· 有效成分 ·

骆驼刺中一个新的黄酮醇葡萄糖甙化合物

北京医科大学药学院(100083) 杨秀伟* 蒋玉梅 李君山 楼之岑

摘 要 从豆科植物骆驼刺 Alhagi pseudoalhagi 干燥地上部分分得 15 个化合物,经光谱解析和化学分析鉴定其结构。其中一个为新的黄酮醇葡萄糖甙,鉴定为丁香亭-3-O-β-D-葡萄糖甙(syringetin-3-O-β-D-glucoside)。14 个已知化合物为β-谷甾醇、豆甾醇、山柰素、鼠李素、商陆素、异鼠李素、柽柳素、山柰酚-3-O-β-D-(6"-O-p-香豆酰基)-葡萄糖甙、异槲皮甙、D-3-O-甲基肌醇、1-O-β-D-甲基葡萄糖甙、异獐牙菜叫酮甙、异鼠李素-3-O-β-D-芸香糖甙和酪胺。这 15 个化合物在该植物中系首次报道。

关键词 骆驼刺 黄酮醇 葡萄糖甙 丁香亭-3-O-β-D-葡萄糖甙

骆驼刺系豆科植物 Alhagi pseudoalhagi (M. B.)Desv. 的地上部分,主产新疆,民间 用于治疗风湿和癌症。我们的药理学研究证 明:反复给予小鼠骆驼刺乙醇提取物,有抑制 移植性肝肿瘤细胞生长的作用。本文报道骆 驼刺乙醇提取物化学成分的分离和鉴定。

药材粗粉用乙醇提取,回收乙醇得浸膏。 将其用石油醚脱脂后悬浮于水中,依次用乙酸乙酯和正丁醇萃取,分别得乙酸乙酯提取 物和正丁醇提取物。

将乙酸乙酯提取物经硅胶柱层析,依次用环己烷-氯仿、氯仿、氯仿、氯仿-甲醇洗脱,分别得化合物 $I \sim IX$ 。正丁醇提取物经硅胶柱层析,依次用氯仿、氯仿-甲醇洗脱,分别得化合物 $X \sim XV$ 。

根据理化性质和光谱学分析,鉴定化合物 I ~ XI XIV 和 XV 分别为已知结构的 β-谷甾醇 (β-sitosterol, I)、豆甾醇 (stigmasterol, I)、山柰素(kaempferol, II)、鼠李素(rhamnetin, IV)、商陆素(ombuine, V)、异鼠李素(isorhamnetin, IV)、柽柳素(tamarixetin, IV)、山奈酚 3-O-β-D-(6"-O-p-香豆酰基)-葡萄糖甙 [kaempferol 3-O-β-D-(6"-O-p-coumaroyl)-glucoside, III]、异槲皮甙(iso-

quercitrin, N)、D-3-O-甲基肌醇(D-3-O-methylinositol, X)、1-O-β-D-甲基葡萄糖甙(1-O-β-D-methylglucoside, N)、异獐牙菜咖酮(isoswertianolin, NI)、异鼠李素 3-O-β-D-芸香糖甙(isorhamnetin 3-O-β-D-rutinoside, NIV)和酪胺(tyramine, NV)。

化合物 XIII 为淡黄色粉末。FABMS 给出 分子离子峰为 507[M+-1],结合元素分析 确定分子式为 C23H24O13。化合物 XIII 的红外 光谱在 1650cm⁻¹有强吸收,示有螯合的酮基 存在;而甲醇溶液中的紫外吸收光谱在271 (带 I)、310 和 350(带 I)nm 有最大吸收, 证明有黄酮醇骨架的存在,且 C。位有糖残基 结合(1)。用 0.05mol/LH₂SO₄ 加热回流水解 化合物 XIII 得到化合物 XIII。和 D-葡萄糖。化 合物 XIII 的紫外吸收带 I 由于滴加 AlCl₃/ HCl 而发生红移(50nm),证明分子中有 5-羟 基-3-O-取代黄酮醇结构;而吸收带 I 由于滴 加 AcONa 红移(50nm),证明分子中有 5-羟 基-3-O-取代黄酮醇结构;而吸收带 I 由于滴 加 AcONa 红移(10nm),证明黄酮醇母核的 C₇ 羟基无取代^[1]。又由于带 I 在滴加 NaOMe 情况下红移,证明在黄酮醇母核的 B 环上有游离的 C4 羟基⁽¹⁾。 HNMR 谱示有 4

^{*} Address: Yang Xiuwei, School of Pharmaceutical Sciences, Beijing Medical University, Beijing

个芳香性质子存在: 86.21(1H, J=2.0Hz)和 δ6. 49(1H, J=2. 0Hz) 一组间位偶合的双峰 归属于 A 环的 6-H 和 8-H:δ7.50(2H)的宽 单峰归属于 B 环的 2'-H 和 6'-H,说明 B 环 是 3',4',5'-三取代模型。在 83.86(6H)的吸 收峰归属于 C₃ 和 C₅ 的甲氧基。化合物 XIII 的¹³CNMR 谱有一组葡萄糖骨架碳吸收峰, 且从葡萄糖 C₁ 氢的偶合常数(J=7.4Hz)推 测与黄酮醇的结合系β-构型。综上,鉴定化合 物 XIII 为 T 香 亭-3-O-β-D-葡 萄 糖 甙 (svringetin-3-O-β-D-glucoside). Bohm Collins (2) 对田葱(Philydrum lanuginosum) 地上部分化学成分研究时分离得到丁香亭-3-O-β-D-半 乳 糖 甙 (syringetin-3-O-β-Dgalactoside)和丁香亭-3-O-β-D-葡萄糖酸酯 (syringetin-3-O-β-D-glucuronide),并推测似 有丁香亭-3-O-β-D-葡萄糖甙的存在,我们是 第一次报道天然植物中这个化合物的分离和 鉴定。化合物 I ~ IX 和 XIII、XIV 的化学结构式 见图。

图 化合物 ▼ ~ 区 和 XIII、XIV 的化学结构式 1 试剂和仪器

熔点用 XT-4 型显微熔点测定仪,温度 未校正;红外光谱仪为美国 PE-981G 型;紫 外光谱仪用岛津 UV-200 型,核磁共振仪为 VXR-300 型;元素分析仪为 P-E240C 型;质 谱仪为 VG20-253 型。柱色谱和薄层色谱硅 胶均用青岛海洋化工厂产品。

2 提取和分离

骆驼刺粗粉 5kg 用 95%乙醇提取 3次,每次 5L。将减压回收得到的乙醇提取物 (500g,收率 10%)悬浮在乙醇(1L)中,用石油醚萃取脱脂。减压回收乙醇得到的提取物 (280g,5.6%)悬浮在水(1L)中,依次用乙酸乙酯和正丁醇萃取,分别得到乙酸乙酯提取物 (61g,1.2%)和正丁醇提取物 (108g,2.2%)。

取乙酸乙酯提取物(60g)用硅胶拌匀进行硅胶柱层析,依次用环己烷-氯仿、氯仿、氯仿-甲醇洗脱。将分别得到的不同组分再行硅胶柱层析精制,分别得到β-谷甾醇 30mg、豆甾醇 15mg、山奈素 7.5mg、鼠李素 7.2mg、商陆素 5.5mg、异鼠李素 7.0mg、柽柳素 10.2mg、山奈酚 3-O-β-D-(6″-O-p-香豆酰基)-葡萄糖甙 8.5mg、异槲皮甙 15.5mg。

取正丁醇提取物(100g)用硅胶拌匀进行 硅胶柱层析,依次用氯仿、氯仿-甲醇洗脱。将分别得到的不同组分再行硅胶柱层析和聚酰 胺柱层析精制,分别得到 D-3-O-甲基肌醇 50.8mg、1-O-β-D-甲基葡萄糖甙 62mg、异獐 牙菜叫酮甙 10.4mg、化合物 XIII200.7mg、异鼠李素 3-O-β-D-芸香糖甙 8.5mg 和酪胺 60mg。

3 结构鉴定

β-谷甾醇: 无色片晶(EtOH), mp141 C; EIMSm/z: 414 [M⁺]; 其IR、 HNMR 和 ¹³CNMR 光谱数据与标准样品 β-谷甾醇的完全一致。

豆甾醇: 无色针晶(EtOH), mp172℃; EIMSm/z: 412〔M⁺〕; 其IR、¹HNMR和 ¹³CNMR 光谱数据与标准样品豆甾醇的完全 一致。 山奈素: 黄色针晶(EtOH), mp227 ~ 229℃; EIMS m/z: 300 (M⁺); ¹HNMR (300MHz. DMSO-d₆)·δ: 3. 87 (3H, s, C₄-OMe)·6. 20 (1H, s, C₆-H), 6. 48 (1H, s, C₈-

H),7.08(2H,d,J=9.1Hz,C_{3',5'}-H),8.12 (2H,d,J=9.1Hz,C_{2',6'}-H),12.48(1H,s,C₅-OH);¹³CNMR 光谱数据如表所示。

表 化合物 I ~ K, XIII 和 XIV 的¹³CNMR 数据(δ:ppm,DMSO-d₆)

C	I	IV	V	VI	VI	VII *	IX	XIII	XIV
2	146. 3s	147.3s	146.7s	147. 4s	146. 2s	156. 4s	156. 2s	156. 2s	156. 4
3	136.0s	136. 0s	136.4s	135.8s	136. 1s	133. ls	133. 4s	133. 3s	133. 3
4	175.9s	175.9s	176. ls	175.8s	175.9s	177.4s	177.4s	177. 4s	177. 3
4a	103. 1s	103.9s	104. 1s	103.0s	103.5s	103.9s	104. 4s	104. 0s	104. 1
5	160.7s	160.4s	160.4s	160.7s	160.7s	161.1s	161. 2s	161. ½ s	181. 1
6	98. 2d	97. 4d	97. 4d	98. 2d	98. 2d	98.7d	98. 6d	98. 7d	98. 7d
7	164.0s	164.9s	165.0s	163. 9s	163. 9s	164. ls	164. ls	164. 2s	164.19
8	93. 5d	91. 8d	91.9d	93. 9d	93. 4d	93. 6d	93. 5d	93. 9d	93. 8d
8a	156.3s	156.1s	156.1s	156. 2s	156. 2s	156. 5s	156.3s	156. 4s	156. 49
1'	123.3s	121. 9s	123-4s	121. 9s	123. 4s	120. 8s	121. 2s	119.9s	121. 1
2'	129. 3d	115. 2d	114.8d	111. 9d	114. 6d	130. 0d	115. 2d	107. 1d	115.30
3′	114. 0d	145.0s	146.2s	148.8s	146. 2s	115.0d	144.8s	147.5s	149.49
4'	160.5s	147.8s	149.5s	146.6s	149. 4s	159.7s	148. 4s	138.7s	147.09
5′	114. 0d	115. 6d	111. 9d	115. 6d	111. 9d	115. 0d	116. 2d	147.5s	113.40
6'	129. 3d	120. 1d	119. 8d	121. 7d	119. 7d	130. 0d	121. 6d	107. 1d	122. 30
OMe	55. 3q	55.9q	55. 9q	55. 0q	55. 7 q			55. 6q	55 . 7 q
				56. 0q				55. 6q	
G-1						101.1d	101. 0d	100. 6d	101.20
G-2						74.1d	74. 1d	74. 4d	74. 3d
G-3						76.3d	77.4d	77. 4d	76. 5d
G-4						70. 0d	70. 0d	69. 9d	70. 6d
G-5						74. 2d	76. 5d	76. 7d	75. 9d
G-6						63. Ot	61. Ot	60.6t	66.7t
R- 1									100.80
R-2									70. 1d
R-3									70. 3d
R-4									71. 8d
R-5									68. 2t
R-6									17. 6q

^{*166.} 1s(CO), 144. $5d(C_a)$, 113. $7d(C_\beta)$, 130. $7d(C_{1'})$, 115. $7d(C_{2'})$, 159. $7s(C_{4'})$, 115. $0(C_{5'})$, 130. $0(C_{5'})$

鼠李素:黄色针晶(EtOH),mp295~296℃; EIMS m/z; 316 $[M^+]$, 1HNMR (300MHz, $DMSO-d_6$) δ ; 3. 87 (3H, s, C_7 -OMe), 6. 33 (1H, s, C_6 -H), 6. 68 (1H, s, C_8 -H), 6. 92 (1H, d, J = 8. 5Hz, $C_{5'}$ -H), 7. 73 (1H, s, $C_{2'}$ -H), 9. 33 (1H, s, OH), 9. 47 (1H, s, OH), 9. 68 (1H, s, OH), 12. 48 (1H, s, C_5 -OH); $^{13}CN-MR$ 光谱数据如表所示。

商陆素:淡黄色针晶(EtOH),mp221~ 223 C; EIMS m/z; 330 [M⁺]; 'HNMR (300MHz, DMSO-d₆) δ ; 3. 94 (6H, s, C_{7.4}-OMe), 6. 33 (1H, s, C₆-H), 6. 69 (1H, s, C₈-H), 7. 03 (1H, d, J = 8. 6Hz, C₅-H), 7. 63 (1H, d, J = 8. 6Hz, C₆-H), 7. 71 (1H, s, C₂-H), 9. 34 (1H, s, OH), 9. 58 (1H, s, OH), 12. 45 (1H, s, C₅-OH); ¹³CNMR 光谱数据如表所示。

异鼠李素:淡黄色针晶(EtOH),mp305 ~ 307℃; EIMS m/z: 316 [M⁺]; ¹HNMR (300MHz, DMSO-d₆)δ: 3. 83 (3H, s, C₃-OMe),6. 20(1H,s,C₆-H),6. 49(1H,s,C₈- H), 6. 95 (1H, d, J = 8. 4Hz, $C_{5'}$ -H), 7. 69 (1H, d, J = 8. 4Hz, $C_{6'}$ -H), 7. 76 (1H, s, $C_{2'}$ -H), 9. 42 (1H, br s, OH), 9. 75 (1H, br s, OH), 10. 80(1H, br s, OH), 12. 47(1H, s, C_{5} -OH); 13 CNMR 光谱数据如表所示。

程柳素:黄色粉末,EIMS m/z: 316 (M^+) ; ${}^1HNMR(300MHz,DMSO-d_6)\delta$: 3.87 $(3H,s,C_4-OMe)$, 6.24 $(1H,s,C_6-H)$, 6.44 $(1H,s,C_8-H)$, 7.09 $(1H,d,J=8.5Hz,C_5-H)$, 7.67 $(1H,d,J=8.5Hz,C_6-H)$, 7.69 $(1H,s,C_2-H)$, 9.36 (1H,s,OH), 9.47 (1H,s,OH), 10.84 (1H,s,OH), 12.47 $(1H,s,C_5-OH)$; ${}^{13}CNMR$ 光谱数据如表所示。

山奈酚 3-O- β -D-(6"-O-p-香豆酰基)-葡萄糖 甙: 黄色细针晶(EtOH), mp256 \sim 257 C; EIMS m/z; 594 [M⁺]; ¹HNMR (300MHz,DMSO-d₆) δ ; 3. 15 \sim 3. 90(4H,m,G-2,3,4,5-H),4. 04(1H,dd,J=12. 0Hz,G-6-Ha),4. 28(1H,d,J=12. 0Hz,G-6-Hb),5. 46(1H,d,J=6. 8Hz,G-1-H),6. 11(1H,d,J=16. 0Hz, α -H),6. 16(1H,s, α -H),6. 40(1H,s, α -H),6. 79(2H,d,J=8. 2Hz, α -H),6. 86(2H,d,J=8. 5Hz, α -H),7. 34(1H,d,J=16. 0Hz, α -H),7. 37(2H,d,J=8. 2Hz, α - α -H),7. 99(2H,d,J=8. 5Hz, α - α - α - α -H),12. 58(1H,s, α - α -OH); ¹³CNMR 光谱数据如表所示。

异槲皮甙:黄色针晶(H_2O), mp226~227℃; FABMS m/z: 464 [M⁺]; ¹HNMR (300MHz,DMSO-d₆)δ: 3.00~3.70(6H,m,G-2,3,4,5,6ab-H),5.50(1H,d,J=7.1Hz,G-1-H),6.23(1H,s,C₆-H),6.43(1H,s,C₈-H),6.85(1H,d,J=9.1Hz,C₅-H),7.60(1H,d,J=9.1Hz,C₆-H),7.61(1H,s,C₂-H),9.28(1H,s,OH),9.80(1H,s,OH),10.92(1H,s,OH),12.65(1H,s,C₅-OH); ¹³CN-MR 光谱数据如表所示。

D-3-O-甲基肌醇:无色针晶(MeOH); mp180 C; FABMS m/z: 193 [M+ - 1]; ¹HNMR(300MHz,DMSO-d₆)δ:3.00~3.70 $(6H, m, C_{1\sim6}-H)$, 3. 45(3H, s, OMe), 4. 39 (1H, d, J=6.0Hz, -OH), 4. 52(1H, d, J=6.9Hz, -OH), 4. 55(1H, d, J=6.0Hz, -OH), 4. 67(1H, brs, -OH), 4. 76(1H, brs, -OH); 13 CNMR (75MHz, DMSO-d₆) δ : 59. 5q (OMe), 70. $1d(C_2)$, 71. $0d(C_5)$, 71. $9(C_1)$, 72. $4d(C_6)$, 72. $6d(C_4)$, 83. $7(C_3)$ 。这些数据与文献⁽³⁾报道的 D-3-O-甲基肌醇的数据完全一致。

异獐牙菜咖酮甙:淡黄色针晶(MeOH), mp260~261°C; FABMS m/z: 435 (M^+-1) ; ¹HNMR (300MHz, DMSO-d₆) δ ; 3. 25 \sim 3. 60 (4H,G-2,3,4,5-H),3.75(2H,dd,J=6.0,4. 2Hz, G-6-Hab), 3. 88(3H, s, C_3 -OMe), 4. 82(1H,d,J=6.2Hz,G-1-H),6.31(1H,d,J)= 2. 3Hz, C_2 -H),6. 52(1H,d,J=2. 3Hz, C_4 -H), 7. 11 (1H, d, J = 9. 1Hz, C_7 -H), 7. 24 $(1H,d,J=9.1Hz,C_6-H)$; ¹³CNMR (75MHz, DMSO- d_6) δ : 56. 1q (C_3 -OMe), 60. 9t (C-G-6),69.9d(C-G-4),73.5d(C-G-2),76.1d(C-G-5), 77. 4d (C-G-3), 92. 2d (C_4), 97. 1d (C_2) , 103. 3d (C-G-1), 103. 6s (C_{9a}) , 111. 9s (C_{8a}) , 112. 5d (C_7) , 121. 1d (C_6) , 141. 0s (C_5) , 149. 4s (C_{10a}) , 156. 4s (C_8) , 156. 5s (C_{4a}) , 162. $7s(C_1)$, 166. $3s(C_3)$, 181. $0s(C_9)$.

异獐牙菜叫酮甙的酸水解产物:淡黄色针晶(EtOH), mp274~276℃; EIMS m/z: 274〔M⁺〕; ¹HNMR(300MHz, DMSO-d₆)δ: 3. 88(3H, s, C₃-OMe), 6. 36(1H, d, J = 2. 2Hz, C₂-H), 6. 58(1H, d, J = 2. 2Hz, C₄-H), 6. 62(1H, d, J = 8. 8Hz, C₇-H), 7. 23(1H, d, J

= 8. 8Hz, C_6 -H); ¹³CNMR (75MHz, DMSO-d₆) δ ; 56. 1q (\dot{C}_3 -OMe), 93. 0d (C_4), 97. 4d (C_2), 101. 3s (C_{9a}), 107. 8s (C_{8a}), 109. 5d (C_7), 123. 9d (C_6), 137. 3s (C_5), 143. 8s (C_{10a}), 151. 9s (C_8), 157. 4s (C_{4a}), 162. 0s (C_1), 167. 1s (C_3), 184. 0s (C_9) \circ

丁香亭-3-O-β-D-葡萄糖甙:黄色粉末; FABMS m/z: 507 $[M^+ - 1]$; 1 HNMR (300MHz,DMSO-d₆)δ:3.00~4.00(6H,m,G-2,3,4,5,6ab-H),3.86(6H,br s,C_{3',5'}-OMe),5.61(1H,d,J=7.4Hz,G-1-H),6.21 (1H,d,J=2.0Hz,C₆-H),6.49(1H,d,J=2.0Hz,C₈-H),7.50(2H,s,C_{2',6'}-H),12.60 (1H,br s,C₅-OH); 13 CNMR 光谱数据如表所示。

异鼠李素-3-O-β-D-芸香糖甙:淡黄色针晶(EtOH), mp178~180℃; FABMS m/z: 623[M+-1]; HNMR(300MHz, DMSO-d₆)

参考文献

- 1 Mabry TJ, et al. The Systematic Identification of Flavonoids. Springer: Berlin, 1970. 360
- 2 Bohm BA, et al. Phytochem, 1975, 14:315

 δ ; 3. 00~4. 00(6H, m, G-2, 3, 4, 5, 6ab-H), 3. 86(3H, br s, C_{3'}-OMe), 5. 20(1H, d, J=8. 2Hz, G-1-H), 5. 45(1H, d, J=1. 9Hz, R-1-H), 6. 24(1H, s, C_{6'}-H), 6. 46(1H, s, C_{8'}-H), 6. 91′1H, d, J=8. 4Hz, C_{5'}-H), 7. 51(1H, d, J=8. 4Hz, C_{6'}-H), 7. 87(1H, s, C_{2'}-H), 9. 37(1H, br s, OH), 9. 84(1H, br s, OH), 10. 97(1H, brs, OH), 12. 57(1H, brs, C₅-OH); 13 CNMR 光谱数据如表所示。

酪胺:淡银白色片晶(EtOH);mp164~165℃; EIMS m/z: 137〔 M^+ 〕; ¹HNMR (300MHz,CD₃OD)δ: 2. 86(2H,dd,J=7. 0, 8. 5Hz,-CH₂-NH₂),3. 11(2H,dd,J=7. 0, 8. 5Hz,Ar-CH₂-),6. 77(2H,d,J=8. 5Hz,C_{3.5}-H),7. 10(2H,d,J=8. 5Hz,C_{2.6}-H); ¹³CNMR (75MHz,CD₃OD)δ: 33. 8t(Ar-CH₂-),42. 3t (-CH₂-NH₂),116. 8d (C_{3.5}),128. 5s (C₄), 130. 8d(C_{2.6}),157. 7s(C₁)。

3 Breitmaier E, et al. Carbon-13 NMR Spectroscopy. Federal Republic of Germany, 1987. 401

(1996-01-04 收稿)

A New Flavonol Glucoside from Aerial Parts of Manaplant Alhagi (Alhagi pseudoalhagi)

Yang Xiuwei, Jiang Yumei, Li Junshan, et al

A new flavonoid glucoside was isolated from the aerial parts of Alhagi pseudoalhaki (M. B.) Desv.. On the basis of spectral data and chemical reaction, it was elucidated to be syringetin-3-O-β-D-glucoside. Moreover, fourteen known compounds have been isolated and identified as β-sitosterol, stigmasterol, kaempferol, rhamnetin, ombuine, isorhamnetin, tamarixetin, kaempferol-3-O-β-D-(6"-O-p-coumaroyl)-glucoside, isoquercitrin, D-3-O-methylinositol, 1-O-β-D-methyl-glucoside, isoswertianolin, isorhamnetin-3-O-β-D-rutinoside, and tyramine. These compounds were isolated for the first time from the aerial parts of A. pseudoalhagi.

全国医院药学学术会议在昆明召开

由中国药学会医院药学专业委员会、中国医院药学杂志联合承办的全国医院药学学术会议于 1996-11-04 ~09 在云南昆明市召开。参加会议的代表近 400 人,中青年占大多数。大会收到论文 831 篇,其中大会报告的论文有:奚念朱教授的"中国药学教育的现状和展望";"新型控释片——渗透泵";"鼻腔作为全身给药途径的研究";汤光主任的"中国医院药学的情况"和"国际专有药名和中国标准药名";昆明总医院药剂科副主任药师的"抗生素的合理用药";黄根林教授的"我国医院制剂空气净化发展中存在的问题";李大魁教授的"临床药物评价与经济学分析的基本方法";最后由尹武华主编做"关于撰写药学学术论文的有关问题"的总结。这次大会对繁荣医院药学事业,促进学术学流起到积极的推动作用。

金秀莲