[关键词]
[摘要]
目的 通过分析醋润蜜麸炒柴胡炮制过程中成分差异,探究建昌帮特色炮制方法对柴胡成分变化的影响,筛选差异性成分,为揭示其炮制机制奠定基础。方法 采用超高效液相色谱-线性离子阱-静电场轨道阱质谱联用(UPLC-LTQ-Orbitrap MS)技术分析生柴胡和醋润蜜麸炒柴胡及其炮制过程中的化学成分,采用SIMCA 14.1软件对样品数据进行主成分分析(principal component analysis,PCA)及正交偏最小二乘法-判别分析(orthogonal partial least squares-discriminant analysis,OPLS-DA),以变量重要性投影(variable importance projection,VIP)值>1为指标筛选差异性成分。结果 从生柴胡中鉴定出63个化学成分,从醋润蜜麸炒柴胡中鉴定出66种化学成分,包括柴胡皂苷类、黄酮类、有机酸类、香豆素类及其他类,筛选出炮制前后差异性成分21种[黄芩苷、L-(—)-阿拉伯糖醇、葡萄糖酸、芹菜素、柠檬酸、L-(—)-苹果酸、(15Z)-9,12,13-三羟基-15-十八碳烯酸、柴胡皂苷a、壬二酸、柴胡皂苷b2、12,13-二羟基-9-十八碳烯酸、D-(—)-奎宁酸、反-6-羟基十八碳-4-烯酸、(±)-9-氢过氧基十八碳-10,12-二羧酸、罗汉松脂素、2″-O-乙酰柴胡皂苷a、绿原酸、9,10,13-三羟基-11-十八碳烯酸、柴胡次皂苷f、柴胡皂苷d和汉黄芩素]。通过峰面积比较发现,芹菜素、L-(—)-苹果酸、(15Z)-9,12,13-三羟基-15-十八碳烯酸、壬二酸、柴胡皂苷b2、12,13-二羟基-9-十八碳烯酸、反-6-羟基十八碳-4-烯酸、(±)-9-氢过氧基十八碳-10,12-二羧酸、绿原酸、9,10,13-三羟基-11-十八碳烯酸、柴胡次皂苷f和汉黄芩素相对含量升高,黄芩苷、L-(—)-阿拉伯糖醇、柴胡皂苷a、罗汉松脂素、2″-O-乙酰柴胡皂苷a和柴胡皂苷d相对含量降低,葡糖酸、柠檬酸和D-(—)-奎宁酸为炮制后新增成分。柴胡炮制过程中,经分析发现柴胡生品、醋润后、蜜麸炒后差异显著,共筛选出23个差异性成分[柠檬酸、葡萄糖酸、(15Z)-9,12,13-三羟基-15-十八碳烯酸、黄芩苷、9,10,13-三羟基-11-十八碳烯酸、罗汉松脂素、柴胡皂苷a、芹菜素、(±)-9-氢过氧基十八碳-10,12-二羧酸、异鼠李素、柴胡次皂苷f、12,13-二羟基-9-十八碳烯酸、马来酸、绿原酸、麻黄脂肪酸f、2,4-二羟基-2,3-双[(4-羟基-3-甲氧苯基)甲基]丁酸、柴胡皂苷d、3-羟基-3,5,5-三甲基-4-(3-氧代-1-丁烯-1-亚基)环己基-I(2)-D-葡萄糖硫苷、鸟苷、柴胡皂苷e、15,16-二羟基-10,13-十八碳二烯酸、D-(+)-阿拉伯糖醇和1-O-[(3β,5ξ,9ξ)-3-(β-D-葡糖基)-27-羟基-27,28-二氧代齐墩果-12-烯-28-基]-β-D-葡萄糖]。结论 柴胡经醋润蜜麸炒后,皂苷类成分发生转换,酚酸类成分种类和含量增多,刺激性成分含量降低,且不同炮制阶段成分差异较为显著,为深入研究醋润蜜麸炒柴胡的炮制作用机制奠定基础。
[Key word]
[Abstract]
Objective By analyzing the difference of components of Chaihu (Bupleuri Radix, BR) by vinegar wetting and honey bran fried during processing, the effects of Jianchangbang’s characteristic processing methods on the changes of components of BR were explored, and the differential components were screened to lay a foundation for revealing its processing mechanism. Methods The UPLC-LTQ-Orbitrap MS technology was used to analyze the chemical components of BR, stir-fried BR (sfBR) and during the processing. The SIMCA 14.1 software was used to conduct principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) on the sample data. The variable importance in projection (VIP) value > 1 was used as an indicator to screen out differential components. Results A total of 63 chemical components were identified from BR, and 66 chemical components were identified from sfBR, including saikosaponins, flavonoids, organic acids, coumarins and others. A total of 21 differential components were screened out before and after processing [baicalin, L-(−)-arabitol, gluconic acid, apigenin, citric acid, L-(−)-malic acid, (15Z)-9,12,13-trihydroxy-15-octadecenoic acid, saikosaponin a, azelaic acid, saikosaponin b2, 12,13-dihydroxy-9-octadecenoic acid, D-(−)-quinic acid, trans-6-hydroxyoctadec-4-enoic acid, (±)-9-hydroperoxyoctadeca-10,12-dicarboxylic acid, matairesinol, 2″-O-acetylsaikosaponin a, chlorogenic acid, 9,10,13-trihydroxy-11-octadecenoic acid, saikogenin f, saikosaponin d, and wogonin]. By comparing the peak area, it was found that the relative contents of apigenin, L-(−)-malic acid, (15Z)-9,12,13-trihydroxy-15-octadecenoic acid, azelaic acid, saikosaponin b2, 12,13-dihydroxy-9-octadecenoic acid, trans-6-hydroxyoctadec-4-enoic acid, (±)-9-hydroperoxyoctadeca-10,12-dicarboxylic acid, chlorogenic acid, 9,10,13-trihydroxy-11-octadecenoic acid, saikogenin f, and wogonin increased, the relative contents of baicalin, L-(−)-arabitol, saikosaponin a, matairesinol, 2″-O-acetylsaikosaponin a, and saikosaponin d decreased, and gluconic acid, citric acid and D-(−)-quinic acid were newly added components after processing. During the processing of BR, it was found through analysis that there were significant differences among raw products, after being moistened with vinegar, and after being fried with honey bran. A total of 23 differential components were screened out [citric acid, gluconic acid, (15Z)-9,12,13-trihydroxy-15-octadecenoic acid, baicalin, 9,10,13-trihydroxy-11-octadecenoic acid, matairesinol, saikosaponin a, apigenin, (±)-9-hydroperoxyoctadeca-10,12-dicarboxylic acid, isorhamnetin, saikogenin f, 12,13-dihydroxy-9-octadecenoic acid, maleic acid, chlorogenic acid, ephedra fatty acid f, 2,4-dihydroxy-2,3-bis[(4-hydroxy-3-methoxyphenyl) methyl]butanoic acid, saikosaponin d, 3-hydroxy-3,5,5-trimethyl-4-(3-oxo-1-buten-1-ylidene) cyclohexyl-I(2)-D-glucothioside, guanosine, saikosaponin e, 15,16-dihydroxy-10,13-octadecadienoic acid, D-(+)-arabitol, and 1-O-[(3β,5ξ,9ξ)-3-(β-D-glucosyl)-27-hydroxy-27,28-dioxoolean-12-en-28-yl]-β-D-glucopyranose]. Conclusion After BR is processed with vinegar moistening to stir-baking with honey bran, the saponin components are converted, the types and contents of phenolic acid components increase, the content of irritating components decreases, and the component differences at different processing stages are relatively significant. This study can lay a foundation for in-depth study of the processing mechanism of BR by vinegar moistening to stir-baking with honey bran.
[中图分类号]
R283.6
[基金项目]
江西省重点研发计划(20232BBG70013)