超临界 CO 萃取甘草中甘草次酸的工艺研究

付玉杰,祖元刚*,李春英,赵春建 (东北林业大学 森林植物生态学教育部重点实验室 黑龙江 哈尔滨

要:目的 探讨从甘草中提取甘草次酸的工艺。方法 采用超临界 CO2 萃取法,并与索氏提取法、超声法进行 比较。 结果 超临界 CO2萃取法的最佳工艺条件为:压力 30 MPa,原料粒度 70目,夹带剂为 80% 乙醇,萃取温度 45℃, 萃取时间 2 1 结论 从甘草生药中提取含量较少的甘草次酸, 超临界萃取法较其他几种提取方法具有明显 的优势。

关键词: 甘草:甘草次酸:超临界 CO2萃取:高效液相色谱

中图分类号: R284. 2; R286. 02 文献标识码: B 文章编号: 0253-2670(2003)01-0031-03

Study on supercritical CO₂ extraction process of glycyrrhetic acid in Glycyrrhiza uralensis

FU Yu-jie, ZU Yuan-gang, LI Chun-ying, ZHAO Chun-jian

(Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin 150040, China)

Abstract Object To establish the process of supercritical CO₂ extraction of glycyrrhetic acid from Glycyrrhiza uralensis Fisch. Methods The comparison methods among supercritical CO₂ extraction, Sox hleth extraction and ultrasonic extraction were conducted. Results The optimized supercritical CO2 extraction conditions were 30 MPa, pressure; 70 meshes, granularity of material; 80% ethanol, modifying agent; 45 °C, extraction temperature; 2 hours, extraction time. Conclusion The results show that supercritical CO2 extraction has an advantage over any other extractions of glycyrrhetic acid from G. uralensis.

Key words Glycyrrhiza uralensis Fisch.; glycyrrhetic acid; supercritical CO2 extraction; HPLC

甘草为豆科植物甘草 Glycyrrhiza uralensis Fisch.的根及根状茎.具有清热解毒.止咳祛痰、补脾 和胃、调和诸药的功效[1]。 近年来发现甘草还具有明 显的抗炎、抗溃疡和抗变态反应作用。 Hatano 等 [2]报 道了甘草具有抗艾滋病毒的作用。甘草次酸是甘草酸 的水解产物,药效显著。甘草次酸对大鼠棉球肉芽肿 甲醛性浮肿 结核菌素反应 皮下肉芽肿性炎症均有 一定的抑制作用 [3,4] 甘草次酸通常采用甘草酸水解 来制备或从生药中采用溶剂提取来获得

超临界流体萃取 (SFE)已广泛应用于医药、食 品、化学、石油、煤炭等工业^[5]。 本研究采用 HA 121-50-01型 SFE 装置萃取甘草次酸成分,然后采取 HPLC分析萃取产物中的有效成分。

1 实验材料

试剂与原料: CO2 气体 (纯度 99.5%,哈尔滨 黎明气体公司生产),95%乙醇(哈尔滨市化工试剂 厂生产),甲醇(沈阳东兴试剂厂生产),冰醋酸(哈尔 滨市新春化学试剂厂生产),乌拉尔甘草生药采自黑

龙江省肇东市,由本实验室聂绍荃教授鉴定;甘草次 酸对照品购于 Sigma公司。

- 1.2 仪器: Jasco高效液相色谱仪,日本 Jasco公司 产品: AB104型电子天平(瑞士产):索氏提取器,北 京玻璃仪器厂产品: HA 121-50-01型超临界萃取装 置,南通华安超临界萃取有限公司生产。
- 2 实验部分
- 2.1 高效液相色谱分析条件: 色谱柱: ODS不锈钢色 谱柱(4.6 m m≥ 250 m m, 5 m, HPLC Tech nology Ltd); 检测波长: 254 nm; 流动相: 甲醇-超纯水-冰 乙酸 (75°24°1);柱温: 20° ;流速: 1.0 m L/min; 进样量: 10º L
- 2.2 标准曲线的建立:精密称取甘草次酸对照品 5.0 mg 置于 5 mL容量瓶中,用无水甲醇溶解并定 容至刻度,摇匀,制成 1 mg/mL甘草次酸对照储备 液 分别精密称取甘草次酸对照储备液 20,40,80, 160,320 L置于 1 m L Doff管中,用无水甲醇稀释 至刻度,摇匀,进行 HPLC分析。以峰面积 y 为纵坐

收稿日期: 2002-04-28 作者简介: 付玉杰 (1967-),女,哈尔滨人,副教授,1989年毕业于东北师范大学化学系,获理学学士学位,1992年毕业于东北师范大学 化学系有机合成专业,获理学硕士学位,后在哈尔滨医药股份有限公司技术中心从事新药研究开发工作。2002年毕业于东北 (1985年)、共四党博士学位、主要日本苏田植物研发工作,发表学术论文 10余篇。 林业大学植物学专业,获理学博士学位。主要从 Tel (0451)2190535 E-mail fuy@ 0451.com 主要从事药用植物研发工作,发表学术论文 10余篇。

Tel (0451) 2191517 Fax: (0451) 2102082 E-mail: zyg or@ public. hr. hl. cn

标 ,对照品浓度 X 为横坐标 ,绘制标准曲线 ,回归得 方程为: $Y=2\times 10^7 X-137793$, r=0. 9999 结果表明: 甘草次酸在 $20^{\sim}320^{\mu}$ g/m L浓度与峰面积线性 良好.

2.3 甘草次酸超临界 CO₂萃取条件确定: 取一定量的甘草根茎粉碎过一定目数筛,60℃烘干 6 ½ 精确称取一定量过筛后的甘草根茎粉,用乙醇浸泡过夜后,装入萃取釜中。将萃取釜放入超临界设备中,调节温度、压力 CO₂流速,向泵中充填 CO₂气体后,开动超临界设备,运行一段时间后,在分离釜出口处收集萃取液,夹带剂与甘草根茎粉的液固比为5:1 按给定的 HPLC测定条件测定样品中甘草次酸的峰面积,根据回归方程求出样品液中甘草次酸的浓度,然后按下式计算甘草次酸的萃取率。

$$P(\%) = \frac{C \times V}{W \times 10^{\circ}} \times 100\%$$

式中 P 表示甘草次酸萃取率 (%), C表示甘草次酸浓度 $(\mu g/mL)$, V表示萃取液体积 (mL), W表示甘草原料投料量 (g)

为了筛选更适宜的萃取条件,选择了如表 1所示试验因素和水平,进行正交试验。正交试验的结果见表 2,分析见表 3

表 1 因素水平表

Table 1 Factors and level

水	因 素							
平	A压力	B原料粒	C夹带剂	D萃取温	E萃取时			
+	/M Pa	度相	(乙醇)浓度 %	度汽	间 /h			
1	25	50	80	40	1. 0			
2	30	70	85	45	2. 0			
_3	35	90	90	50	3. 0			

表 2 L₁₈(3)正交试验结果分析表

Table 2 Results of $L_{18}(3^7)$ orthogonal test

			I doic 2	Courts of Lig	(0) 014105	onar cest		
试验号	A	В	С	D	E	F(误差)	G(误差)	甘草次酸萃取率 %
1	1	1	1	1	1	1	1	0.012 3
2	1	2	2	2	2	2	2	0.014 9
3	1	3	3	3	3	3	3	0.011 1
4	2	1	1	2	2	3	3	0.018 6
5	2	2	2	3	3	1	1	0.017 6
6	2	3	3	1	1	2	2	0.0147
7	3	1	2	1	3	2	3	0.011 1
8	3	2	3	2	1	3	1	0.012 1
9	3	3	1	3	2	1	2	0.0128
10	1	1	3	3	2	2	1	0.0110
11	1	2	1	1	3	3	2	0.015 2
12	1	3	2	2	1	1	3	0.012 1
13	2	1	2	3	1	3	2	0.014 7
14	2	2	3	1	2	1	3	0.017 5
15	2	3	1	2	3	2	1	0.018 7
16	3	1	3	2	3	1	2	0.0127
17	3	2	1	3	1	2	3	0.014 6
18	3	3	2	1	2	3	1	0.011 0
I	0. 077	0. 080	0. 092	0. 082	0. 081	0.085	0.083	
II	0. 102	0. 092	0. 081	0. 089	0. 086	0.085	0.085	
III	0. 074	0. 080	0. 079	0. 082	0. 086	0.083	0.085	
极差 R	0. 028	0. 012	0. 013	0. 007	0. 006	0.002	0.002	

表 3 方差分析表

Table 3 Variance analysis

方差来源	离差平方	和S自日	由度 ƒ	方差		F值	显著性
A	7. 758 78<	10- 5	2	3. 879 39<	10-5	23 1. 00 3 3	P < 0. 001
В	1. 469 44	10- 5	2	7. 347 22×	10-6	43. 7500	<i>P</i> < 0. 001
C	1. 630 78<	10 5	2	8. 153 89<	10-6	48. 5534	P < 0. 001
D	5. 921 1K	10-6	2	2. 960 56<	10-6	17. 629 0	P < 0.01
E	3. 514 44×	10-6	2	1. 757 22×	10-6	10. 463 6	P < 0.01
误差 e	1. 175 56<	10-6	7	1. 679 3%	10-7		

 $F_{0.01}(2,7) = 9.547$ $F_{0.001}(2,7) = 21.690$

根据正交试验和方差分析结果,确定最佳工艺条件为 $A_2 B_2 G_1 D_2 E_2$,即压力 30 M Pa,原料粒度 701 = 0.00 ,萃取温度 45° ,萃取时间 2 h

2. 4 验证试验: 按最佳工艺条件,重复 3次试验进行验证,结果甘草次酸的萃取率较高,平均值为 0. 018 5%,表明试验所确定的最佳工艺条件为较优的工艺条件。

3 不同提取方法的比较

3.1 超临界萃取法 (SFE): 称取一定量烘干后的甘草根茎粉,以液固比 5:1加入 80% 乙醇浸泡过夜。按以上确定的最佳条件进行超临界 CO2萃取,采用HPLC法测定甘草次酸浓度,计算萃取率(表 4)。3.2 超声法: 称取一定量烘干后的甘草根茎粉,以液固比 15:1加入 95% 乙醇,超声提取 1h,离心、

分离提取液,定容, HPLC法测定甘草次酸浓度,计算提取率(表 4).

3.3 索氏提取法: 称取一定量烘干后的甘草根茎粉,以液固比 15: 1加入 95% 乙醇,索氏提取 8 h,分离提取液,定容。 HPLC法测定甘草次酸浓度,计算提取率 (表 4)。

表 4 不同提取方法甘草次酸的测定结果 (n=3)

Table 4 Results of glycyrrhetic acid analysis by different extraction methods (n=3)

方法	提取时间 /h	液固比	甘草次酸提取率 %
超临界萃取	2	5: 1	0.018 7
超声提取	1	15: 1	0.003 7
索氏提取	8	15: 1	0.0014

由表 4可见,超声提取法和索氏提取法的提取率偏低,超临界萃取的甘草次酸的萃取率是超声提取法的 5倍,是索氏提取法的 13倍,且溶剂用量小,周期短。由此可见,超临界萃取是提取甘草次酸非常有效的方法

4 讨论

应用超临界萃取法是当前中草药有效成分提取方法的发展方向,具有提取温度低,提取率高,溶剂用量少,时间短等优点。以上结果表明,从甘草生药中提取含量较少的甘草次酸时,采用超临界萃取法较索氏提取法和超声法具有明显的优势。

References

- [1] Ch P (中国药典) [S]. 2000 ed. Vol I
- [2] Hatano T, Yasuhara T, Miyamoto K, et al. Antihuman immun od eficiency virus phenolics from licorice [J]. Chem Pharm Bull, 1988, 36(6): 2286.
- [3] Yang J.N. Zhu M. The research development of pharma-cological effect of glycyrthetic acid and its derivatives [J]. Chin Pharmacol Bull (中国药理学通报), 1997, 13(2): 110-114.
- [4] Ye S Q, Tang X Y. The research status of licorice on medicine [J]. Shizhen J Tradit Chin Med Res (时珍国药研究), 1997, 8(1): 75-76.
- [5] Wang S C. The discuss of industrialization application on supercritical CO₂ extraction [J]. *Inf Chem Ind Des* (化工设计通讯), 1999, 25(2): 43-45.

HPLC法测定药用甘薯西蒙I号中咖啡酸的含量

徐平声,戴智勇,谭桂山* (中南大学湘雅医院 药剂科,湖南 长沙 410008)

摘 要:目的 建立测定西蒙 号叶中有效成分含量的方法,比较不同年份的西蒙 I 号叶中咖啡酸的含量差异。方法 采用 HPLC对西蒙 I 号叶中咖啡酸的含量进行测定。结果 咖啡酸在 10.33^{\sim} $165.28\mu_{\rm g}/_{\rm m}L$ 具有良好的线性关系,平均回收率为 99.38%,RSD=1.36% (n=6)。结论 该方法灵敏、准确、专属性强,适用于西蒙 I 号药材中咖啡酸的测定。

关键词: 西蒙 [号;咖啡酸;高效液相色谱

中图分类号: R286.0 文献标识码: B 文章编号: 0253-2670(2003)01-0033-03

Determination of caffeic acid in leaves of *Ipomoea batatas* (Simon I) by HPLC

XU Ping-sheng, DAI Zhi-yong, TAN Gui-shan

(Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China)

Abstract Object To develop a method for the determination of caffeic acid in Simon I. Methods
An HPLC method was developed. Kromasil Cs column and methanol-acetic acid as mobile phase. Results
Linearity was found in the range of 10.33-165. 28 \mu g/m L, the average recovery was 99.38%, RSD=
1.36% (n=6). Conclusion This method is reliable, accurate and suitable for the determination of caffeic acid.

Key words Ipomoea batatas (L.) Lam. (SimonI); caffeic acid; HPLC

西蒙 [号 (引种巴西甘薯)干叶为旋花科植物甘 薯属药用甘薯 Ipomoea batatas (L.) Lam.的干燥

基金项目: 湖南省中医局重点资助课题(98008)

作者简介: 徐平声 (1964—1),男,湖南长沙人,副主任药师,主要从事天然药物化学及中药新药研究,发表论文 10余篇。 Tel (0731)4327460 E-mail xups200@ hotmail.com

^{*} 收稿日期: 2002-03-15