表 2 湿式加入法对 GLBN 含量加速试验

批次				
	0 个月	1 个月	2 个月	3 个月
970307	102.389	100.033	101.521	102. 141
970306	98.811	97.513	98-082	97.921
970420	92.137	95.385	94.969	94.385
970419	98.449	99.434	99. 234	99.819

4 讨论

应用湿式加入法提高芪蓣降糖丸 GLBN 含量均匀度经小试、中试及大生产试验,证实对其产品内在质量有较大提高。原固体加入法,平均含量差异为22.57%;应用湿式加入法,平均含量差异为5.11%。其药物加速稳定性试验证实,用湿式加入法生产芪蓣降糖丸,在贮期2年内GLBN含量稳定。

(1998-03-23 收稿)

芦丁超声提取新技术的再探索

天津中医学院中药系 林翠英 天津医科大学药学系 周 晶 天津市医药职工大学 赵 晶 天津达仁堂制药厂 李 辉

由槐米提制芦丁,可选用水、碱性水、稀醇或碱性稀醇为溶剂浸提。每种方法各有优缺点[1]。芦丁的超声提取也属溶剂法范畴,选上述溶剂浸提,不加热,浸提过程在超声波发生器中经超声处理,使芦丁提取率的提高和提取时间的缩短,是任何传统方法所无可比拟的[2-3]。

芦丁超声提取有选用稀石灰水浸提盐酸酸化沉淀法的^[2],有选用稀醇法的^[3],与相同条件下不加超声波处理的结果比较,提取率都高得多^[3]。解释原因比较一致,皆归功于超声波的空化作用、机械作用、热效应及其许多的次级效应^[3,1],说明这些作用的结果均有利于有效成分芦丁的溶出及扩散。但是我们在实验研究中发现,影响超声提取芦丁的提取率和提取时间的另一因素——超声波的凝聚作用也同样是不可忽视的。

与芦丁共存于槐米中的粘液质类杂质,是影响 过滤及芦丁自滤液中沉淀析出快慢的主要因素,我 们根据超声波有使悬浮于气体或液体中的微粒聚集 成较大颗粒而沉淀的作用,设计将浸提液过滤后用超声波处理,使芦丁分子更快地碰撞凝聚成大颗粒沉淀,并促使芦丁沉淀更完全。经实验,证明这是缩短芦丁沉淀时间、提高沉淀量的较佳技术手段。

1 超声法沉淀

我们分别用水、稀石灰水、稀醇为溶剂,对同批等量槐米各50g,参考文献^[2]条件用传统法、超声法提取芦丁的对比实验,并按文献^[2]方法测粗品中芦丁含量计算提出率。分两阶段做比较研究,即溶剂浸提阶段和浸出液静置沉淀阶段。结果表明如果沉淀阶段不超声处理,只在浸提阶段超声处理,比传统方法(不超声处理的)芦丁得率高,但总的提制时间(从浸提到滤出完全沉淀的芦丁)缩短不明显,均24h以上;若浸提与沉淀两阶段都超声处理,不但芦丁得率高,而且总提制时间大大缩短;不管用什么溶剂,也不管用什么方法浸提,只要沉淀阶段加超声波处理,芦丁自浸出液中于20~30 min 内均可被凝聚沉淀完全。

表 1 芦丁提取不同聚沉方法结果比较

浸提溶剂	浸提工艺	室	温静置聚沉	室温超声聚沉	
	女 矩 工 乙	时间(h)	提出率%(n=3)	时间(min)	提出率%(n=3)
	传统法(开水灭酶水煎 20 min 2 次	>24	7-83	30	9.14
水超	超声法(开水灭酶室温超声 20 min 2 次)	∠ 24	8.15		10.90
稀石灰水 传统》 超声》	传统法(漫 30 min,调 pH10 煮沸 20 min 2 次,盐酸酸化 pH5)	> 01	12.31	0.5	13.52
	传统法(漫 30 min,调 pH10 煮沸 20 min 2 次,盐酸酸化 pH5) 超声法(浸润后控 pH10,超声 20 min 2 次,盐酸酸化 pH5)	>24	13.84	25	16.97
7()% Z. 69.	传统法(回流 15 min 2 次)	> 0.4	6.92	"	7.32
	超声法(室温超声 15 min 2 次)	>24	7. 24	约 20	8.15

2 小结

实验证明两点:1)超声波的聚沉作用,在由槐米

提制芦丁过程中,对提高提取率和缩短提取时间均起重要作用。因此,要重视超声凝聚机制在中药成分提制过程中的应用。2)超声波技术在中药成分提制的不同阶段产生不同作用,这一点对提取方法落后,生产周期长的中药大生产,在提供更科学的工艺条件方面,有推广应用价值。

参考文献

- 1 肖丛厚,等.中药化学.上海:科学技术出版社,1987: 207.248
- 2 郭孝武. 中草药,1997,28(2):88
- 3 王昌利,等. 陕西中医学院学报,1993,16(3):33
- 4 郭孝武.中草药,1996,27(増刊):234

(1998-12-30 收稿)

HPLC 法测定醒脑胶囊中阿魏酸的含量

天津达仁堂制药厂(300142) 金兆祥 何跃华 徐晓阳 刘惟瑳

醒脑胶囊是由十几味中药组成的复方制剂,具有益气醒脑、活血化瘀之功效,阿魏酸是方中主要成分,我们探索了HPLC 法测定醒脑胶囊中阿魏酸的含量,方法简单、快速、准确。

1 仪器与试剂

日本岛津 LC-6A 高效液相色谱仪,SPD-6AV 检测器,D-R3A 型处理机,日本岛津 UV-2100 紫外 分光光度仪。阿魏酸购自中国药品生物制品检定所, 乙腈为光谱纯,其他试剂均为分析纯。

2 实验方法

- 2.1 色谱条件:色谱柱:日本岛津 ODS-5(4.6 mm × 250 mm,理论板数按阿魏酸峰计应大于8 000); 流动相:0.05 mol/L KH₂PO₄(磷酸调 pH 2.5)-MeCN(4:1);检测波长:313 nm;流量:0.8 mL/min;灵敏度:0.04AUFS。
- 2.2 标准曲线的绘制:阿魏酸对照品溶液(6.4 μ g/mL),采用自动进样分析,以对照品进样量为横坐标,峰面积为纵坐标,绘制标准曲线,对照品在0.064~0.192 μ g 范围内呈良好的线性关系,经统计学处理,得线性回归方程: $Y=6.23\times10^{-4}X+0.052,r=0.9995$ 。
- 2.3 精密度与回收率及重现性试验:精密吸取阿魏酸对照品及加样阴性对照液,进样分析,RSD=0.93%(n=5);回收率为 99.53%,RSD=1.57%; 重现性实验 RSD=2.27%。
- 2.4 样品含量测定:取样品 10 粒,倾出内容物并混 匀,精称 1.5 g,置 10 mL 具塞离心管中,加人 10 mL 甲醇-甲酸(95:5)^[1]混合液,超声波处理 15 min,离心(3 600 r/min),取上清液,重复 2 次,合并上清液,

浓缩至少量,移至 10 mL 容量瓶中,残渣用甲醇-甲酸(95:5)洗涤后,与上清液合并,并稀释至刻度,摇匀,作为供试品溶液,按上述分析条件,供试品、对照品进样量均为 20 mL,测量其相应的峰面积,计算,结果如表 1。

表 1 醒脑胶囊中阿魏酸的含量

批号		可魏酸(%	平均含量(%)		
910428	0.0053	0.0052	0.0059	0.0051	0.0054
910522	0.0045	0.0045	0.0049	0.0050	0.0047
910612	0.0055	0.0053	0.0058	0.0060	0.0056
920618	0.0056	0.0059	0.0061	0.0054	0.0058
920811	0.0054	0.0056	0.0054	0.0052	0.0054
920828	0.0053	0.0054	0.0054	0.0051	0.0053

3 讨论

担 欧 炉 粉

3.1 提取方法的选择:本文选用甲醇-甲酸(95:5) 用超声波提取 15 min,共 3次,阿魏酸含量已达最高值,见表 2。

表 2 提取次数与含量关系

延松仪数				1				3	4	
阿魏酸	含量	t(%	6)	0	. 00	38	0.	0049	0.0056	0.0056
3.2	流	动	相	选	择	: 选	用	0.05	mol/L	KH ₂ PO ₄

- (pH2.5)-MeCN 作流动相时,根据供试中阿魏酸分离效果,选用 4:1,流量为 0.8 mL/min,一次色谱峰过程 20 min 内完成。
- 3.3 吸收波长的选择:利用 UV-2100 紫外分光光度计,测各阿魏酸的最大吸收为 313 nm。

致谢:天津市药品检验所吕归宝主任给予技术 指导。

(1998-09-03 收稿)