[关键词]
[摘要]
目的 建立神农架产红豆杉Taxus wallichiana var. chinensis种子的HPLC指纹图谱及多成分含量测定方法。应用该方法对其他4种红豆杉属植物种子(分别为东北红豆杉T. cuspidata、西藏红豆杉T. wallichiana、南方红豆杉T. wallichiana var. mairei、曼地亚红豆杉T. media)进行对比分析,并进一步结合化学模式识别方法、对红豆杉和同种近源植物南方红豆杉的种子进行比较分析。方法 红豆杉的标准指纹图谱及含量测定方法用HPLC方法建立,采用《中药色谱指纹图谱相似度评价软件(2012年版)》分析各样品的相似度;并采用聚类分析(cluster analysis,CA)、主成分分析(principal component analysis,PCA)与正交偏最小二乘法-判别分析(orthogonal partial least squares discriminant analysis,OPLS-DA)等方法对红豆杉和南方红豆杉种子的指纹图谱进行分析评价。结果 建立了14批红豆杉种子样品的HPLC对照指纹图谱(R)和26批红豆杉属5种植物种子样品的指纹叠加图谱,并标定了16个共有峰。通过对照品指认出10-去乙酰巴卡亭Ⅲ、巴卡亭Ⅲ、7-木糖基-10-脱乙酰基紫杉醇、10-脱乙酰紫杉醇、三尖杉宁碱和紫杉醇等6个含量较高的紫杉烷类化合物,并建立了同时测定这6种主要紫杉烷类成分含量的方法。红豆杉和同属4种植物种子的指纹图谱与标准对照指纹图谱(R)的相似度为0.885~0.995,它们所含的主要紫杉烷类活性成分有极高的相似性。化学模式识别可区分红豆杉和南方红豆杉种子,并筛选出5种差异性成分。结论 红豆杉等5种同属植物的种子所含的主要活性紫杉烷类化合物有极高的相似性,这些种子可考虑作为同一类型的药材资源进行开发利用。通过建立的指纹图谱结合化学模式识别,能够鉴别红豆杉种子及其近源植物南方红豆杉的种子。
[Key word]
[Abstract]
Objective To establish an HPLC fingerprint and multi-component content determination method for the seeds of Taxus wallichiana var. chinensis produced in Shennongjia. This method was applied to compare and analyze the seeds of four other plants from Taxus genus (T. cuspidata, T. wallichiana, T. wallichiana var. mairei, T. media), and further combined with chemical pattern recognition to compare and analyze the seeds of T. wallichiana var. chinensis and T. wallichiana var. mairei, a closely related plant. Methods The standard fingerprint and content determination method of T. wallichiana var. chinensis were established using HPLC method, and the similarity of each sample was analyzed using the Chinese Medicine Chromatographic Fingerprint Similarity Evaluation Software (2012 Edition). And the methods, including cluster analysis (CA), principal component analysis (PCA), and orthogonal partial least squares discriminant analysis (OPLS-DA), were used to analyze and evaluate the fingerprint spectra of seeds between T. wallichiana var. chinensis and T. wallichiana var. mairei,. Results The standard HPLC fingerprint spectra R was established for 14 batches of seed samples of T. wallichiana var. chinensis produced from Shennongjia, and on the method, the fingerprint overlay spectra of 26 batches of seed samples from five Taxus species were collected. And a total of 16 common peaks were calibrated for the 26 batches of seed samples. Six major paclitaxel alkanes with high contents were recognised by the control fingerprints, including 10-deacetylbaccatin III, baccatin III, 7-xylosyl-10-deacetylpaclitaxel, 10-deacetylpaclitaxel, trichothecenes and paclitaxel, and a method was established for the simultaneous determination of the contents of these six major paclitaxel alkanes. The similarity between the fingerprint spectra of the seeds of Taxus chinensis and four other plants in the same genus and the standard control fingerprint spectrum R is 0.885—0.995, indicating a high degree of similarity in the main taxane active ingredients they contain. Chemical pattern recognition could distinguish seeds between Shennongjia T. wallichiana var. chinensis and T. wallichiana var. mairei, seeds, and screened out five differential components. Conclusion The main active paclitaxel alkanes compounds contained in the seeds of these five species of the Taxus genus, including T. wallichiana var. chinensis, have a high degree of similarity, and these seeds can be considered as medicinal resources of the same type for development and utilization. The established fingerprints combined with chemical pattern recognition can be used to identify the seeds of T. wallichiana var. chinensis from T. wallichiana var. mairei,.
[中图分类号]
R286.2
[基金项目]
国家自然科学基金项目(82004253);湖北省中医药重点学科建设项目(鄂中医通[2023]2号);湖北省自然科学基金项目(2023AFD146)