。药剂与工艺。

HPLC-ELSD及紫外分光光度法测定三七中皂苷的含量

中国药科大学(南京 210038) 江英桥 王强马世平党学东

摘 要 采用反相高效液相色谱蒸发激光散射检测器测定三七中人参皂苷 $R_{\rm g_1}$ 的含量。色谱柱为 CLC-ODS (6.0 mm× 150 mm),流动相为乙腈 $_{\rm J}$ (30:70),蒸发激光散射检测器。定量方法简单,准确。回收率为 100.50% , RSD 为 1.82%。 并用紫外分光光度法测定了三七中总皂苷的含量 ,结果和 $_{\rm HPLC}$ 法基本一致 ,说明该方法定量准确 ,回收率为 101.50% , RSD为 1.44%。 结论认为两方法均可以控制三七的质量。

关键词 三七 HPLC-ELSD 人参皂 Rgi 总皂苷 紫外分光光度法

Quantitative Determination of Saponins in the Root of *Panax pseudo-ginseng* varnotoginseng by HPLC-ELSD and UV Spectrophotometry

China Pharmaceutical University (Nanjing 210038) Jiang Yingqiao, Wang Qiang, Ma Shiping and Dang Xuedong

Abstract A reverse phase HPLC-ELSD method for the determination of ginsenoside Rg1 in the root of Panax pseudo-ginseng var. notoginseng (Burkill) Hoo et Tseng was reported. Chromatographic conditions Shim-pack CLC-ODS column (6.0 mm \times 150 mm); acetonitrile-water (30:70) as the mobile phase; Shimadzu LC-6A with SEDEX-55 ELSD detector. The method was found to be simple and accurate with recovery rate of 100.50% and RSD=1.82%. The established UV spectrophotometric determination of total saponins in P- pseudo-ginseng var. notoginseng was also tried and gave an accurate result coincidental with that of the HPLC results. The recovery rate was 101.50%, and RSD=1.44%. It seemed that both methods can be used reliably for the quality control of P- pseudo-ginseng var. notoginseng.

Key words Panax pseudo-ginseng var. notoginseng (Burkill) Hoo et Tseng HPLC-ELSD ginsenoside Rg1 total saponins UV spectrophotometry

三七中皂苷类成分的含量测定可采用 $HPLC-UV^{[2]}$ 及 $HPLC-RI法^{[3]}$ 。前者用紫外检测器 $\lambda=203$ nm检测,因三七中皂苷类成分紫外吸收较差,受试剂影响很大,基线漂移大,使分析很难进行;后者用示差检测器,则灵敏度低,稳定性和选择性均较差我们首次采用 HPLC-ELSD法对三七中主要皂苷人参皂苷 Rg^1 进行了含量测定,并用紫外分光光度法测定了总皂苷的含量 因 ELSD检测器为质量型检测器,且不受外部环境的干扰,试剂在检测器中全部蒸发,不干扰检测,灵敏度及稳定性均符合含量测定的要求

总皂苷的含量测定方法有重量法^[4] 比色法^[5] 和紫外分光光度法^[6]。重量法测定的总皂苷实际上是正丁醇提取物,并不代表总皂苷;比色法因显色不稳定,致使重现性较差;我们首次采用紫外分光光度法测定三七中总皂苷的含量,经方法学验证,本法准

确.重现性良好。

1 仪器与试药

岛津 LC-6A高效液相色谱仪,法国 SEDEX55型蒸发激光散射检测器(ELSD);杭州英谱 HS色谱数据工作站;岛津 UV-2501 pc紫外分光光度计。试剂均为色谱纯或分析纯 人参皂苷 Rg1 由中国药品生物制品检定所提供。

- 2 三七中人参皂苷 Rg1的含量测定
- 2.1 色谱条件: 色谱柱为日本岛津 Shim-pack CLC-ODS柱(6.0 mm× 150 mm); 流动相乙腈 -水 (30:70);柱温 45 °C; 流速 0.5 mL/min; ELSD检测器漂移管温度 90 °C;载气压力 0.20 M Pa 在此条件下,样品中人参皂苷 Rg¹与其他相关峰均能达到基线分离。
- 2. 2 对照品溶液制备: 精密称取人参皂苷 R_{g_1} 对照品适量 ,用甲醇溶解 ,制成 1 mg/mL的溶液

^{*} Address Jiang Yingqiao, China Pharmaceutical University, Nanjing 江英桥 男,1992年毕业于广州中医药大学、获硕士学位,1992年分配到中华人民共和国广州口岸药品检验所工作,1998年至今为中国 药科大学生药学博士,参与了《中国药典中药薄层色谱彩色图集》的编著工作。参与的《进口非药典天然药物制剂检验方法研究》获得国家科技进步三等奖、国家中医药管理局科技进步二等奖、省中医药管理局一等奖。主要从事中药及其制剂的分析工作。

- 2.3 供试品溶液制备: 取 3.1项下的供试品溶液作为供试品溶液。
- 2.4 标准曲线制备: 分别精密吸取对照品溶液 1, 2, 3, 4, 5, 6^{μ} L,按上述色谱条件测定峰面积,以峰面积的自然对数为纵坐标,以浓度的自然对数为横坐标,绘制标准曲线,其回归方程为 Y=11.322+
- 1. 503X, r = 0.9996 结果表明人参皂苷 Rg_1 在 1. $0 \sim 6.0 \mu_g$ 范围内呈良好的线性。
- 2.5 精密度试验: 精密吸取对照品溶液 5 ^μ L,重复 进样 5 ^χ .结果 *RSD* 为 1.26% .证明精密度良好。
- 2.6 重现性试验: 取同一样品 6% ,分别按样品测定条件测定 ,结果 RSD 为 2.78% ,表明重现性良好。
- 2.7 样品测定: 分别精密吸取上述对照品溶液 2.5 μ L,供试品溶液 10μ L,注入高效液相色谱仪,测定 峰面积,以外标两点法求出含量。 结果见表 1

		表 1 样品中二七皂苷的含量测定

产 地	人参皂苷 Rg ₁	R SD	总皂苷	RSD
	(%)	(%)	(%)	(%)
云南文山(40头)	3. 04	1. 66	7. 25	1. 57
云南文山 (90头)	2. 79	2. 60	6. 81	3.02
云南文山 (270头)	2. 93	2. 21	6.70	2.70
广西靖西 (40头)	2. 47	1. 91	6. 44	2.02
广西靖西 (60头)	2. 14	2. 08	5. 58	1.81
西安 (60头)	3. 94	1. 89	9. 08	1.34
杭州 (80头)	2. 34	2. 28	7. 80	2.56

- 2.8 回收率试验: 取已知含量的样品 0.25 g,精密称定,分别加入对照品,按样品制备方法及测试条件测定.结果回收率为 100.5%, RSD= 1.82%。
- 29 稳定性试验: 精密吸取对照品溶液 5μ L,隔 1 h进样 1 次,共进样 8 次,测得对照品峰面积积分值,计算 RSD 为 2.35%,证明人参皂苷 Rg 在 7 h 内稳定。
- 3 三七中总皂苷的含量测定
- 3.1 供试品溶液的制备: 取本品粉末约 0.5 g,精密称定,置索氏提取器中,加乙醚 80 mL,水浴上提取 2 h,取出,弃去乙醚液,再加甲醇 80 mL提取 4 h,甲醇提取液蒸干,残渣加水 15 mL使溶解,水溶液置分液漏斗中,用水饱和的正丁醇萃取 5 次,每次 15 mL,正丁醇提取液用正丁醇饱和的水洗涤 5 次,每次 15 mL,正丁醇液蒸干,残渣加甲醇溶解,置 50 mL量瓶中,加甲醇稀释至刻度,摇匀,作为供试品溶液

人参皂苷 Rg1 对照品溶液的制备: 精密称取人参皂苷 Rg1 对照品 5 mg,置 100 mL量瓶中,加甲醇溶解并稀释至刻度,摇匀,作为对照品溶液。

3.2 紫外吸收光谱:取供试品溶液 1 m L,标准品溶液 3 m L,按照样品含量测定项下操作,在紫外分光光度计上扫描,得紫外吸收光谱

结果表明,供试品紫外吸收曲线及最大吸收波长 268 nm与人参皂苷 Rg1标准品完全一致,可直接采用紫外分光光度法测定供试品中总皂苷的含量

- 3.3 标准曲线制备:分别精密吸取对照品溶液 0.0,1.0,2.0,3.0,4.0,5.0 m L置 10 m L量瓶中,置水浴中挥尽溶剂,取出,加浓硫酸 0.6 m L,摇匀,置 80°C水浴中加热 1 h,取出,置冰浴中加 95% 乙醇至刻度,摇匀,照分光光度法(中国药典 1995年版一部附录 31页),以第 1管为空白,在 268 nm 波长处测定吸光度 以吸光度为纵坐标,浓度为横坐标,绘制标准曲线 经回归统计,得标准曲线方程: *A* = 39.685 6*C* + 0.014 8, *r* = 0.999 6 浓度在 5.04~ 25.20 μg/m L范围内,与吸光度呈线性关系
- 3. 4 回收率试验: 取已知含量的样品 5份,精密称定,分别加入一定量的人参皂苷 R_{gl} 对照品,按照标准曲线制备项下操作,结果回收率为 101. 15%, RSD=1.44% (n=5)。
- 3. 5 稳定性试验: 精密吸取供试品溶液 1. 0 mL,按照标准曲线制备项下操作,每隔 30 min测定 1次,共测定 7次,计算 RSD为 1. 35%,证明总皂苷在 3 h内稳定。
- 3. 6 精密度试验: 精密吸取人参皂苷 R_{g_1} 对照品溶液 3. 0 m L,共 5份,按标准曲线制备项下操作。分别测定吸光度,结果 RSD 为 1. 23% (n=5)
- 3.7 重现性试验: 取同一样品 5%,分别按样品测试条件测定,结果 RSD为 2.5%,表明重现性良好。
- 3.8 样品的含量测定:精密吸取供试品溶液 1.0 mL,按照标准曲线制备项下操作,在 268 nm 波长处测定吸光度 从标准曲线上读出供试品溶液相当于标准品溶液的浓度,计算,即得。结果见表 1

4 讨论

4.1 ELSD是一种通用型检测器,流动相由热气流使之热气化喷雾,再进入加热管,溶剂在此挥发。所得分析检测的物质颗粒通过一狭窄光束散射光,由光电倍增管收集。 ELSD的响应取决于被分析物质颗粒的数量和大小。由于 ELSD仅对不挥发被分析物质产生响应,即使是在梯度洗脱时也能提供平衡的基线。ELSD已成功用于皂苷、生物碱、萜类内酯、氨基酸和糖类等分析,是分析无紫外吸收及紫外吸

收弱成分的有力工具

4.2 利用苷的糖基糠醛生成反应,在紫外区有最大吸收^[7],可用紫外分光光度法测定总皂苷的含量,该法较比色法及重量法操作简单,重现性良好,灵敏度较高

参考文献

1 真田修一. 药学杂志, 1978, 98 1048

- 2 粟晓黎,王宝琴.中成药,1990,12(3):10
- 3 邸 峰,孙毅坤.中国中药杂志,1996,21(11):672
- 4 卫生部药政管理局编.进口传统药及天然药物制剂质量标准. 北京:人民卫生出版社,1990 1
- 5 周志华,章观德,王菊芬. 药学学报,1981,16(7):535
- 6 金 斌,汪海孙,郑 军.中成药,1994,16(6):40
- 7 北京医学院,中草药成分化学,北京:人民卫生出版社,1980

(2000-03-26收稿)

射干及其鸢尾属代用品中芒果苷的定量分析

南京中医药大学(210029)

刘训红* 潘金火

江苏苏宁医药科技有限公司 王玉玺

摘 要 以活性成分芒果苷 (mangiferin)作为质控指标,用 RP-HPLC法对 7个野生或栽培的射干、1个射干的茎叶和 3个射干的代用品,共 11个样品进行了分析。 结果表明: 射干中的芒果苷含量明显高于其代用品: 川射干 (鸢尾 $Iris\ tectrnum$)和白射干 (野鸢尾 $I.\ d\ ichotoma$)。 不同产地的射干也有一定的含量差异 (P<0.05)。 但野生和栽培的射干,以及根茎和茎叶之间的芒果苷含量则无显著性差异 (P>0.05)。 本法快速简便,重现性好,测定数据可作为射干质量控制和品质评价的可靠依据。

关键词 射干 川射干 白射干 芒果苷 RP-HPLC 定量分析

Quantitative Determination of Mangiferin in *Rhizoma Belamcandae* and Its Substitute of *Iris* L.

Nanjing University of TCM (Nanjing 210029) Liu Xunhong and Pan Jinhuo Total Hospital in Nanjing Military Region Wang Yuxi

Abstract Mangiferin, one of the active constituents of $Rhizoma\ Belamcandae$, in samples of $Belamcanda\ chinensis$ (L.) DC. or its substitute was determined quantitatively by RP-HPLC. The 11 samples collected from different localities for analysis were 7 rhizomes of wildly grown or cultivated B. chinensis, 1 of its leaf and stem, and 3 substitutes (a wildly grown and another commercially available $Iris\ tectorum\ Maxim$ and a I. $dichotoma\ Pall$.). Results of the analysis showed that the contents of mangiferin in $Rhizoma\ Belamcandae$ were significantly higher than that of its substitutes I. $tectorum\$ and I. dichotoma. There were also certain significant differences between samples from different localities (P < 0.05), but with no statistically significant difference between the rhizome or leaf and stem, neither between cultivated and wildly grown samples, (P > 0.05). The method was proved to be quick, simple and reproducible, and may provide a reliable basis for the quality control and evaluation of B. chinensis.

Key words Belam canda chinensis (L) DC. Iris tectorum Maxim. Iris dichotoma Pallmangi ferin RP-HPLC quantitative analysis

中药射干为鸢尾科射干属植物射干 Belamcan-da chinensis (L.) DC 的干燥根茎,系中国药典 (1995年版一部)收载的品种。具有清热解毒、消炎 利咽的功能 由于地区用药习惯不同,加之市场紧俏,大量栽培,造成商品药材品种混乱,质量不一,市售商品除射干外,还有鸢尾属(Iris)植物的根茎在不

同地区代射干使用,西南地区用川射干(鸢尾 I. tectorum Maxim.),陕西等地用白射干(野鸢尾 I. dichotoma Pall.),两广一带用射干的茎叶作射干药用。对射干中射干苷、鸢尾苷的含量分析已有报道 「「る」。本文 以射干另一有效成分芒果苷(mangiferin)作为质控指标,用 RP-HPLC法对射干

^{*} Address Liu Xunhong, Nanjing University of TCM, Nanjing 刘训红 男,1986年于南京中医学院中药鉴定专业研究生毕业,硕士学位,现为南京中医药大学副教授,《中华本草》药材专业副主任委员,主要从事中药材品质鉴定研究,主持或参加了"江苏地产药材太子参的活性成分研究"、"中华本草"等 6个省级以上科研课题。公开发表学术论文 40余篇。编写出版了《中药材薄层色谱鉴别》、《中华本草》、《中药学百科辞典》等 6本专著。