秦皮化学成分的研究

刘丽梅1,王瑞海1,陈 琳1,吴 萍1,王 丽2*

(1. 中国中医研究院基础理论研究所,北京 100700; 2. 哈尔滨制药三厂,黑龙江 哈尔滨 150070)

在前报^[1]中,作者从苦枥白蜡树树皮中分离到 2 个化合物,秦皮乙素(I)和秦皮素(II),现又从该树皮中分到 3 个化合物,6,7二甲氧基 –8 羟基香豆素(III),秦皮苷(IV)和秦皮甲素(V)。 化合物 III 为首次从《中华人民共和国药典》(2000年版)收载的 4 种秦皮中分得,并首次对化合物III 的 ¹³ C –N M R谱数据进行了归属,化合物 IV 为首次从苦枥白蜡树树皮中分得,并首次对IV 的 ¹³ C –N M R谱数据进行了归属

1 仪器与材料

熔点用 X T4A型显微熔点测定仪测定 (温度计未校正),核磁共振谱用 Varian INOV A-600型核磁共振仪测定, TM S为内标,甲醇为溶剂,质谱用 Zab-spec Tofspec Platform- ESI型质谱仪测定,色谱用聚酰胺为浙江省台洲市四青生化材料厂生产。

实验用秦皮采自黑龙江省五常县,由中国中医研究院中药研究所谢宗万研究员鉴定为苦枥白蜡树 *Fraxinus rhynchophylla* Hance的树皮。

2 提取与分离

取苦枥白蜡树的干燥树皮 6.5 kg,粉碎, 95% 乙醇回流提取 3%,每次 4 h,滤过,合并滤液,浓缩 至稠膏状 (4) (5)

2.1 取 0.4 kg 稠膏,加 5% 硫酸水溶液 1500 m L,水解 4 h,放凉,滤过,用等体积乙醚萃取滤液 4次,回收乙醚萃取液至少量,析出固体(约5g)。取固体 3g,上聚酰胺柱,用乙醇洗脱,每份200 m L,收集9~14份合并,回收溶剂至少量,放置冰箱析晶,抽滤,得浅黄棕色晶体,甲醇-水重结晶,得浅黄色针状晶体III。

2 2 取 0.25 kg 稠膏,用 1500 mL 水热溶,趁热抽滤,放置滤液至凉。 用醋酸乙酯萃取滤液 4 次,合并萃取液,减压回收萃取液得干膏 A 继续用正丁醇萃取水溶液 4 次,合并萃取液,减压回收萃取液得干膏 B 144.9 g 取 5 g 干膏 B 上聚酰胺柱,用稀醇洗脱,每份 200 mL,收集 6 8份,10 12 份,分别回收溶剂至少量,放置冰箱析晶 从 6 8份得黄色针状结

晶IV,从 9~10份得白色针状结晶V。

3 结构鉴定

晶III: 浅黄色针状结晶, mp 172 °C ~ 174 °C。 FAB-M S显示其相对分子质量为 222 (M − H), 1^{3} C-N M R 槽显示该化合物有 11 个碳($\delta163.9$, 154.5, 149.6, 144.1, 140.9, 137.3, 112.8, 108.6, 96.0, 61.8, 57.0), $\delta163.9$ 是羰基碳信号, 61.8, 57.0是两个甲氧基碳信号。 1 H-N M R 譜显示该化合物 母核上有 3 个氢($\delta8.03$, d, 1H, J = 9.60 Hz, 6.74, s, 1H; 6.20, d, J = 9.60 Hz), 两个甲氧基上有6个氢($\delta3.95$, 3.93)。根据 HSQC谱可知, $\delta96.0$ 的碳和 $\delta6.74$ 的氢相连, $\delta112.8$ 的碳和 $\delta6.20$ 的氢相连, $\delta140.9$ 的碳和 $\delta8.03$ 的氢相连, $\delta57.0$ 的碳和 $\delta3.93$ 的氢相连, $\delta61.8$ 的碳和 $\delta3.95$ 的氢相连

由于晶III和秦皮素 13 C-N M R和 1 H-N M R谱近 似,其结构也应该近似,故根据秦皮素碳氢信号的归 属[1]和晶]][的光谱数据,可以初步归属晶]][的碳氢 信号。为了进一步确证晶III的结构和碳氢信号的归 属,做了 HM BC谱。在 HM BC谱中, C4-H(88.03)和 $C_2(\delta 163.9), C_6(\delta 149.6), C_8(\delta 144.0), C_{10}(\delta 108.5),$ C5(896.0)相关; G-H(86.20)和 G(8163.9), G (δ137.3), C₀ (δ108.5), C₃ (δ96.0) 相关, C₃-H $(\delta 6.74)$ $\Omega (\delta 154.5), C_6(\delta 149.6), C_9(\delta 137.3),$ C10 (81 08. 5) 相关。另外, Cs (896. 0) 和 83. 93 的甲氧 基氢相关,故相邻; C8(8144.)和 83.95的甲氧基氢 相关,故相邻; 公(8154.5)和 83.93的甲氧基氢相 关,故相邻。根据光谱解析经验可知,当两个甲氧基 和一个羟基在苯环上相邻排列时,处于中间位置上 甲氧基的碳和氢应位于低场,处于边位上甲氧基的 碳和氢应位于高场 综上所述 .最后确定该化合物为 6,7二甲氧基-8羟基香豆素。

晶 IV: 黄色针状结晶, mp 205 °C~ 206 °C。 FAB-M S显示其相对分子质量峰。 ¹³ C-N M R谱显示 该化合物苷元为 370(M[↑] - H), 208是去掉一个葡

^{*} 收稿日期: 2003-01-18

基金项目: 国家重点科技攻关项目 (99-929-01-24-8)

作者简介: 刘丽梅(1963—),女,哈尔滨人,副研究员, 1988年毕业于黑龙江中医药大学药学院,获学士学位,主要从事中草药化学成分及制剂工艺研究

萄糖的苷元部分有 10个碳 (δ163. 6, 147. 5, 146. 4, 145. 8, 144. 3, 133. 2, 113. 0, 112. 2, 106. 1, 56. 9), δ163. 6是羰基碳信号; δ56. 9是甲氧基碳信号。糖部分有 6个碳 (δ106. 1, 78. 4, 77. 8, 75. 5, 70. 9, 62. 2), δ106. 1是端基碳信号。 ¹ H→N M R譜显示该化合物苷元部分有 3个氢 (δ7. 86, d, 1 H, J= 9. 52 Hz, 6. 97,

表 1 晶III~ V 的 H-NMR, 13 C-NMR数据 (CD3OD)

Table 1 ¹ H-NMR, ¹³ C-NMR data of crystal III – V (CD₃OD)

碳位	晶III		晶IV 苷元部分		晶IV 糖部分		晶V 苷元部分		晶V 糖部分	
	¹³ C-N M R	¹ H-N M R	¹³ C-N M R	¹ H-N M R	¹³ C-N M R	¹ H-N M R	¹³ C-N M R	¹ H-N M R	¹³ C-N M R	¹ H–N M R
1					106. 1	4. 97(d)			104. 3	4. 83(d)
2	163. 9		163. 6		75. 5		163. 6		74. 8	
3	112. 8	6. 20(d)	113. 0	6. 23(d)	78. 4		113. 1	6. 20(d)	78. 5	
4	140. 9	8. 03(d)	146. 4	7.86(d)	70. 9		146. 0	7.82(d)	71. 4	
5	96. 0	6. 74(s)	106. 1	6. 97(s)	77. 8		116. 7	6. 80(s)	77. 5	
6	149. 6		145. 8		62. 2		144. 4		62. 5	
7	154. 5		147. 5				153. 2			
8	144. 1		144. 3				104. 5			
9	137. 3		133. 2				152. 5	7. 42(s)		
10	108. 6		112. 2				112. 8			
OCH ₃	61. 8	3.95								
	57. 0	3. 93								

晶 V: 白色针状结晶, mp 204 ℃~ 206 ℃。 FAB-MS显示其相对分子质量为 340(M[†] − H), 179是去掉一个葡萄糖苷元峰, 硅胶薄层色谱显示该化合物和秦皮甲素的 Rf值一致。 ¹³ C-NM R谱显示该化合物苷元部分有 9 个碳(δ 163. 6, 153. 2, 152. 5, 146. 0, 144. 4, 116. 7, 113. 1, 112. 8, 104. 5), δ 163. 6是羰基碳信号; 糖部分有 6 个碳(δ 104. 3, 78. 5, 77. 5, 74. 8, 71. 4, 62. 5), δ 104. 3是端基碳信号。 ¹ H-N M R谱显示该化合物苷元部分有 4 个氢(δ 7. 82, d, 1 H, J= 9. 52 Hz, 7. 42, s, 1 H, 6. 80, s, 1 H; 6. 20, d, 1 H, J= 9. 34 Hz), 糖部分端基氢为 δ 4. 83, d, 1 H, J= 8. 97 Hz 以上数据和文献 ¹² 报道的秦皮甲素的数据相同,故晶 V为秦皮甲素。晶 V的 ¹ H-N M R, ¹³ C-N M P光谱数据见表 1

4 酸水解试验

4.1 水解方法: 取晶IV 10 mg,加 5% 硫酸水溶液 5

mL.干沸水浴中加热 4 h.冷却.放置。

- 4.2 苷元鉴定:酸水解液和秦皮素标准品点于同一硅胶 -G薄层板上,用氯仿 甲醇 甲酸(6:1:0.5)展开,三氯化铁 铁氰化钾显色,确定苷元为秦皮素。4.3 糖的鉴定:用径向纸色谱,酸水解液和葡萄糖
- (Glu)及半乳糖(Gal)标准品点样,正丁醇 苯 吡啶-水(5:1:3:3)展开,草酸 苯胺显色,确定为葡萄糖。

致谢: 军事医学科学院仪器测试中心代测核磁 共振光谱和质谱。

References

- [1] Liu L M, Chen L, Wang R H, et al. Studies on chemical constituents of Qinpi [J]. Chin Tradit Herb Drugs (中草药), 2001, 32(12): 1073-1074.
- [2] Chen D C. Handbook of Chemical Standard Substance in Chinese Herbs (中药化学对照品工作手册) [M]. Beijing China Medico-Pharmaceutical Science and Technology Publishing House, 1999.

欢迎订阅《中草药》杂志 2002年增刊

为了加快中药现代化的进程,交流中药指纹图谱研究的经验,讨论入世后我国中药产业面临的挑战和对策,本刊在 2002年 10月底出版以"中药现代化"和"中药指纹图谱"为主要内容的增刊。欢迎广大读者直接向《中草药》杂志编辑部订阅 定价: 60.00元,另加 5.00元邮费.款到寄刊。

本刊另有 1996-2001年增刊,欢迎订阅

编辑部地址: 天津市南开区鞍山西道 308号 邮编: 300193

电话: (022) 27474913 23006821 传真: (022) 23006821 E-mail zcyzzbjb@ tjipr. com