的存在使其他有效成分的含量增加,从而增强疗效;另一种是由于两种(或多种)成分具有相似的功能,在功能上产生协同,从而增强疗效。当不同药味配伍时一方面降低了一种(或多种)有效成分的含量,另一方面在功能上产生协同时,是否降低疗效还要看哪种因素起主导作用。当功能的协同作用大于含量降低产生的药效降低作用时,仍然会增强疗效,因而仍有相须相使的作用。黄芩、黄连、甘草对葛根药效的影响也有相似性,尽管它们对葛根中有效成分含量的影响差异无显著性,但配伍之后与单味葛根相比,增加了黄芩苷、小檗碱等有效成分,它们与葛根在一些功效上可能有相似性,因而仍有可能增强功效,从而产生相使作用。有研究表明黄连与黄芩、甘草按适当的比例配伍,可以增强黄连对金黄色葡萄球菌生长抑制作用[4]。全方对人轮状病毒、小圆病

毒、脊髓灰质炎病毒等有抑制作用^[5],而葛根、黄连、 黄芩、甘草单味药还未发现对这些病毒有抑制作用。 提示本方配伍仍可能有增强药效的作用。

References

- [1] Dai K J, Luo J B, Tan X M, et al. Influence of various compatibility on puerain content in Gegen Qin lian Decoction [J]. Chin Tradit Herb Drugs (中草药), 2003, 34(6): 506-508.
- [2] Tan X M, Dai K J, Luo J B, et al. Influence of compatibility on content of baicalin in Geg en Qinlian Decoction [J]. Chin Tradit Herb Drugs (中草药), 2003, 34(7): 598-600.
- [3] Ch P (中国药典) [S]. 2000 ed. VolI.
- [4] Yan M Z, Gao X S, Liu L X, et al. Observation on inhibitory effect of Coptis alone and its combination with Scutellaria and liquorice on the growth of Staphylococcus aureus [J]. China J Chin Mater Med (中国中药杂志), 1998, 23(6): 375–377.
- [5] Wang JM, Mou Y J, Yang W L. Enhancing effect of Zhixie
 Tuire Pill on intestinal local immunfunction [J]. *J Jiamusi*Med Coll (佳木斯医学院学报), 1992, 15(2): 3.

舒胸滴丸制备工艺研究

倪 健1,阎 萍2*

(1. 北京中医药大学中药学院,北京 100102; 2. 北京市医药器械学校,北京 100012)

摘 要:目的 研究影响舒胸滴丸制备的各种因素,确立最佳制备工艺。方法 以滴丸圆整度和丸重为指标,采用正交设计试验法对影响因素进行考察。 结果 以聚乙二醇 4000为基质,甲基硅油为冷却液,以内径为 $4.1~\mathrm{mm}$ 外径为 $6.1~\mathrm{mm}$ 的滴管,20— 30滴 /min滴入 $120~\mathrm{cm}$ 长的冷却柱中,采用梯度冷却(梯度冷却液的温度分布为 40° ~ 50° C、 10° C ~ 30° C、 0° C ~ 4° C),所得滴丸的圆整度和丸重好,成品率高。 结论 该制备工艺成品率高,符合滴丸的质量要求,可用于舒胸滴丸制备。

关键词: 舒胸滴丸;制备工艺;正交试验;圆整度;丸重

中图分类号: R283. 3; R283. 6 文献标识码: B 文章编号: 0253- 2670(2003)12- 1087- 03

Study on preparation technology Shuxiong Dropping Pill

NI Jan¹, YAN Ping²

- (1. College of Chinese Materia Medica, Beijing University of TCM, Beijing 100102, China;
 - 2. Beijing School of Medicinal Machinery, Beijing 100012, China)

Abstract Object To optimize the best technical parameters through controlling the different factors. **Methods** Taking spherical degree and pill weight as index, the above factors were observed by orthogonal test. **Results** PEG4000 as matrix, methyl-silicon oil as refrigerant. Internal and external diameter of burette are 4.1 mm and 6.1 mm, dropping into the refrigerant that composed of $40^{\circ}\text{C}-50^{\circ}\text{C}$, $10^{\circ}\text{C}-30^{\circ}\text{C}$, $0^{\circ}\text{C}-4^{\circ}\text{C}$ by $20^{\circ}\text{C}-30^{\circ}\text{C}$ droppings per minute. **Conclusion** The highest finished product with good quality can be got through this process.

Key words Shuxiong Dropping Pill; preparation technology; orthogonal test; spherical degree; pill weight

舒胸滴丸是由《中华人民共和国药典》 2000年版一部所载舒胸片改制而来,由三七,红花,川芎组

成,具有活血、祛瘀、止痛作用,用于冠心病、心绞痛等疾病的治疗。 滴丸具有生物利用度高、起效快、制

备简便等特点,属于速效制剂范畴,因而制备成滴丸 可满足临床急症的需求。 本实验针对影响舒胸滴丸 成型的因素进行了研究。

1 材料和仪器

三七 红花 川芎药材购自中国药材公司北京华颐中药制药厂,经北京中医药大学生药系刘春生副教授鉴定,三七为五加科植物三七 Panax notogin—seng(Burk.) F. H. Chen的干燥根,红花为菊科植物红花 Carthamus tinctorius L.的干燥花,川芎为川芎 Ligusticum chuanxiong Hort.的干燥根茎 三七红花 川芎提取物为自制

聚乙二醇 4000,6000(中国医药公司北京公司),甲基硅油 液体石蜡(上海大厂化工厂)均为药用规格。

滴丸及梯度冷却装置(自行设计)。

2 实验方法

2.1 药物与基质的配比: 以药物与基质混合后情况及滴制难易程度,确立药物与基质的配比。 见表 1结果表明,药物与聚乙二醇 4000的比例为 1:2-1:3时,药物与基质融合性较好,稠度适宜,并且易于滴制。

表 1 药物与基质 (聚乙二醇 4000) 配比 Table 1 Ratio of drug and matrix (polyethylene glycol 4000)

	(1)	0.	/
药物与基质配比	融合情况	稠度	滴制情况
1: 1	难	稠	难
1: 1.5	难	较稠	难
1: 2	易	适中	较易
1: 3	易	适中	易
1: 4	易	稀	易

2 2 冷却剂及冷却方式选择: 以常用的冷却剂甲基硅油 液体石蜡为冷却剂,药物与基质按 1: 2比例混匀后滴制 滴制条件: $(80\pm 2)^{\circ}$ 保温滴制,滴口内径为 $4.1_{\rm mm}$,外径 $6.1_{\rm mm}$ 冷却剂温度采用梯度或非梯度方式,梯度冷却温度分布为: 40° $\sim 50^{\circ}$ 10° $\sim 30^{\circ}$ 10° $\sim 4^{\circ}$ 10° $\sim 10^{\circ}$ $\sim 30^{\circ}$ 10° $\sim 10^{\circ}$ $\sim 10^{$

表 2 因素水平表

Table 2 Factors and levels of refrigerant

水平		因 素	
小十	A冷却剂	B冷却方式	C冷却柱高度 /cm
1	甲基硅油	梯度	120
2	液体石蜡	非梯度	180

表 3 $L_4(2^3)$ 正交设计及结果

Table 3 $L_4(2^3)$ orthogonal design and results

试验号	A	В	C 圆整度合格率。		格率 %
1	1	1	1	91. 1	95. 3
2	1	2	2	85. 3	84. 9
3	2	1	2	78. 2	79.8
4	2	2	1	70. 5	69. 1
K_1	178. 5	171.4	163. 7		
K_2	148.7	155.8	163. 5		
R	9.8	15.6	0. 2		

表 4 圆整度方差分析

Table 4 Variance analysis of spherical degree

方差来源	离均差平方和	自由度	方差	F值	显著性
A	453. 125	1	435. 125	184. 924	<i>P</i> < 0. 01
В	149. 645	1	149. 645	63. 598	P < 0.01
C(误差)	11. 765	5	2. 353		

 $F_{0.01}(1, 5) = 16.26$

从表 3及表 4可见,冷却剂和冷却方式对滴丸圆整度的影响大小为 A>B>C,即冷却剂种类对滴丸圆整度影响大,冷却剂与冷却方式对滴丸圆整度影响差异均具有显著性,冷却柱高度对滴丸圆整度影响不大。最佳工艺: 采用甲基硅油为冷却剂,梯度冷却,梯度冷却温度分布为: $40^{\circ}C \sim 50^{\circ}C$, $10^{\circ}C \sim 30^{\circ}C$, $0^{\circ}C \sim 4^{\circ}C$,各温度的冷却柱长度均为 $40^{\circ}C$ cm

验证试验: 按最佳条件试验 ,制得的滴丸圆整度合格率为 93. 4% (n=5) ,结果稳定。

2.3 滴距、滴速、温度的选择:滴丸丸重受滴制过程中滴距 滴速 温度等因素影响,因此采用正交试验法考察各因素对滴丸的影响 滴口的内外径固定为4.1,6.1 mm 评价指标:丸重合格率按《中华人民共和国药典》2000年版一部质量差异要求:符合±7.5%之内。正交设计方法与结果见表5~7

表 5 因素水平表

Table 5 Factors and levels of dropping pill

水平		因 素	
小十	A温度 /℃	B滴距 /cm	C滴速 /(d° min ⁻¹)
1	90	4	10~ 20
2	80	6	20~ 30
3	70	10	30~ 50

方差分析表明,滴距滴速、温度的影响差异均不显著。 对丸重合格率的影响为 A>B>C,即温度>滴距>滴速。 最佳工艺为 A_2 B_2 C_3 ,即采用滴制温度 $80^{\circ}C$ 、滴速为 30° 50 d/min 滴距为 6 cm

验证试验: 按最佳条件试验,制得的滴丸丸重合格率为 96.8% (n=5),结果稳定

3 讨论

3.1 影响滴丸制备的因素有许多方面,如药物基质、冷却剂、温度、滴距滴速,冷却方式、滴口内外径

表 6 L₉(3⁴)正交设计及结果

Table 6 L₀(3⁴) orthogonal design and results

试验号	A	В	С	D(空白)	丸重合格率 1%
1	1	1	1	1	78. 3
2	1	2	2	2	85. 9
3	1	3	3	3	82. 1
4	2	1	2	3	95.7
5	2	2	3	1	97. 2
6	2	3	1	2	94. 6
7	3	1	3	2	93. 2
8	3	2	1	3	95.7
9	3	3	2	1	87. 5
K_1	246. 3	267. 2	268. 6	263	
K_2	287. 5	278. 8	269. 1	273. 7	
K_3	276. 4	264. 2	272. 5	273. 5	
R	13. 73	4. 87	1. 30	3. 57	

等[5] 本实验从影响滴丸的圆整度和丸重两方面 考察了各因素的影响,确立制备舒胸滴丸的最佳 条件。

表 7 丸重合格率方差分析

Table 7 Variance analysis of qualified rate of pill weight

方差来源	离均差平方和	自由度	方差	F值
A	302. 962	2	151. 481	12. 13
В	39. 636	2	19. 818	1.587
С	3. 002	2	1. 501	0.120
D(误差)	24. 967	2	12. 488	

 $F_{0.05}(2,2) = 19.00$

3.2 实验中发现,药物与基质混匀时,药物细粉应在 120目以上,且应先与约 10%~ 20%的水混匀后再与基质熔融,可保证成品颜色均匀,光滑,与药物

基质易干混匀

- 3.3 冷却剂种类选择时,着重考虑冷却剂的相对密度与黏度,以使滴丸缓缓下降。制备舒胸滴丸时甲基硅油优于液体石蜡,梯度冷却优于非梯度冷却。
- 3.4 实验中曾使用聚乙二醇 6000,但由于与药物融合性差,稠度大,滴制困难,滴制时需要提高滴制温度.因此选择了聚乙二醇 4000
- 3.5 评价指标采用了以每粒滴丸最短径 最长径> 0.8(反映滴丸的圆整度)和丸重差异(± 7.5%),避免了人为评价等主观因素。
- 3.6 舒胸片为糖衣片,每片含原药材量为 0.4g,改制成滴丸后,每粒滴丸相当于每片含药量 在提高了生物利用度的同时,减少了工艺流程,携带与服用的方便性也大大增强

References

- [1] Luo X J, Guan S J. Experimental study on preparation method for Xianglian Dropping Pill [J]. *Chin Tradit Pat Med* (中成药), 1992, 14(9): 4-6.
- [2] Mi H, Dong FY. Study on optimum preparation procedure for Guanxin Danshen Dropping Pill [J]. *Chin Tradit Pat Med* (中成药), 2000, 22(3): 190-192.
- [3] Fan B T. Pharmaceutics of Traditional Chinese Medicine (中 药药剂学) [M]. Shanghai Science and Technology Publishers, 1997.
- [4] Lin Y P, Qiu D W. Optimization of preparation technology for Migao Xinle Dropping Hll by uniform design [J]. *China J Chin Mater Med* (中国中药杂志), 1995, 20(4): 219-220.
- [5] Guo J P, Zhao T Y. *In vitro* dissolution test of Flavonoid Pilulae from Gegen [J]. *Chin Tradit Herb Drugs* (中草药), 1995, 26(6): 298-299.

大孔吸附树脂纯化麦冬总皂苷的工艺研究

周跃华¹,吴笑如²,徐德生²,冯 怡²,李谨谨^{2*}

(1. 国家食品药品监督管理局 药品审评中心 ,北京 100038; 2. 上海中医药大学 ,上海 200032)

麦冬为百合科沿阶草属植物麦冬 Ophiopogon japonicus (Thunb.) Ker-Gawl.的干燥块根,是一味常用滋阴中药,始载于《神农本草经》,历代重要本草都有记载 麦冬具有养阴生津、润肺清心的功能,可用于热病伤津 心烦口渴等症。现代研究发现:麦冬含有甾体皂苷、高异黄酮、多糖、氨基酸等成分。其中麦冬皂苷类成分具有一定的抗心肌缺血、抗心律

失常等作用,在中医临床上用于治疗冠心病 心绞痛并取得了一定疗效 [1]。本实验采用大孔吸附树脂法对麦冬中麦冬总皂苷进行纯化,并对其纯化条件进行了考察,以期为麦冬的进一步开发和利用提供参考。

1 材料与仪器

浙麦冬购自上海药材公司徐汇区中药饮片厂, 经上海中医药大学生药教研室鉴定为百合科沿阶草

^{*} 收稿日期: 2003-03-15

作者简介: 周跃华(1963—),男,中药药剂学硕士,国家食品药品监督管理局药品审评中心工作人员,主要从事中药新药药学资料的评价。 Tel: (010) 68585566-444 E-mail yu ehuazl 234@ sina. com