1. 98 Hz, H-8), 6. 19 (1H, brs, H-6), 5. 47 (1H, d, J = 7. 38 Hz, H-1"), 糖部分质子: 3. 08- 4. 95 因此推测化合物II 为 3', 4', 5, 5', 7-五羟基黄酮 -3-Oβ - D葡萄糖苷.即异杨梅树皮苷。

化合物III: 无色片状晶体, mp 137 $^{\circ}$ $^{\circ}$ $^{\circ}$ 138 $^{\circ}$ $^{\circ$

化合物IV: 无色片状晶体, mp 136 $^{\circ}$ C ~ 137 $^{\circ}$ C (CH COOCH CH), 其 1 HNMR, Rf 值及显色行为 (10% Hs SO4 显紫色)与豆甾醇对照品一致,所以鉴定该化合物为豆甾醇

化合物 V: 白色粉末, mp 270 [℃]~ 271 [℃] (CH₂ CO CH₃), Molish 反应阳性,其 ¹ HNM R, Rf值及显色行为 (10% H² SO⁴ 显紫色)与胡萝卜苷对照品一致,所以鉴定该化合物为胡萝卜苷。

化合物 VI: 黄色粉末, mp 226 °C (CHOH), Molish 反应阳性,盐酸镁粉反应呈阳性 水解 PC得 D-葡萄糖。 ¹HN M R(300 M Hz, in DM SO) δ 12. 61 (1H, s, C5-O H), 10. 89(1H, s, C-7-O H), 9. 30(2H, s, C-3′-O H), 7. 70(1H, dd, J= 1. 95, 8. 37 Hz, H-6′), 7. 69(1H, d, J= 1. 95 Hz, H-2′), 7. 05(1H, d, J= 8. 85 Hz, H-5′), 6. 42(1H, d, J= 1. 95 Hz, H-8), 6. 21(1H, d, J= 1. 98 Hz, H-6), 3. 86(3H, s, C-4′-O CH₂), 5. 50(1H, d, J= 7. 38 Hz, H-1″),糖部分质子: 3. 09~5. 30 化合物 VI与化合物那里槲皮苷 □相

比,3',4'位的-OH明显少了一个,且多了一个-OCH,根据文献 $^{[4]}$,当黄酮醇的 2'-H ∂ 7. 5~ 7. 7d,6'-H ∂ 7. 6~ 7. 9dd时,-OMe在 4'位,-OH在 3'位。 13 CNMR (75 MHz) δ 177. 6 (C-4) ,164. 3 (C-7),161. 4 (C-5),156. 5 (C-9),156. 0 (C-2),150. 1 (C-4'),146. 0 (C-3'),133. 7 (C-3),122. 8 (C-6'),121. 5 (C-1'),115. 9 (C-5'),111. 5 (C-2'),104. 2 (C-10),100. 9 (C-1''),98. 8 (C-10),98. 100 10

化合物 Ⅷ: 黄色针晶, mp 275 ℃~ 277 ℃ (CHOH),盐酸镁粉反应阳性 在薄层层析上将Ⅷ与山柰酚标准品对照,两者 Rf值及显色行为(AlCb显黄色)完全一致 将其与山柰酚标准品混合后熔点不下降,因此推测化合物Ⅷ为山柰酚

References

- [1] Ahmed S, Graninge M. Potential of the Neem Tree (Azadirachta indica) for pest control and rural development [J]. Econ Bot, 1986, 40(2): 201-209.
- [2] M nawwar M A, Souleman A M A, Buddrus J, et al. Flavonoides of the flowers of Tamarix nilotica [J]. Phytochem istry, 1984, 23(1): 2447-2449.
- [3] Fang Z P, Zeng X Y, Zhang Y J, et al. Studies on the chemical constituents of Euphorbia supine [J]. Chin Tradit Herb Drugs (中草药), 1993, 24(5): 230-233.
- [4] Yao X S. Medicinal Chemistry of Natural Products (天然药物化学)[M]. 2nd ed. Beijing People's Medical Publishing House, 1997.

紫丁香叶化学成分研究

卢 丹1,李平亚1,李静晖2*

(1. 吉林大学 再生医学科学研究所,吉林 长春 130021; 2 吉林省人民医院,吉林 长春 130021)

紫丁香 Syringa oblata Lindl. 为木樨科丁香属落叶乔木,植物资源丰富,主要分布于中国东北、内蒙古、华北、华东、西北。生于林缘、路旁,多由人工栽培。近年研究表明紫丁香具有抗菌消炎[1]、抗病毒[2]和保肝利胆[1,3]等生物活性,预示该属植物中含有防治上述疾病的生物活性物质,而对其化学成分研究相对较少,因此我们对紫丁香的化学成分进行了系统研究 从紫丁香叶中提取 分离并鉴定出 6个单体化合物,分别是: 黄柏内酯 (obaculactone.] 、芒柄

花素 (formonometin, II). 丁香酯素 (syring aresiol, III) 呋喃甲酸 (2-furancarboxylic acid, IV) *D*-甘露醇 (*D*-mannitol, V)和丁二酸 (succinic acid, VI),其中I ~ IV 为首次从该植物中获得。为开发利用这一天然资源提供了科学依据。

1 材料与仪器

紫丁香叶采自原白求恩医科大学校园内,经本校药学院生药教研室张晋敏主任鉴定为 S. oblata Lindl。

熔点仪: Kofler显微熔点测定仪 (未校正);核磁 共振谱: ARX-300型核磁共振测定仪(TMS内标), 美国 Bruker公司生产;质谱: VG Auto Spec-3000 型质谱仪,LCO™离子肼质谱仪,Finnigan MAT公 司生产:柱层标 薄层层析用硅胶 G, H为青岛海洋 化工厂生产:试剂均为分析纯

2 提取分离

干燥紫丁香叶 3 kg,水煎煮提取 3次,每次 1 la 水煎液浓缩,分别用石油醚 氯仿 乙酸乙酯和正丁 醇萃取,回收溶剂分别得石油醚萃取物 氯仿萃取 物、乙酸乙酯萃取物和正丁醇萃取物经反复常压及 减压硅胶柱色谱,氯仿 甲醇梯度洗脱(20:0~20) 得化合物III~ VI。

3 鉴定

化合物I: 无色结晶 (丙酮), mp 297 ℃~ 298 [°]C,溶于乙醇,略溶于乙醚 FABM S,¹HNMR, 13 CNM R光谱数据与化合物黄柏内酯基本一致[4], 故鉴定化合物 [为黄柏内酯。

化合物II: 无色针晶 (甲醇)。mp 257℃。易溶于 甲醇 乙醇及乙酸乙酯等 盐酸镁粉试验呈阳性。MS m/z: 268 [M †; ¹³ CNMR(CD₃ OD): & 154. 9(C-2), 125. 3(C-3), 177. 8(C-4), 128. 5(C-5), 116. 5(C-6), 163. 8 (C-7), 103. 2 (C-8), 158. 0 (C-9), 118. 2 (C-10), 123. 98(C-1), 131. 4(C-2), 114. 8(C-3), 160. 1 (C-4'), 114. 8 (C-5'), 130. 0 (C-6'), 54. 6 (-6') O CH_B); ¹ HNM R (CD₃ OD): δ_H 8. 16 (1H, s, H-2), 8. 05 (1 H, d, J= 8. 8 Hz, H-5), 6. 99 (1 H, m, H-6), 6. 94(2H, m, H-3', 5'), 6. 86(1H, s, H-8), 7. 46(1H, d, J= 8.6 Hz, H-2', 6'), 3.82(3H, s, -OCH3),以上 光谱数据与文献报道的芒柄花素基本一致[5],故鉴 定化合物II 为芒柄花素。

化合物III: 无色针晶 (丙酮)。mp 211℃。易溶于 甲醇 乙醇及丙酮等。 FAB-MS m /z: 418 [M 1; ¹³ CNM R((CD₃)₂ CO): δc 133. 1(C-1, 1'), 104. 5(C-

2, 2'), 147. 0(C-3, 3'), 136. 1(C-4, 4'), 147. 0(C-5, 5'), 104. 5(C-6, 6'), 86. 0(C-7, 7'), 56. 5(C-8, 8'), 69. 0 (C-9, 9'), 54. 6 (-0 CH_3); $^1 \text{HN M R}$ $((CD^3)^2CO)$: & 6.69 (H-2, 6, 2', 6'), 4.87 (H-7, 7'), 3. 26(H-8, 8'), 3. 50, 3. 60(C-9, 9') 以上光谱 数据与化合物丁香酯素基本一致[6].故鉴定化合物 Ⅲ为丁香酯素

化合物IV: 无色针状晶体 (丙酮)。 mp 133℃~ 134℃。 在 100℃有部分升华。 溶于乙醇、乙醚等。 ¹ HN M R, ¹³ CN M P光谱数据与化合物呋喃甲酸基本 一致^[6],故鉴定化合物IV 为α块喃甲酸

化合物V:无色针晶 (甲醇) mp 257℃。易溶于 甲醇、乙醇和乙酸乙酯等。 与 D 甘露醇标准品混合 熔点不下降故鉴定化合物 V 为 D-mannitol

化合物IV 为无色针状晶体 (甲醇) mp 185℃。 溶于甲醇 乙醇和丙酮等,微溶于乙醚,不溶于苯和 石油醚。 ¹³ CNMR (CD₃OD): & 176. 2 (C-1, C-4), 29. 8 (C-2, C-3); ¹ HN M R (CD₃OD): & 2. 55 (H-2,

3)。根据以上光谱数据鉴定化合物Ⅵ为丁二酸

References

- [1] Wang DD, Liu SQ, Chen YJ, et al. Studies on active components of Springa oblata [J]. Acta Pharm Sin (药学学报), 1982, 17(12): 951-954.
- [2] Xue JL, Zhang N, Teng HM, et al. Studies on antiviral experiment of Jia Ding Capsule [J]. Inf Tradit Chin Med (中 医药信息), 1997, 2 47.
- [3] Jilin Medical University-Contagion Office. Preparation of the Springa oblata leaves tablet and its clinical effects on 434 case of acute jaundiced hepatitis [J]. Chin Tradit Herb Drugs (中草药), 1978, 1: 18-19.
- [4] Dreyer D L, Bennet R D. Limonoids from Atalantia monophylla isolation and structure [J]. Tetrahedron, 1976, 32 2367-2373.
- [5] Kinjo J E, Furusawa J I, Baba J, et al. Studies on the constituents of Pueraria lobata. III . Isoflavonoids and related compounds in the roots and the voluble stems [J]. Chem Pharm Bull, 1987, 35(12): 48-49.
- [6] Yu D Q, Yang J S, Zhou T H, et al. Handbook of Analysis Chem istry-N MR (分析 化学手 册-核磁 共振 波谱 手册) [J]. Beijing Chemical Industry Press, 1999.

#