贝母属植物非生物碱成分研究进展

阮汉利,张勇慧,吴继洲 (华中科技大学同济医学院 药学院,湖北 武汉 430030)

摘 要: 了解贝母属植物非生物碱类成分的研究进展。通过查阅文献,整理出贝母属非生物碱成分 36种,归纳了它们的理化常数. 植物来源及光谱特征。为贝母属植物非生物碱成分的进一步研究奠定基础。

关键词: 贝母属;非生物碱类成分;光谱特征

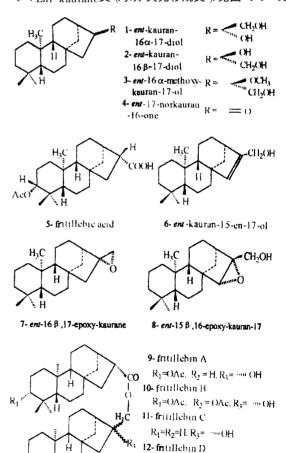
中图分类号: R284 文献标识码: A 文章编号: 0253-2670(2002)09-0858-03

Advances in studies on non-alkaloid constituents of Fritillaria L. plants

RUAN Han-li, ZHANG Yong-hui, WU Ji-zhou

(School of Pharmacy of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China) **Key words** *Fritillaria* L.; non-alkaloid constituents; spectral characteristics

百合科 (Liliaceae) 贝母属 (Fritillaria L.) 植物全球有 85种以上,中国有 20余种 中药贝母为贝母属某些种类 的干燥鳞茎,在我国具有悠久的用药历史,早在秦汉时期《神 农本草经》就有记载,列为中品,具有清热润肺,化痰止咳的 功效,用于痰热咳嗽、痰多胸闷,是治疗气管炎和慢性支气管 炎的常用中药。 近百年来,对贝母属植物化学成分的研究主 要集中在生物碱上,而对非生物碱成分的研究最早始于 1944年,吴荣熙首先从浙贝母 F. thunbergii Mig. 鳞茎中分 离到一种含羟基的化合物。 1982年,北岛润一等从 F. thunbergii 中得到的十几种非碱性成分并确定了结构[2~5],这些 化合物主要为二萜类,可归结为 4种类型: labdane, isopimarane, ent-atisane和 ent kaurane类;除这些骨架之外,吴 继洲等还从鄂北贝母中分到了二萜的酯聚物及缩醛聚 物 [6-8] 此外.刘庆华从新疆贝母 F. walujewii Regel 中分离 到β谷甾醇及其单糖苷;吴继洲等从湖北贝母鳞茎中分得 6 种非碱性成分,其中包括 2种贝壳杉烷型的二萜[9];李清华 从安徽贝母 F. anhuiensis S. C. Chen et S. F. Yin中分离到 2个 ent kaura ne 类二萜及β 谷甾醇、胡萝卜苷[10];陈泽乃从 平贝母鳞茎分离到水溶性成分胸苷、腺苷[11]: 崔东滨从平贝 母茎叶分离到腺苷、半乳糖醇和琥珀酸[12];严铭铭从浙贝母 茎叶分离到丁香脂素, 2, 5-二甲基苯醌[13];余世春从暗紫贝 母中分离到硬脂酸与软脂酸的混合物[14]:张建兴等对浙贝 母新鲜鳞茎的非生物碱成分也作了研究[15]。


本文拟对贝母属植物非生物碱成分的研究现状及二萜 类波谱特征作一综述

1 化学结构及分类

主要含有萜类、甾体、脂肪酸、嘌呤、嘧啶等类化合物。 其中萜类化合物在贝母属植物中分布最为广泛。

1.1 萜类化合物(terpenoids)

I . Ent-kaurane类 (对映 贝壳杉烷类): 见图 1-1~ 15

R₁=R₂≈H. R₃= - OH

II. Labadane类.见图 1-17.18

III. Isopimaran类: 见图 1-19, 20

IV . Atisan类: 见图 1-21

* 收稿日期: 2002-02-05

$$R_{1} = H, R_{2} = \beta H$$

$$13- \text{ fritillebinide A} \qquad R_{1} = H, R_{2} = \beta H$$

$$14- \text{ fritillebinide B} \qquad R_{1} = OAc, R_{2} = \alpha H$$

$$15- \text{ fritillebinide C} \qquad R_{1} = OAc, R_{2} = \beta H$$

$$17- \text{ trans-communol R=CH}_{2}OH$$

$$18- \text{ trans-communic-acid R=COOCH}_{3}$$

$$19- \text{ isopimaran-19-oic R=COOCH}_{3}$$

$$R = CH_{3}$$

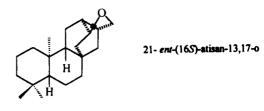


图 1 贝母属植物中萜类成分的结构

- 1. 2 甾体化合物: 主要包括β 谷甾醇 (β ¬sitosterol) 胡罗卜 苷、豆甾醇 (stigmasterol)和波甾醇 (campesterol)及其 3氧 苷类化合物 ,另外还含有 3-Oβ -D-glu-6, 22-dioxo-5α -choles-tan-β, 26-diol 26-Oβ -D-glu 和 3-O-α -L-rha-(1-2)β -D-glu-6, 22-dioxo-5α -cholestan-β, 26-diol 26-Oβ -D-glu
- 1. 3 其他类: 除以上几类成分外,还从贝母属植物中得到琥珀酸(succinic acid). 胸苷(thymidine). 腺苷(adenisine). 2,5-二甲氧基苯醌(2,5-dimethoxy-1,4-benzoquinone). 浙贝素(zhebeiresinol). 硬脂酸. 软脂酸等成分,结构从略。
- 2 理化常数及植物来源: 见表 1
- 3 光谱特征

贝母属植物主含对映 贝壳杉烷类二萜及其二萜聚体,

表 1 非生物碱成分的理化常数及植物来源

No. 名 称	分子式	$^{\mathrm{mp}}(^{\mathbb{C}})$	[α] _D	植物来源	参考文献
1 <i>ent</i> -kauran-16α, 17-diol	C ₂₀ H ₃₄ O ₂	187~ 190	-48. 2 ²⁵ (CO. 23, CHCl ₃)	A, G	2, 3, 9
2 <i>ent</i> -kauran-16β, 17-diol	C20 H34O2	174~ 176.5	-45. 9 ²⁵ (C0. 18, CHCl ₃)	A, C, G	2, 3, 9, 10, 15
3 ent-16x -meth ox y-kauran-17-ol	C_{21} $H_{36}O_2$	171~ 173	-45. 6 ¹⁷ (C1. 1, CHCl ₃)	G	2
4 <i>ent</i> –17 –no rk au ra n–16 –o ne	C ₁₉ H ₃₂ O	117~ 118	-29. 0 ^{20.3} (C1. 8, CHCl ₃)	G	3
5 fritillebic acid	$C_{22} H_{34}O_4$	235~ 237	-60. 6 ²⁸ (C1. 0, CHCl ₃)	A	16
6 <i>ent</i> -kau ran-15en-17-ol	C20 H32O	136~ 137		D	10
7 <i>ent−</i> 1 \$, 17–epoxy–kaurane	C20 H34O2	174~ 176.5	-45. 9 ¹⁷ (C0. 18, CHCl ₃)	G	2
8 <i>ent-</i> 1\$, 16-epoxy-kauran-17-ol	C ₂₀ H ₃₂ O ₂	160	+ 9. 4 ²⁰ (C1. 5, CHCl ₃)	G	3
9 fritillebin A	C42 Hs6O 5	237~ 239	-61. 7 ²⁸ (C1. 3, CHCl ₃)	В	16
10 fritillebin B	C44 Hs8O7	243~ 245	-56. 9 ²⁸ (C0. 4, CHCl ₃)	В	16
11 fritillebin C	C40 H64O3	210~ 212	95. 1 ²⁵ (C0. 25, CHCl ₃)	В	18
12 fritillebin D	$C_{40} H_{64} O_3$	231~ 233	86. 4 ²⁵ (CO. 16, CHCl ₃)	В	18
13 fritillebinide A	C40 H54O2	199~ 201	-76. 8(c0. 99, c Hcl ₃)	В	17
14 fritillebinide B	C_{42} $H_{66}O_4$	193~ 194	-49. 1(CO. 75, CHCl ₃)	В	16
15 fritillebinide C	C42 H66O4	206~ 208	-69. 3(CO. 21, C HCl ₃)	В	16
16 <i>ent</i> – 16 – hydroxy–kauran – 17–yl ent–kaur – 15–en	C ₄₀ H ₆₂ O ₃	251~ 254	-49. 2 ^{19.5} (C1. 4, CHCl ₃)	G	3
-17-oate	1 /4 H ₂ O		,		
17 trans-communol	C ₂₀ H ₃₂ O	136~ 137	+ 14. 5 ^{19. 1} (C1. 8, CHCl ₃)	G	2
18 trans-communic acid	C_{21} $H_{32}O_2$	104~ 105	-48. 0 ^{19.0} (C1. 0, C HCl ₃)	G	2
19 isopimaran–19-ol	C20 H32O	86	-39. 0 ^{24.9} (C1. 2, C HCl ₃)	G	2
20 isopimaran–19-oic	C_{21} $H_{32}O_2$		+ 26. 7 ^{20.5} (C3. 3, CHCl ₃)	G	2
21 $\mathit{ent-}(16S)$ –atis an–13, 17–oxi de	C ₂₀ H ₃₄ O ₂ 1 /4 H ₂ O	124~ 125	-71. 0 ²⁰ (C1. 1, CHCl ₃)	G	3
22β-sitos terol	C ₂₉ H ₅₀ O	135~ 137	-36. 5 ²⁵ (C0. 45, CHCl ₃)	A, D, E, G	9, 13, 15
23 胡罗卜苷	C35 H50O6	283~ 285		D, E, G	10, 15
24 3-Oβ-D-glu-6, 22-dioxo-5α -chole-stan-3β, 26 -diol 26-Oβ-D-g lu	C39 H64O 14	270.5~ 275.5	-42 4 ^{22 5} (C2 2, Py)	G	4
25 3-O α L -rha - (1-2) β -D-glu-6, 22-dioxo-5α - cholestan-β, 26-diol 26-O β -D-glu	$C_{43} H_{74}O_{16}$	214~ 217	-58. 3 ^{22.5} (C1. 2, Py)	G	4
26 a mix ture of stigmasterol, campesterol, β -sitos terol	-	138	-42 4 ^{30 5} (C1. 3, Py)	G	5
27 stigmasterol, campesterol, β-sitosterol的 3-O β-D-glu混合物	_	265~ 267	-43. 0 ^{30.5} (C1. 38, Py)	G	5
28 succinic acid	C4 H6O4	185~ 187		F, G	5
29胸苷酰化物 thymidine diacetate	$C_{14} H_{18} N_2 O_7$	130~ 131	-2. 5 ²³ (C1. 2, CHCl ₃)	F, G	5

续表 1

No	名 称	分子式	$_{\mathrm{mp}}(^{\circ}\mathbb{C}^{})$	[α] _D	植物来源	参考文献
30	2, 5-dimethoxy-1, 4-benzoquinone	$C_8 H_8 O_4$	304~ 306		G	13
31	zh ebei resi nol	C14 H16O6	193~ 194		G	17
32	丁香脂素 syringaresinol	C22 H26O8	176~ 178		G	13
33	硬脂酸	$C_{18} H_{36} O_2$	62. 9		H	14
34	软脂酸	$C_{16} H_{32}O_2$	70. 0		H	14
35	ad enisi ne	C10 H13N5O4	232~ 234		F, G	11
36	苦鬼臼毒素 picropodophyuotoxin	$C_{22} H_{22}O_8$	218~ 220		G	8

注: 植物来源编号: A-湖北贝母 Fritillaria hup ehensis Hsiao et K. C. Hsia; B-鄂北贝母 F. ebeiensis G. D. Yu et G. Q. Ji, sp. nov; C 紫花鄂北贝母 F. ebeiensis var. purpurea G. D. Yu et P. Li; D-安徽贝母; E新疆贝母; F平贝母 F. ussuriensis Maxim; G浙贝母; H-暗紫贝母 F. unibracteata Hsiao et K. C. Hsia

其分子中可能连有 - OH, - CHOH, = O, - COOH等基团,连接位置多在 Co Clo Clo Clo Clo Clo 等位置可能连双键或环氧基团,二聚体通常以酯键或以缩醛的形式相连接。其光谱特征如下:

3.1 1 HNMR 具有 18, 19, 20 3 个甲基峰, δ 值分别为 0.74 $\sim 0.80(s), 0.78$ $\sim 0.85(s), 0.97$ $\sim 1.08(s)$,若为二聚体则有 6 个甲基信号。分子中 C=CX 键上所连 H(>C=CH-) δ 值约为 ~ 3.66 , ~ 3.80 范围内,当 ~ 3.66 ~ 3.80 范围内,当 ~ 3.80 在 ~ 3.80 市 ~ 3.80 ~ 3.80 市 ~ 3.80 ~ 3.80 市 ~ 3.80 中 ~ 3.80 市 ~ 3.80 中 ~ 3.80 市 ~ 3.80 中 ~ 3.80 市 ~ 3.80 中 ~ 3.80 市 ~ 3.80 中 ~ 3.80 中

 3.2^{-13} CNMR 二萜分子中有 20个碳信号,一般位于中高场,其中有 3个甲基信号,另有众多的 -CH₂-及 > CH-信号。二萜二聚体分子中通常有 40个碳信号,其中有 6个甲基碳信号。比较 ent-kauran-16。,17-diol及 ent-kauran-16。,17-diol可看到,前者的 G_6 处于较高场的位置,约为 $\delta 79$.7,而后者的 G_6 处于较高场的位置,约为 $\delta 81$.6 对于 16,17位连有环氧基的 G_6 G_7 的化学位移较 16,17位连有羟基的 G_1 6 G_7 的化学位移较 16,17位连有羟基的 1352 146范围内有 152 153 154 155 155 155 157 158 157 158 157 158 159

3. 3 M $_{\rm S}$ 贝壳杉烷类二萜裂解方式主要与功能基有关 ,有 羟基存在时能失去水 ,有 羟甲基存在时能失去甲醛或羟甲基。另外骨架裂解产生 m /e123($_{\rm C_9}$ $_{\rm H_5}$)的特征峰。这类化合物的基峰多为 m /e275或 m /e274¹⁹。如 *ent*-kauran-1 $_{\rm S}$, 17-diol的裂解 ,见图 2

参考文献:

- [1] 余世春,肖培根.贝母属植物异甾生物碱的存在及其分类学 意义[J].植物分类学,1992,30(5):450-459.
- [2] Kitajima J, Komori T, Kawasaki T, et al. Sudies on the Constituents of Crude Drug "Fritillariae Bulbus" III [J]. Chem Pharm Bull, 1982, 30 3912-3921.
- [3] Kitajima J, Noda T N, Ida Y, et al. Sudies on the Constituents of Crude Drug "Fritillariae Bulbus" IV [J]. Chem

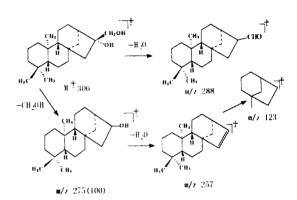


图 2 ent-kauran-16 ,17-diol的裂解

Pharm Bull, 1982, 30 3922-3931.

- [4] 北岛润一,古森彻哉,川琦敏男. Sudies on the Constituents of Crude Drug" Fritillariae Bulbus" V [J]. 药学杂志, 1982, 102: 1009-1015.
- [5] 北岛润一,伊田喜光,野田直希,等 · Sudies on the constituents of Crude Drug"Fritillariae Bulbus" VI[J]. 药学杂志, 1982, 102—1016—1022
- [6] Wu JZ, Ruan H L, Yao N H, et al. Structures of two diterpenod dimers from bulbs of Fritillaria ebeiensis [J]. Asian J Nat Prod Res, 2000, 2 161-167.
- [7] 金向群,徐东铭,徐亚娟,等.浙贝素的结构鉴定[J].药学学报,1993,28(3):212-215.
- [8] 张建兴,劳爱娜,黄慧珠,等.浙贝母化学成分的研究III [J]. 药学学报,1992,27(6):472-475.
- [9] 吴继洲,濮全龙,江汉美,等.湖北贝母属植物化学成分的研究 V II[J].中草药,1989,20(6): 244-246.
- [10] 李清华,张连龙,吴宗好.安徽贝母二萜成分的研究[j].中 国中药杂志,1990,15(3):170-171.
- [11] 陈泽乃,陆 阳,徐佩娟,等.中药贝母中水溶性成分的研究 [J].中国中药杂志,1996,21(7):420-422.
- [12] 崔东滨,严铭铭,王淑琴,等.平贝母茎叶化学成分的研究[J].中国中药杂志,1995,20(5): 298.
- [13] 严铭铭,金向群,徐东铭.浙贝母茎叶化学成分的研究[J]. 中草药,1994,25(7): 344-346.
- [14] 余世春,肖培根.暗紫贝母生物碱成分研究[J].植物学报, 1990, 32(12): 929-935.
- [15] 张建兴,劳爱娜,徐任生,等.浙贝母新鲜鳞茎化学成分的研究[J].中国中药杂志,1993,18(6):354.
- [16] Wu J Z, Chikako Morizane, Akira lida, et al. Sructures of three new diterpenodis from bulbs of Fritillaria ebeiensis.
 [J]. Chem Pharm Bull, 1995, 43(9): 1448-1453.
- [17] 吴继洲,阮汉利,姚念环,等. 鄂贝缩醛 A 的结构解析与合成[J]. 药学学报 1999, 34(8): 600-604.
- [18] Wu JZ, Ruan H L, Zeng Chun Lan, et al. Structures of two new diterpenod dimers from bulbs of Fritillaria ebeiensis [J]. Asian J Nat prod Res, 1999, 1 251-257.
- [19] 丛浦珠.质谱学在天然有机化学中的应用 [M].北京:科学出版社,1987.