"Scotch"留兰香精油化学成分分析

刘绍华1,覃青云1,杨卫豪1,张祥民21

(1. 柳州两面针股份有限公司,广西 柳州 545001; 2. 复旦大学化学系,上海 200433)

留兰香 Mentha spicata L. 为多年生宿根草本 植物,其主要品种有苏格兰留兰香 M. cardiaca Gerard、M. trichoura Brig.、M. tenuis、心叶留兰香 M. cordifolia Opiz、平叶留兰香 M. haplocalyxoides K. M. Dai、大叶留兰香,小叶留兰香、801 留 兰香等品种。留兰香原产欧洲,英国是最早生产国之 一,现在美国、印度、荷兰、匈牙利、澳大利亚、日本、 俄罗斯和中国都有生产,其中以美国产量最大[1], "Scotch"留兰香是从美国引进,产于我国江苏。笔者 曾报道过具有较好质量的"801"留兰香精油的化学 成分[2],该精油具有清甜柔和微凉的清爽的香气特 征,更重要的是香气的透发力强,留香稳定,被大量 用作牙膏的香精原料;另外,留兰香油作为食用香精 被大量用于软饮料、糖果食品的加香等,具有广泛的 应用前景。本实验在原有的研究基础上,用气相色谱 分析法对江苏的"Scotch"留兰香精油和美国产的 "Scotch"留兰香精油组分含量进行了比较研究,结 果表明,虽然两者的产地各异,但它们的精油组分和 香气均较好,是牙膏、软饮料、糖果食品香糖的又一 新原料。

1 实验部分

1.1 样品准备:(1)江苏"Scotch"留兰香精油:将 "Scotch"留兰香枝叶割下,剪碎并晾干 1 d,水蒸气 蒸馏 3 次,每次用料 10.0 kg,每次蒸出的油用 Na₂SO₄(无水)干燥,其平均得油率见表 1。(2)美国 "Scotch"留兰香精油:由 A. M. Todd 公司提供。

表 1 江苏"Scotch"留兰香的得油率

Table 1 Yield of "Scotch" M. spicata in Jiangsu Province

投 料	投料量/kg	得油量/g	得油率/%	平均得油率/%
第1次	10	38.8	0.388	
第2次	10	37.1	0.371	0.379
第 3 次	10	37.9	0.379	

1.2 理化性质:江苏"Scotch"留兰香精油和美国 "Scotch"留兰香精油的颜色、比重、折光、旋光度以 及在乙醇中的溶解度见表 2。

表 2 江苏"Scotch"留兰香精油和美国"Scotch" 留兰香精油的理化性质

Table 2 Physicochemical properties of "Scotch" M. spicata from Jiangsu Province and United States

理化性质	"Scotch"留兰香精油			
建化性灰	江苏	美 国		
颜色	淡黄色透明液体	淡黄色透明液体		
密度(20℃)	0.925~0.930	0.922~0.934		
折光(20℃)	1.484~1.489	1.484~1.489		
旋光度	-53~-59.5°	-50~-58°		
在乙醇中的溶解度	1:1溶于80%乙醇	1:1溶于80%乙醇		

- 1.3 仪器型号:气相色谱仪:美国惠普公司HP-5890A I型:积分仪:3396A 型。
- 1.4 分析条件:色谱柱 Carbowax 20 m(25 m× 0.32 mm,0.34 μ m)。柱温:初温 50 \mathbb{C} ,升温速度为 3 \mathbb{C} /min,末温 180 \mathbb{C} ,恒温 5 min。进样温度 250 \mathbb{C} ,检测温度 250 \mathbb{C} ,分流比 50:1,柱前压 60 kPa, 进样量 0.2 μ L。

2 结果与讨论

在留兰香油中,其主要组分是左旋香芹酮(1-carvone),体积分数一般在60%~80%,该成分体积分数的高低是确定精油质量好坏的主要成分;其次是左旋苧烯(1-limonene),体积分数一般在9%~20%,该成分体积分数的高低是确定精油香气好坏的主要成分,如果该成分质量分数高,该油表现出一种甜柔的香气,如果体积分数低,则青草气较重。一般地,原精油在使用前需通过蒸馏来修饰其体香。本研究对江苏的"Scotch"留兰香精油的香气组分通过气相色谱分析后,共鉴定出44个组分,占总组分的99.81%(江苏)和99.21%(美国),用峰面积加大法确定其主要成分1-香芹酮质量分数高达69.3%(江苏)和66.7%(美国);1-苧烯质量分数为15.0%(江苏)和15.1%(美国)。其组分及质量分数见表3。

综上所述,江苏的"Scotch"留兰香精油和美国

收稿日期:2004-08-12

Table 3 Result of essential oil from "Scotch" M. spicata in Jiangsu Province and United States by GC

峰 号	组分	质量分数/%			60 /\	质量分数/%	
		江 苏	美 国	峰 号	组分	江苏	美 国
1	2-己基-呋喃	0.029 2	0.073 9	23	反-水桧烯	0.069 0	0.197
2	α-蒎烯	0.720 4	0.721 4	24	4-松油醇	0.1667	0.247
3	3-甲基-丁醛	0.147 5	0.0977	25	反-2-己烯醇	0.099 4	0.123
4	β-蒎烯	0.745 9	0.649 5	26	芳樟醇	0.674 6	0.876
5	桧烯	0.4933	0.440 7	27	二氢香芹酮	0.895 3	1.780
6	月桂烯	0.998 1	1.362 6	28	顺-二氢香芹酯	0.111 9	0.294
7	α-松油烯	0.040 3	0.0971	29	反-二氢香芹酯	0.134 2	0.279
8	柠烯	15.004 7	15.109 3	30	δ-松油醇	0.265 3	0.258
9	1,8-桉叶油素	1.439 5	1.4199	31	二氢香芹醇	0.106 0	0.091
10	反式-罗勒烯	0.0519	0.0529	32	大根香叶烯	0.061 2	0.068
11	对-伞花烯	0.029 8	0.0934	33	反式-β-金合欢烯	0.421 3	0.083
12	γ-松油烯	0.0334	0.049 4	34	葎草烯	0.049 3	0.683
13	松油烯	0.0669	0.094 1	35	α-松油醇	0.931 6	0.878
14	3-辛醇	0.242 6	0.181 8	36	新-二氢香芹醇	0.118 6	0.107
15	薄荷酮	2.318 6	1.644 6	. 37	L-香芹酮	69.285 7	66.706
16	异-薄荷酮	1.0137	0.8888	38	荜澄茄烯	0.137 2	0.286
17	己烯醇	0.082 3	0.379 9	39	反-香芹醇	0.1107	0.220
18	乙酸-3-辛酯	0.088 4	0.0632	40	顺-香芹醇	0.115 6	0.109
19	β-波旁烯	0.186 3	0.2031	41	茉莉酮	0.130 5	0.153
20	水桧烯	0.145 5	0.1034	42	绿花白千层醇	0.528 2	0.368
21	β-石竹烯	0.0934	0.1076	43	丁香酚	0.2767	0.297
				1			

1.1589

表 3 江苏"Scotch"留兰香精油和美国"Scotch"留兰香精油的气相色谱分析结果

的"Scotch"留兰香精油中头香总组分(柠烯以前的组分,含柠烯组分)均为18.18%,其主要成分 L-香芹酮的质量分数均较高,底香组分(1-香芹酮以后的组分)分别为1.55%(江苏)和1.51%(美国)。从整个精油的香气及组分来分析,两种"Scotch"留兰香精油的香气及组分协调,具有清甜柔和微凉、透发力强、香气稳定、留香持久的特点,质量好,与质量高的"801"留兰香精油的香气及组分也较接近,是牙膏、软饮料、糖果食品等香精的又一高质量原料,具有重

0.8947

乙酸-新-薄荷酯

要的应用前景。

百里香酚

致谢:本研究所用的美国"Scotch"留兰香精油,由 A. M. Todd 公司提供。

0.2518

0.0733

References:

- [1] The Handbook of Natural Spices Commission. Handbook of Natural Spices (天然香料手册) [M]. Beijing: China Light Industry Press, 1989.
- [2] Liu S H. Studies on chemical constituents of the essential oil from "801" Mentha spicata [J]. Guihaia (广西植物), 1997, 17(3): 286-288.

荒漠肉苁蓉石油醚提取物化学成分及其细胞周期抑制活性

卢克刚,刘红兵,顾谦群

(中国海洋大学海洋药物与食品研究所 海洋药物教育部重点实验室,山东 青岛 266003)

肉苁蓉 Cistanche deserticola Y. C. Ma 又名荒 漠肉苁蓉,为列当科肉苁蓉属植物,其带鳞叶的干燥 肉质茎作为中药肉苁蓉使用,是《中华人民共和国药 典》收载的正品。肉苁蓉味甘、性温,具有"补肾阴益精血,润肠通便"之功效,可用于治疗男子阳痿、女子不孕、腰膝冷痛、血枯便秘等[1]。

近年来中药肉苁蓉因具有显著的改善记忆、抗衰老、抗疲劳、增强机体免疫等功能而备受人们关注,其化学成分及药理作用报道较多^[2,3]。而文献检索表明,新鲜荒漠肉苁蓉的相关研究则较少,仅屠鹏飞等人研究过其鲜花序的正丁醇萃取物的化学成分^[4]。笔者在对新鲜肉苁蓉化学成分的系统研究中,

收稿日期:2004-08-13

作者簡介: 顾谦群(1951—), 女,教授,博士生导师,主要从事天然产物化学研究工作,发表文章 50 余篇。 Tel:(0532)2032065 E-mail:guqianq@mail.ouc.edu.cn