1595,1485(苯基),1260(酚羟基),890(1,2,3,5-取代苯),812(1,4-取代苯)。 H-NMR(DMSO)δ: 苷 元: 12.56, 10.83, 10.11(各 1H, 单峰, 三个 OH), 7. 98. 6. 88(各 2H. J= 9 Hz), 6. 41, 6. 20(各 1H. 单 峰); 糖基: 0.98(3H, 双峰, 鼠李糖基-CH3, J=6 Hz) 13 C-NMR(DMSO) δ : 177. 4(C-4), 164. 1(C-7), 161.2(C-9), 159.9(C-2), 156.8(C-5), 156.5(C-4), 133. 3(C-3), 130. 9(C-2, 6), 120. 9(C-1), 115.1(C-3,5),104.0(C-10),101.4,100.8(糖的 端基 (2), 98.7((2-6), 98.8((2-8)), 76.4, 75.8, 74.2, 71.9,70.6,70.3,70.0,68.2,66.9(糖基上除端基和 -CH3 以外的 C), 17.7(鼠李糖-CH3)。ESI-MS[M+ 1]: 一级: 594.9, 二级: 448.8, 287.1。综合以上数据 确定该化合物为山柰酚-3-0-新橙皮糖苷。

致谢: 沈阳药科大学药物分析教研室 2002 级专 题生张博、张富生等协助完成本实验。

References:

- [1] China Pharmaceutical University. Collection Words of Chinese Materia Medica (中药辞海) [M]. Beijing: China Medico-Pharmacological Science and Technology Publishing House,
- Yang X L, Luo J, Sun S B, et al. Researches on anti-virus function of Tetrastigma hemsley anum [J]. Hubei Tradit Chin Med (湖北中医), 1989 (4): 40-41.
- [3] Zi G M, Ji L, Hu J C, et al. Studies of anti-inflammatory action and analysis of hemsley reckvine (Tetrastigma hemsley anum) [J]. Chin Tradit Herb Drugs (中草药), 1980, 11 (4): 145-146.
- [4] Cai X L. A study of Tetrastigma hemsleyanum on liver functions of rabbit by the application of ¹³¹I-rose bengal [J]. Chin Tradit Herb Drugs (中草药), 1980, 11(1): 38-39.
- Liu D, Yang J S. A study on chemical components of Tetrastigma hemslevanum Diels et Gilg. native to China [J]. China I Chin Mater Med (中国中药杂志), 1999, 24(10):
- [6] Yang DJ, Liu HY, Li XZ, et al. Chemical constituents of Tetrastig ma hemsley anum Diels et Gilg. [J]. China J Chin Mater Med (中国中药杂志), 1998, 23(7): 419-421.
- Liu J S, Ding J M, Huang M F. Studies on the active principles of Huanijing (Sophora joponica) [J]. Chin Tradit Herb Drugs (中草药), 1980, 11(4): 145-146.

牵牛子脂肪油类成分分析

萍*,张重义,景瑞* 陈立娜,李 (中国药科大学, 江苏 南京 210038)

牵牛子为旋花科植物裂叶牵牛 Pharbitis nil (L.) Choisy 或圆叶牵牛 P. purpurea (L.) Voigt 的干燥成熟种子,其性寒味苦,有小毒。有泻下通便、 消痰涤饮、杀虫攻积这作用[1]。 药理研究表明, 牵牛 子具有泻下、利尿[2]、兴奋离体兔肠和离体大鼠子宫 平滑肌[3]以及对猪蛔虫有驱虫效果[3]。用以水肿胀 满、二便不通、痰饮积聚、气逆喘咳、虫积腹痛、蛔虫、 绦虫病等。有关牵牛子的化学成分研究较少,仅在 20世纪70年代以前,日本学者作过一些研究[4~7]。 我们对其化学成分作系统研究时,首先对石油醚部 分化学成分进行了分析。

1 实验材料

牵牛子, 经鉴定为旋花科植物裂叶牵牛 P. nil (L). Choisy 的种子,除去杂质,用时捣碎。

2 牵牛子挥发油的提取

取牵牛子药材, 粉碎, 石油醚加热回流提取 6

h, 滤过, 回收石油醚至小体积, 作为挥发油样品。

3 挥发油成分分析

美国惠普 HP 5890- 5972 气相色谱-质谱联用 仪, 进样口温度: 240 , 柱前压: 120 psi, EI 源温 度: 170 ,色谱柱: HP-1 (60 m × 0.25 mm, 0.25 μL), 电子能量: 70 eV, 传输线温度: 280 , 分流比: 40 1,程序升温:以8 /min 从65 保持 20 min, 进样量: 0.5 μL 测定结果见表 1。

4 讨论

本实验首次对牵牛子脂肪油类成分进行分析, 经GC-MS分析测定了39种成分,鉴定了其中的36 种成分。可以看出,牵牛子中挥发油类成分主要是烷 烃类化合物,相对含量高达 72.12%,其中 2-甲基己 烷相对含量最高,达 23.32%,3-甲基己烷相对含量 为 21.26%; 其次为酸类, 亚油酸相对含量为 13.95%, 十六碳酸相对含量为 6.62%, 硬脂酸相对

收稿日期: 2002-04-27 基金项目: "十五 '国家攻关项目(2001BA 701A 11)

作者简介: 陈立娜(1976-), 在读博士。

通讯作者 Tel: (025) 5322256 E-mail: lipingli@publicl. ptt. s. cn

含量为 1.17%; 其余的 1-己醇相对含量为 5.50%, 甲苯相对含量为 0.33%, 1,4-二甲基环己烯相对含量为 0.31%。有关成分的药理活性目前正在进行中。

4.2 牵牛子中的挥发油类成分, 大多为长链的、相似的化合物, 微机检索匹配度低, 只能经过手检才能确定其结构。

表 1 牵牛子挥发油 GC-MS 分析结果

Table 1 Result of GC-MS in essential oil in seed of P. nil

序号	化 合 物	质量分数/%	序号	化 合 物	质量分数/%
1	2-甲基戊烷	1. 72	19	乙基环己烷	0.44
2	3-甲基戊烷	1.71	20	壬烷	0. 17
3	己烷	4. 75	21	癸烷	0. 25
4	1-己醇	5. 50	22	十一烷	0. 28
5	3,3-二甲基戊烷	2. 63	23	十二烷	0. 27
6	2-甲基己烷	23. 32	24	十三烷	0.30
7	3-甲基己烷	21. 26	25	十四烷	0. 32
8	3-乙基戊烷	3.71	26	十五烷	0.36
9	庚烷	4. 93	27	十六烷	0. 34
10	甲基环己烷	0. 32	28	十七碳烷	0. 33
11	甲苯	0. 33	29	十八碳烷	0. 27
12	2-甲基庚烷	0. 32	30	十九碳烷	0. 27
13	3-甲基庚烷	0. 31	31	十六碳酸	6. 62
14	1,4-二甲基环己烯	0.31	32	二十碳烷	0. 25
15	正辛烷	1. 12	33	二十一碳烷	0. 20
16	1,2-二甲基环己烷	0. 23	34	亚油酸	13. 95
17	1,3-二甲基反式环己烷	0. 22	35	硬脂酸	1. 17
18	丙基环戊烷	0. 20	36	C ₂₇ 的烷烃	1. 32

4. 3 脂肪油类成分具有较为广泛的生物活性, 应该作为质量控制指标之一。从 GC-MS 联用技术在中草药挥发油化学成分研究的应用来看, 气相色谱可对挥发油各成分进行有效的分离。质谱采用电子轰击源, 提供的化合物裂片特征性强, 利用文献经微机数据库检索及质谱标准图对照鉴定, 可方便而准确地定性。仅就 你华人民共和国药典》中收载的种子药材而言, 只有少数利用该技术进行了挥发油化学成分研究。因此, 有待于科技工作者进一步拓宽 GC-MS 联用技术的应用范围。

References:

- [1] Ch P (中国药典) [S]. 2000 ed. Vol
- [2] Li B R, Wa C Q. The effect on the fraction of hypothalamic-pituitary-gonad axis [J]. *J Tradit Chin Med* (中医杂志), 1984, 25(4): 543.
- [3] Hikaru O, Nozikok, Kozo K, et al. Studies on resin Glycosides [J]. Chem Pharm Bull, 1972, 20(3): 514-520.
- [4] Hikaru O and Toshio K. Studies on resin glycosides [J]. Chem Pharm Bull, 1971, 19(6): 1114-1149.
- [5] Hikaru O, Toshio K, Kozo K, et al. Studies on resin Glycosides [J]. Chem Pharm Bull, 1971, 19(7): 2394-2403.
- [6] Hik aru O, Masatern O, Toshio K, et al. The study of Semen Pharbitidis components
 [J]. J Pharm, 1922, 479: 1.
- [7] Masateru O, Twao N. Ergot extract in Ipomoea lacunosa, I. hederaceae, I. trichocarp and I. pururea [J]. Phytochemistry, 1990, 38(7): 1892-1897.

四季青挥发油化学成分的研究

廖立平, 毕志明, 李 萍*, 解军波* (中国药科大学生药学教研室, 江苏 南京 210038)

四季青为冬青科植物冬青 *Ilex p urp urea* Has-sk. 的干燥叶,味苦、梁,性凉。具有清热解毒、收敛生肌、凉血消肿的功效,用干肺炎、急性咽喉炎症、痢

疾、胆道感染、外治烧伤、下肢溃疡、皮炎、湿疹、手脚皲裂等^[1]。其主要含有机酚酸、三萜及其皂苷、鞣质、黄酮苷、糖类及挥发油等^[2]。 但到目前为止, 有关四

^{*} 收稿日期: 2002-12-18

作者简介: 廖立平(1978-), 男, 2001 年7 月毕业于中国药科大学获学士学位, 同年攻读中国药科大学生药学研究生, 研究方向生药活性成分与质量评价。

^{*} 通讯作者 Tel: (025) 5322256 E-mail: lipingli@publicl. ptt. js. cn