黑参中的去甲基单萜苷

兰州医学院药学系(730000) 李 冲* 张承忠

摘 要 从黑参根中分得 2 个去甲基单萜苷, pedicularis-lactone-1-O-β-D-glucoside (I); ning-pogoside B(I)。上述化合物系首次从马先蒿属植物中分得。其中 I 为新化合物。它们的结构以及其相对构型主要通过 IR、MS、NMR 光谱,包括 2DNMR 和 NOEsy 技术确定。

关键词 黑参 去甲基单萜苷 pedicularis-lactone-1-O-β-D-glucoside

黑参 Pedicularis decora France. [1]为玄 参科马先蒿属植物,药用根茎,又名太白参,太白洋参。有"补虚、健脾胃、消炎止痛、滋阴补肾、补中益气之功效,治疗身体虚弱、肾虚骨蒸、潮热关节疼痛,不思饮食"等疾病[2]。分布于陕西、四川和湖北等省,资源丰富。现报道2个去甲基单萜甙的分离和结构鉴定。

化合物 I 为白色粉末, $[\alpha]_D - 9.7^{\circ}(c)$ 0.68, MeOH), 红外光谱示有羟基(3 333cm⁻¹)和酯基(1 793cm⁻¹)。FAB MSm/z. 353 [M+Li]+,369 [M+Na]+,表明分子量 为 346,结合¹H,¹³CNMR 和 DEPT 脉冲实验 确定分子式为 C₁₅H₂₂O₆ a¹³CNMR 和 DEPT 脉冲实验示有 15 个碳吸收峰,其中 4 个仲碳 $(\delta 31.2, 60.5, 62.8, 68.1), 9$ 个叔碳 $(\delta 40.4,$ 47. 7, 71. 4, 74. 8, 77. 6, 77. 7, 89. 7, 104. 2, 124.4),2 个季碳(δ154.1,180.9)。综合分 析¹H-¹H Cosy 和 HMBC 表明分子中存在两 中 δ4.12(J₁₂=8.0 Hz)说明葡 萄糖为β-构型。HMBC显示 δ154.1 的季碳 与质子 H-1、7、9 和羟甲基质子(δH4.07, 4.15)相关,而羟甲基又与 H-7 和 H-9 相关, 这表明 C₈ 与 C₇, C₉ 和 C₁₀相连。IR 光谱显示 酯基的强吸收峰(1 793 cm-1)和 HMBC 中 C_3 和 H-6 相关性表明 C_3 和 C_6 以酯键相连, 进一步观察 C1 与葡萄糖端基质子以及葡萄

糖端基碳(δ 104.2)与 H_2 -1 之间的相关性说明在苷元 C_1 位上连接 β -D-葡萄糖。化合物 I 的相对立体构型通过 NOESY 实验得以证明,在 NOE 中可以观察到 H-6 和 H-5,H-9 以及 H-5 和 H-9 之间存在相关性。其苷元部分与 pedicularis-lactone — 致 $[^{33}]$,H-5,H-6,H-9 均为 β -构型。综上分析,化合物 I 为 pedicularis-lactone $[^{33}]$ 的 葡萄糖苷,命名为 pedicularis-lacatone-1-O- β -D-glucoside。 化 学结构式见图 1。

1 仪器和材料

比旋度用 WXG-4 型旋光 仪测定。红外光谱用 170-SX / 型仪测定。质谱用 VG ZAB-HS 型仪测定。¹H 和¹³CNMR ^I 以及 2DNMR (¹H-¹H Cosy, HMQC 和 HMBC)用 Bruker AM-400 型仪测定,CD₃OD 为 溶剂,TMS 作内标。薄层层析

图 1 化合物 I 的化学结 构式

硅胶 G、柱层析硅胶(100~180 目)均为青岛海洋化工厂出品。柱层析聚酰胺为解放军 83305 部队 701 工厂产品。黑参 1988-10 采自甘肃兰州阿干镇,原植物由本院药用植物教研室赵汝能教授鉴定。

2 提取和分离

黑参根茎粗粉 20 kg,用水煎煮,水液浓缩至 2 L,分别用石油醚、氯仿、乙酸乙酯萃

^{*} Address: Li Chong, Department of Pharmacy, Lianzhou Medical College, Lianzhou

^{· 482 ·}

取,水溶液浓缩得棕色残留物。经聚酰胺柱层析,用水洗脱,浓缩得浸膏 1 345 g,该浸膏用丙酮冷浸提取,得提取物 76 g,经硅胶柱层析,氯仿-甲醇-水(6:1:0.1)和乙酸乙酯-乙醇-水(9:1:0.5)为洗脱剂,反复多次,得化合物 I (35 mg),化合物 I (26 mg)。化合物 I 和 I 用硅胶 G 薄层以氯仿-甲醇(3:1)展开,喷 $10\%H_2SO_4$ -EtOH 液,加热后显红色,Rf 值分别为 0.34 和 0.38。

3 鉴定

化合物 I:白色粉末,[α]_D-9.7°(c, 0.68, MeOH);IRν_{max} cm⁻¹:3 333,3 003,2 930,2 878,1 793,1 460,1 420,1 373,1 275,

1 197,1 166,1 119,1 075,1 041,945,879,837,770,743,694,571,516;FAB-MS m/z;353[M+Li]+,369[M+Na]+;¹H-和 ¹³CN-MR:见表 1,2。

化合物 I:白色粉末,[α]_D:-16.0°(c, 0.75, MeOH); IRν_{max} cm⁻¹: 3 377, 2 926, 2 879, 1 637, 1 452, 1 427, 1 370, 1 326, 1 249, 1 197, 1 163, 1 079, 1 042, 921, 846, 637, 544; FAB-MS m/z: 339[M+Li]⁺, 355[M+Na]⁺; ¹H 和 ¹³CNMR:见表 1, 2。

其¹H, ¹³CNMR 数据与文献^[4]ningpogoside B 的数值一致,故鉴定 I 为 ningpogoside B。

表 1 化合物 I 和 II 的 HNMR 数据

position	I			I			
	8Н	δC	DEPT	δН	δC	DEPT	
1	3. 56(dd, 2. 0, 12. 6) 4. 02(dd, 4. 8, 12. 6)	68.1	CH ₂	3. 12(dd,1.5,12.6) 3. 29(dd,4.5,12.6)	70. 3	CH ₂	
3		180. 9	C	3.50(m) 3.55(m)	68. 6	CH_2	
4	2. 61 (dd, 7. 6, 12. 8) 2. 74 (dd, 4. 9, 12. 8)	31.2	CH_2	1.70(m) 1.76(m)	28. 7	CH_2	
5	3.08(m)	40.4	CH	2.94(m)	43.6	CH	
6	5. 39(d,6.9)	89. 7	CH	4.87(d,6.0)	88. 2	CH	
7	5.79(brs)	124. 4	CH	5.46(brs)	126.5	CH	
8		154.1	С		149.4	C	
8 9	3. 22(m)	47.7	CH	2.96(m)	46.7	CH_2	
10	4.07(d,12.7) 4.15(d,12.7)	60. 5	CH_2	3. 98(d,12.4) 4. 09(d,12.4)	60.5	CH_2	
1'	4. 18(d, 7. 8)	104.2	CH	4. 12(d, 8. 0)	103.8	CH	
2'	3. 25(dd,7. 8,9. 2)	74.8	CH	3. 03(dd, 8. 0, 9. 1)	74.3	CH	
3′	3.27(m)	77.7	CH	3.15(m)	77.2	CH	
4'	3.57(m)	71.4	CH	3. 48(m)	70.7	CH	
5'	3.60(m)	77. 6	CH	3.50(m)	76.9	CH	
6'	3. 55(dd, 4. 8, 12. 2) 3. 85(dd, 2. 0, 12. 2)	62. 8	CH ₂	3. 52(dd, 4. 7, 12. 5) 3. 74(dd, 1. 8, 12. 5)	62.0	CH ₂	

in CD₃OD, 100MHz for &C and 400MHz for &H,ppm, J=Hz

表 2 【和 II 的 2D NMR 相关数据

	I			I			
position	¹ H- ¹ H cosy HMQC		HMBC	¹H-¹H cosy	HMQC	HMBC	
1	9	1	1'9	9	1	1'9	
3	_		4,6	4,5	3	4,5,6	
4	5	4	5	3,5	4	3,5	
5	4,6,9	5	1,4,7,9	4,6,9	5	3,4,9	
6	5,7	6	4,7	5,7	6	3,4,7	
7	6,9,10	7	6,9,10	6,9,10	7	9,10	
8		_	1,7,9,10			1,6.7,9,10	
9	1,5,10	9	1,4,6,7,10	1,5,10	9	1,4.5,7,10	
10	7,9	10	7,9	7,9	10	7,9	
1'	2'	1'	1,2',5'	2'	1'	1,2'	
2'	1',3'	2'	1',3',4'	1'3'	2'	1',3'	
3'	2',4'	3'	1',2',4',5'	2',4'	3'	1',4',5'	
4'	3',5'	4'	2',3',5'	3',5'	4'	3',5'6'	
5′	4',6'	5 '	1',3',4'	4',6'	5'	1',3',4'6	
6'	5'	6 '	4',5'	5 '	6 '	5 '	

致谢:原植物由本院药用植物教研室赵

汝能教授鉴定;红外光谱、质谱和核磁共振谱

由兰州大学分析测试中心测定。

参考文献

- 1 中国科学院西北植物研究所,秦岭植物志,第一卷, 种子植物第四册,北京;科学出版社,1983;349
- 2 江苏新医学院编著:中药大辞典:上海:上海科学技术

出版社,1979;376

- 3 Yang Li, et al. Phytochemistry, 1995, 40(2):491
- 4 Qian J, et al. Phytochemistry, 1992, 31(3):905 (1998-06-17 收稿)

Nor-monoterpene Glucosides from Smallcalyx Woodbetony Root (Pedicularis decora)

Li Chong and Zhang Chengzhong (Department of Pharmacy, Lanzhou Medical College, Lanzhou 730000)

Abstract Investigation of the root of *Pedicularis decora* Franch. afforded two nor-monoterpene glucosides: pedicularis-lactone-1-O-β-glucoside(I) and ningpogoside B(I), which were isolated from *Pedicularis* L. for the first time. Their structures and relative configurations were elucidated by IR, MS, NMR, spectroscopic methods, including 2D-NMR and NOESY. Compound I was new.

Key words Pedicularis decora Franch. nor-monoterpene glucosides pedicularis-lactone-1-O-β-glucoside.

川产云南红豆杉中紫杉烷类似物△

四川省中药研究所(成都 610041) 徐学民* 王 笳 袁崇均 蒋庆宇

搞 要 从四川省木里县采集的云南红豆杉 Taxus yunnanensis的树皮中分得 3 个紫杉烷类似物,经解析其¹H,¹³CNMR、EIFAB MS 谱及 DEPT 实验证明此 3 个类似物为 1-β-hydroxy-baccatin I(I)、10-deacetyltaxol(I)、7,9-dideacetylbaccatin VI(II)。此 3 个化合物存在于红豆杉属的其它植物中,但首次从云南红豆杉中分出。

关键词 云南红豆杉 紫杉烷类似物 抗肿瘤活性

为了从红豆杉属植物中寻找抗肿瘤高活性的紫杉烷类似物,我们对四川省木里县产的云南红豆杉 Taxus yunnanensis 的化学成分进行深入研究,从其树皮中分出大量的紫杉烷类似物,解析其中含量较高的 3 个类似物 (I 为 0.009%, I 为 0.004%, II 为 0.003%)的 1 H, 13 CNMR, FABMS 光谱以及DEPT 实验证明它们是 i- β -hydroxy-baccatin I (I) $^{[1,2]}$, 10-deacetyltaxol (I) $^{[3,4]}$, 7, 9-dideacetylbaccatin VI (II) $^{[5,6]}$ 。经药理实验证明:类似物 I 有中等强度抗肿瘤活性,但弱于紫杉醇。I 和 II 没有活性。现报道 3 个

类似物的分离及化学结构测定。

1 仪器和试剂

熔点按中国药典 1995 版一部附录 33 页第一法测定,温度计已校正。红外光谱使用岛津 IR-408 型光谱仪,KBr 压片法。紫外光谱使用日立 UV-3000 型光谱仪,旋光测定使用WXZ-1 光学度盘旋光仪。'HNMR 和¹³ CN-MR 谱以及 DEPT 实验使用 Bruker AMX-400 及 NT-360 型核磁共振仪。CDCl。作溶剂,TMS 作内标。EI 及 FABMS 谱使用JMS-SX102 质谱仪及 VGBio-Q triple-quadruple 质谱仪。高效色谱分析使用 Wa-

^{*} Address: Xu Xuemm, Sichuan Provincial Institute of Chinese Materia Medica, Chengdu △卫生部出国留学回国人员基金项目。

^{• 484 •}