构鉴定过程中带来 不必要的麻烦,同时由于双苄基异喹啉类生物碱具 有手性中心,CD 谱对于构型确定具有重要意义,因 此本研究首次利用现代 1D-和 2D-NMR 技术对 aromoline 的¹H-NMR和¹³C-NMR数据进行了正确 全归属,并报道了该化合物的 CD 谱,这对于双苄基 异喹啉类生物碱这类化合物结构的快速、准确鉴定 具有重要参考意义。

化合物 1: 白色针状结晶, mp $198\sim 201$ C, $[\alpha]_b^B+249.66$ (MeOH, c 0.85), 碘化铋钾反应阳性, 提示该化合物可能为生物碱, LC-MS(posit.) 给出单一色谱峰, 同时给出准分子离子峰 m/z: [M+

H] + 595. 2。 ¹H-NMR在低场区显示 10 个芳香质子 信号:其中一个馒头样宽单峰 δ:5.65(1H, brs),3 个单峰 δ: 6.32(1H, brs), 6.36(1H, s), 6.67(1H, s),其他 6 个为双峰或宽双峰 δ.6.42(1H, brd, J= 7.3 Hz), 6.76(1H, brd, J = 7.8 Hz), 6.79(1H, d, J = 7.8 Hz), 6. 90(2H, brd, J = 8.3 Hz), 7. 41(1H, brd,J=7.3 Hz);高场区显示有2个甲氧基信号:δ 3.65, 3.81(各 3H,s), 2 个与 N 原子相连的甲基信 号: 8 2.54(6H,s),以及 14 个其它脂肪氢信号。 13C-NMR显示有 24 个芳香碳信号,12 个脂肪碳信 号,结合 DEPT 和 HMQC 可以推断其中 4 个伯碳 (CH₂),6个仲碳(CH₂),12个叔碳(CH),14个季碳 (C)。根据以上数据以及生源关系初步断定化合物 I 为双苄基异喹啉类生物碱。分析其 1D-和 2D-NMR 数据('H-NMR、'3C-NMR、DEPT、COSY、 HMQC、HMBC、TOCSY 和 NOESY,主要 HMBC 和 NOESY 相关关系见图 1),确定化合物 I 的结 构,见图 2。并对其1H-NMR和13C-NMR数据进行了 全归属(表 1)。化合物 I 的结构与 aromoline 一致, 熔点、旋光度也和文献报道 aromoline 的数据一致, 但是其13C-NMR数据与文献报道的 aromoline 的 13C-NMR 数据有较大差别如 C-9, C-3', C-4a', C-8a', C-9', C-11', C-12', 6-OCH3, 6'-OCH3, N-CH3' (表 1)。由于文献归属13C-NMR数据主要根据取代 基对苯环化学位移的取代效应理论并结合全偶合碳 谱的偶合裂分情况,有可能导致归属错误,因此仔细 分析这些存在误差的数据,发现可以对文献数据进 行如下调整,分别将 C-9 和 C-9', C-4a'和 C-8a', C-11'和 C-12',6-OCH。和 6'-OCH。的数据互换,调整 完后的文献数据再与化合物 I 的数据对照,发现只有 C-3′,C-4a′和 N-CH₃′有较大差别,其他数据基本一致。因此推测有可能化合物 I 的 C-1′构型与文献报道化合物的有所不同。

不同结构类型的双苄基异喹啉类生物碱的 C-1 和 C-1'构型不同,其 ORD 谱会有不同^[6]。对于 8-7', 12-11' 偶合型,分为 SR 和 SS 两种构型,对于 SR

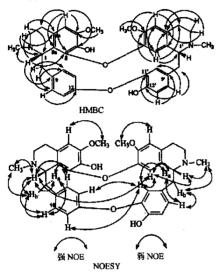


图 1 化合物 I 的主要 HMBC 和 NOESY 相关关系 Fig. 1 Key HMBC and NOESY correlations

of compound I

型,其ORD谱在正性区域内显示有两个正性Cotton效应峰,而且第二个Cotton效应峰的强度是第一个的3~4倍。对于SS型其ORD谱的峰形则完全不同,虽然也显示两个正性Cotton效应峰,但是第一个Cotton效应峰出现在负区域内,位于290 nm处的肩峰和277 nm处的峰谷之间,在270~

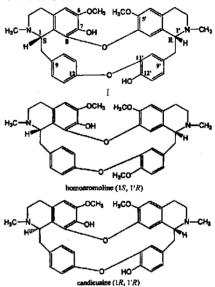


图 2 化合物 I homoaromoline 和 candicusine 的结构 Fig. 2 Structures of compound 1, homoaromoline, and candicusine

表 1 化合物 I 的 NMR 数据(CDCl₃, ¹H-NMR, 500 MHz; ¹³C-NMR, 125 MHz)

Table 1 NMR data of compound I (CDCl₃, ¹H-NMR, 500 MHz; ¹³C-NMR, 125 MHz)

No.	Ref ^[5]	Homo ^[7]	1		D. ETTO	.	Ref ^[5]	Homo ^[7]	1		DEM
				åс	- DEPT	No.	δ_{C}	δ_{C}	δн	δ _C	– DEPT
1	60.9	60- 7	4. 20(brd, 5. 6 Hz)	60.85	СН	1'	64.3	64.2	3.60	64- 37	CH
3	45-0	50. 9	2. 91.3. 25	45.04	CH_2	3'	43-6	44.9	2.43,2.80	50.93	CH ₂
4	24. 4	24.6	2.68(dd,16.6,5.4) 3.04	24.44	CH ₂	4'	28- 4	28. 2	2- 44 3- 01	28- 42	CH ₂
4a	122. 9	122.7		122.96	C	4a'	128.7	130.4		130.64	C
5	104.7	104-6	6.32 s	104.75	CH	5′	111.2	111. 1 ^b	6.36 s	111.33	CH
6	146.7	147.2		146-54	С	6'	148-2	148.5		148-48	C
7	133. 4	133.5		133.68	c	7'	143.3	143.9		143.99	C
8	141.3	142.0		141.76	C	8′	117.3	117.0	6.67 s	117.45	CH
8a	122.7	122.9		122.90	С	8a'	124. 3	127.9		128.80	С
a	40. 0	38-8	2.78(Ha) 3.31(brd.14.2,H _b)	39. 82	CH ₂	α	38. 3	38- 2	2.80(Ha) 3.03(Hb)	38. 5	CH ₂
9	138.6	130.9*		138.52	С	9'	138-6	137.8		130.64	С
10	128.6	128-4	7.41(brd, 7.8)	128.80	CH	10'	116.8	117-0	5- 65 brs	117.01	CH
11	121.4	121.8	6. 90(brd.7. 8)	121.59	CH	11'	143.7	146.7		146.77	С
12	152-6	152. 9		152.93	C	12'	146.0	148-7		143-64	C
13	120.5	121.3	6. 42(brd, 7. 3)	120.66	CH	13'	114.2	110. 9 ^b	6.79(d,7.8)	114.44	CH
14	131.3	131.4	6. 90(brd, 7. 8)	131.52	CH	14'	124.5	123.7	6.76(brd,7.8)	124-32	CH
N-CH ₃	41.8	41.5°	2. 54 s	41.79	CH ₃	N'-CH₃	41.8	43.5°	2.54 s	43-53	CH ₃
S-OCH ₃	55. 3	55. 2 ^d	3.81 s	56. 15	CH ₃	6'-OCH₃ 12'-OCH₃	56-1	55. 8 ^d 55. 8 ^d	3. 65 s	55. 36	CH₃

Ref^[5]_文献[5]中 aromoline; Homo-homoaromoline; a~d-数据可以互换

Ref^[5]-aromoline in reference [5]; Homo-homoaromoline; a-d-values interchangeable

250 nm 出现一些小的峰和谷;第二个 Cotton 效应的第一个峰出现在 240 nm 左右。因此,测定了化合物 I 的 CD 谱,可以看出其 CD 谱与 1S,1'R, 型一致,因此推断化合物 I 的构型为 1S,1'R,与 aromoline 的构型完全一致。

为了进一步确证其结构,查阅了大量有关二苄基异喹啉类生物碱的文献。homoaromoline 与 aromoline 的结构相似^[7,8],差别仅在于 homoaromoline 为 12′-OCH₃ 取代,aromoline 为 12′-OH 取代,二者构型也完全相同,均为 1S,1′R 型(图 2),比较二者的比旋光度和 CD 谱数据,非常相似(表 2);其 ¹³C-NMR数据除取代基不同的苯环上个别数据稍有差别外,其他数据基本一致(注意:二者 C-3 和 C-3′数据归属正好相反)(表 1)。文献报道了与 aromoline 构型不同的异构体 candicusine(1R,1′R)(图 2)的比旋光度和 CD 谱数据^[8],经对照发现与化合物 I 的比旋光度和 CD 谱数据完全不同。上述结果进一步表明化合物 I 的构型为 1S,1R′。

表 2 化合物 I 、homoaromoline 和 candicusine 的 比旋光度及 CD 谱数据

Table 2 Specific rotatory power and CD data of compound

I homogromoline, and candicusine

化合物	[a] _D	CD
I	+249.66(MeOH,c 0.85)	0(305),+2(282),+18(238), +33(221)
homoaromoline	+278(MeOH,c 0.54)	0(350),+11(293),+46(240), +90(221)
candicusine	+75(MeOH,c 0.07)	0(300), -1(280), -3(255), 0(342), -39(22), negative tail

根据以上证据,化合物 I 的结构鉴定为 IS,I' R-aromoline.

1 仪器和材料

熔点用 X₄ 型显微熔点仪测定。LC-MS 用 Agilent 1100 series LC/MS 仪(分析柱为 Unison UK C₁₈,75 mm×4.6 mm)测定。NMR 用 Bruker — AM500 型核磁仪测定。CD 谱用 JASCO J-720 WI Spectropolarimeter 仪测定。

崖藤采集于海南省,由本校生药研究室蔡少青 教授鉴定。

2 提取和分离

药材粗粉 1.2 kg,10 倍量甲醇提取,回收溶剂 得粗提物浸膏。取浸膏 1 g 用酸碱法处理得生物碱 粗品 200 mg。生物碱粗品经硅胶制备薄层色谱,醋酸乙酯-甲醇-氨水(7:3:0.1)为展开剂,氯仿-甲醇重结晶得化合物 I (18 mg)。

3 结构鉴定

化合物 I:白色针状结晶, mp 198~201 °C, [α]; + 249.66 (MeOH, c 0.85), LC-MS (posit.) m/z:[M+H]+595.2。 ¹H-NMR和¹³C-NMR数据见表 1。CD 谱见图 3。

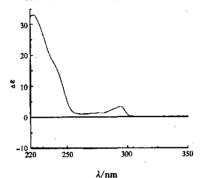


图 3 化合物 I 的 CD 谱图 Fig. 3 CD spectrum of compound I

References:

- Bick I R C, Even E S, Todd A R. Alkaloids of Daphnandra species. I. daphnandrine, daphnoline and aromoline [J]. J Chem. Soc, 1949: 2767-2774.
- [2] Part V, Bick T, Todd. Alkaloids of Daphnandra species. VI. the structures of daphnandrine, daphnoline, and aromoline [1]. J Chem Soc., 1960, 4928-4931.
- [3] Dwuma-Badu D, Ayim J S K, Tackie A N, et al. Additional alkaloids of Triclisia patens and Triclisia subcordata [J]. Phytochemistry, 1975, 14(11): 2524-2545.
- [4] Zhi X. Jun W, Peiling Z, et al. The isolation of alkaloids from Albertisia laurifolia Yamamoto [J]. Acta Bot Sin (植物学报), 1985, 27(6), 630-634.
- [5] Koike L, Marsailoli A J, Reis F A M. Carbon-13 nuclear magnetic resonance spectroscopy and conformation analysis of the daphnoline-repadine class of bisisoquinoline alkalods [J]. J Org Chem, 1982, 47(22): 4351-4353.
- [6] Battersby A R, Bick I R C, Klyne W, et al. Optical rotatory dispersion. Part XN. Bisbenzyltetrahydrooisoquinoline alkaloids [J]. J Chem Soc (C), 1965, 2239-2247.
- [7] Cortes D, Hocquemiller R, Cave A. Alkaloides des annonacees: alcaloides bisbenzyl isoquinoline mineurs ecores de Pseudoxandra sclerocarpa [J]. J Nat Prod, 1986, 49(5): 854-858.
- [8] Paul L S J R. Bisbenzylisoquinoline alkaloids [J]. J Nat Prod., 1991, 54(3): 645-749.