基于谱效关系的不同海拔大黄泻下作用研究

唐雨灵1,2, 陈玲玲2,3#, 刘梦娇2, 贾志鑫2, 尹 湉1*, 陈 佳2, 程显隆2, 魏 锋2*

- 1. 沈阳药科大学, 辽宁 沈阳 110016
- 2. 中国食品药品检定研究院,北京 102629
- 3. 中国药科大学, 江苏 南京 210009

摘 要:目的 建立不同海拔大黄药材的 HPLC 指纹图谱,明确海拔对大黄泻下作用的影响,筛选与海拔相关的泻下活性 差异成分,为大黄药材质量评价提供参考。方法 采集甘肃礼县不同海拔人工种植的大黄样品,采用 HPLC 技术构建其指纹 图谱;结合主成分分析(PCA)与正交偏最小二乘判别分析(OPLS-DA),筛选不同海拔大黄的差异性成分;以小鼠 5 h 内排便粒数为药效评价指标,比较不同海拔大黄的泻下活性;通过灰色关联度分析(GRA)、偏最小二乘回归分析(PLS-RA)及变量投影重要性(VIP)分析,将 HPLC 指纹图谱数据与泻下药效数据进行关联,筛选调控大黄泻下作用的关键质量指标。结果 成功构建大黄 HPLC 指纹图谱,共确定 29 个共有峰,其中 12 个峰经指认明确对应成分,6 号峰儿茶素、7 号峰表儿茶素、9 号峰大黄酸-8-O-β-D-葡萄糖苷、10 号峰番泻苷 B,18 号峰大黄素-8-β-D-吡喃葡萄糖苷、20 号峰大黄酚-8-O-β-D-吡喃葡萄糖苷、21 号峰大黄素-6-O-葡萄糖苷、25 号峰芦荟大黄素、26 号峰大黄酸、27 号峰大黄素、28 号峰大黄酚、29 号峰大黄素甲醚。化学计量学分析显示,19 批大黄样品经 PCA 可清晰分为高海拔与低海拔 2 类,OPLS-DA 结果与 PCA 分类一致,进一步验证了海拔对大黄化学成分的影响;泻下作用实验表明,高海拔组大黄的促排便作用显著优于低海拔组(P<0.05);谱效关系综合分析结果显示,峰 14、峰 17、峰 25(芦荟大黄素)与大黄泻下作用的关联性最强,是调控大黄泻下作用的关键成分。结论 建立的大黄 HPLC 指纹图谱稳定可靠,且通过谱-效关系明确了与泻下作用相关的核心成分及海拔对药效的影响,为大黄药材的质量控制、品质评价及合理应用提供了重要参考。

关键词:大黄;海拔;指纹图谱;谱效关系;泻下作用;芦荟大黄素

中图分类号: R285.5 文献标志码: A 文章编号: 1674 - 6376(2025)11 - 3253 - 11

DOI:10.7501/j.issn.1674-6376.2025.11.017

Study on laxative effect of *Rheum palmatum* at different altitudes based on spectrum-effect relationships

TANG Yuling^{1, 2}, CHEN Lingling^{2, 3}, LIU Mengjiao², JIA Zhixin², YIN Tian¹, CHEN Jia², CHENG Xianlong², WEI Feng²

- 1. Shenyang Pharmaceutical University, Shenyang 110016, China
- 2. National Institutes for Food and Drug Control, Beijing 102629, China
- 3. China Pharmaceutical University, Nanjing 210009, China

Abstract: Objective To establish HPLC fingerprints of *Rheum palmatum* from different altitudes, clarify the influence of altitude on the laxative effect of *R. palmatum* and screen the laxative activity-related components associated with altitude, providing a reference for the quality evaluation of *R. palmatum*. **Methods** *R. palmatum* samples from artificial cultivation at different altitudes in Li County, Gansu Province were collected. HPLC was used to construct their fingerprint profiles. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were combined to screen the differential chemical components of *R*.

基金项目: 国家药品监督管理局药品监管科学体系建设重点项目 (RS2024Z006); 中检院关键技术研究基金项目 (GJJS20220702); 中检院中药所学科建设项目 (1020050090118); 国家药典委员会国家药品标准制修订研究课题 (BZ20230277); 新疆维吾尔自治区重点研发计划项目 (2024B02024)

收稿日期: 2025-05-27

作者简介:唐雨灵,女,硕士研究生,主要从事中药质量控制与评价研究。E-mail:tangyuling@nifdc.org.cn #共同第一作者:陈玲玲,女,硕士研究生,主要从事中药质量评价与资源开发研究。E-mail:18084231376@163.com

^{*}通信作者: 尹 湉,女,博士,副教授,硕士生导师,主要从事中药药剂学研究。E-mail: yintian124@foxmail.com

魏 锋,研究员,研究方向为中药质量控制和评价。E-mail: weifeng@nifdc.org.cn

palmatum at different altitudes. The number of fecal pellets excreted by mice within five hours was used as the pharmacodynamic evaluation index to compare the laxative activities of R. palmatum at different altitudes. Grey relational analysis (GRA), partial least squares regression analysis (PLS-RA), and variable importance in the projection (VIP) analysis were used to correlate the HPLC fingerprint profile data with the laxative activity data and screen the key quality indicators regulating the laxative effect of R. palmatum. Results The HPLC fingerprint profile of R. palmatum was successfully established, with a total of 29 common peaks identified. Among them, 12 peaks were identified as corresponding components: peak 6 catechin, peak 7 epicatechin, peak 9 rhein-8-O-β-Dglucoside, peak 10 sennoside B, peak 18 emodin-8-β-D-glucopyranoside, peak 20 chrysophanol-8-O-β-D-glucopyranoside, peak 21 emodin-6-O-glucoside, peak 25 aloe-emodin, peak 26 rhein, peak 27 emodin, peak 28 chrysophanol, and peak 29 physcion. Chemometric analysis showed that 19 batches of R. palmatum samples could be clearly divided into high-altitude and low-altitude groups by PCA, and the OPLS-DA results were consistent with the PCA classification, further verifying the influence of altitude on the chemical components of R. palmatum. The laxative effect experiments indicated that the laxative effect of R. palmatum in the highaltitude group was significantly better than that in the low-altitude group (P < 0.05). The comprehensive analysis of the spectrum-effect relationship showed that peaks 14, 17, and 25 (aloe-emodin) had the strongest correlation with the laxative effect of R. palmatum and were the key potential components regulating the laxative effect. Conclusion The HPLC fingerprint profile of R. palmatum established in this study was stable and reliable. Through the spectrum-effect relationship, the core components related to the laxative effect and the influence of altitude on the efficacy were clarified, providing an important reference for the quality control, quality evaluation, and rational application of R. palmatum.

Key words: Rheum palmatum L.; elevation; fingerprinting; spectral effect relationship; laxative effect; aloe-emodin

大黄是蓼科植物掌叶大黄 Rheum palmatum L.、唐古特大黄 Rheum tanguticum Maxim. ex Balf. 或药用大黄 Rheum officinale Baill. 的干燥根及根茎。具有泻下攻积、清热泻火、凉血解毒、逐瘀通经、利湿退黄的功效[1]。大黄为高海拔药用植物,国产大黄属植物在我国的分布呈现自东向西海拔逐渐升高的特征,其分布中心位于青藏高原东缘,该区域集中了 66%的国产大黄资源。从生长习性来看,大黄喜冷凉气候,具有较强耐寒性,忌高温环境[2-3]。

现有研究表明[4],植物易受到生长发育过程中环 境胁迫影响, 高海拔地区存在的干旱、冻害、风害等 因素,都会对植物体内黄酮、蒽醌、生物碱等在内的 次生代谢产物的积累造成影响。大黄主要化学成分 包括蒽醌类、蒽酮类、二苯乙烯类、鞣质类、苯丁酮 类、色原酮类、萘苷类等化合物[5],具有泻下、抗炎、 抗肿瘤、保肝、保护心血管等药理作用[6],其中结 合蒽醌及蒽酮类化合物是其主要药理活性成分[7]。 关于大黄泻下作用的机制,现有研究已形成部分结 论: 其一, 大黄醌苷成分会在大肠肠道细菌酶的分 解作用下转化为大黄酸蒽酮, 对大肠黏膜造成刺 激,引起肠道平滑肌上的 M 受体兴奋,进而加快 肠道蠕动,最终导致腹泻[8];其二,游离型蒽醌是 大黄发挥导泻作用的关键活性物质[9],其作用机制 主要通过刺激胃肠道分泌活动,提高胃肠道内蛋白 质浓度,从而引发肠道内容物体积增加,最终实现

容积性泻下作用[10]。

目前,关于大黄药理活性的研究已有较多报道,但尚未见海拔高度对大黄泻下作用影响的相关研究。本研究基于 HPLC 指纹图谱结合其对正常小鼠的泻下作用,探讨海拔高度对大黄泻下作用的影响,并初步找寻与海拔高度相关的大黄主要药理活性指标,为进一步确立大黄关键质量评价指标提供参考依据。

1 材料

1.1 仪器

Waters e2695 高效液相色谱仪、Waters 2998 PDA 检测器,美国沃特世公司; KQ-250DE 医用数控超声波清洗器,昆山市超声仪器有限公司; METTLER TOLEDO XSE 205DU 电子天平,瑞士梅特勒-托利多仪器公司; Mill-Q 超纯水系统,德国默克公司。

1.2 试剂

对照品芦荟大黄素(批号110795-202011,质量分数97.5%)、大黄素(批号110756-201913,质量分数96.0%)、大黄酸(批号110757-202308,质量分数95.0%)、大黄酚(批号110796-201922,质量分数99.4%)、大黄素甲醚(批号110758-202218,质量分数98.9%)、番泻苷B(批号110825-202004,质量分数96.0%)、儿茶素(批号110877-202306,质量分数96.6%)、表儿茶素(批号110878-201703,质量分数99.7%)均购自中国食品药品检定研究院;

大黄素-6-O-葡萄糖苷(批号 230918,质量分数 99.4%)购自成都植标化纯生物技术有限公司;大黄酚-8-O-β-D-吡喃葡萄糖苷(批号 PS010712,质量分数 99.6%)、大黄酸-8-O-β-D-葡萄糖苷(批号 PS011174,质量分数 98.9%)、大黄素-8-β-D-吡喃葡萄糖苷(批号 PS012442,质量分数 98.5%)购自成都普思生物科技股份有限公司。麻仁软胶囊(规格每粒 0.6 g,批号 2307609),佛山手心制药有限公司。磷酸、乙腈、甲醇、乙醇为色谱级;Milli-Q超纯水为实验室自制。

1.3 药材

人工栽培大黄药材采集自甘肃省礼县种植基地。样品经中国食品药品检定研究院中药民族药检定所康帅副研究员鉴定,为蓼科植物掌叶大黄 Rheum palmatum L. 的干燥根及根茎。如表 1 所示,本研究共收集 19 批大黄样品,其中 S1~S9 为采自海拔 1 200~1 500 m 的低海拔样品,S10~S19 为采自海拔 2 200~2 800 m 的高海拔样品,所有样品生长年限均为 3 年。

1.4 动物

雄性健康昆明小鼠 147 只,体质量 25~30 g,购于湖南斯莱克景达实验动物有限公司,本研究经

表 1 不同海拔高度大黄样品信息

Table 1 Information of *R. palmatum* samples from different altitudes

编号	产地	海拔/m
S1	甘肃省礼县	1 200~1 500
S2	甘肃省礼县	1 200~1 500
S 3	甘肃省礼县	1 200~1 500
S4	甘肃省礼县	1 200~1 500
S5	甘肃省礼县	1 200~1 500
S6	甘肃省礼县	1 200~1 500
S7	甘肃省礼县	1 200~1 500
S8	甘肃省礼县	1 200~1 500
S 9	甘肃省礼县	1 200~1 500
S10	甘肃省礼县草坪乡湾里村	2 200~2 800
S11	甘肃省礼县草坪乡崖上村	2 200~2 800
S12	甘肃省礼县草坪乡草坪村	2 200~2 800
S13	甘肃省礼县草坪乡小湾村	2 200~2 800
S14	甘肃省礼县草坪乡王庄村	2 200~2 800
S15	甘肃省礼县草坪乡上坝村	2 200~2 800
S16	甘肃省礼县草坪乡上山村	2 200~2 800
S17	甘肃省礼县草坪乡中山村	2 200~2 800
S18	甘肃省礼县草坪乡后山村	2 200~2 800
S19	甘肃省礼县草坪乡李沟村	2 200~2 800

赣南医学院实验动物伦理委员会批准(伦理批准号 2022048)。实验动物饲养于 SPF 级环境中,温度控制在 $21\sim25$ ℃,相对湿度 $55\%\sim65\%$,12 h 白昼、黑夜交替循环,小鼠适应环境 1 周,期间自由饮水和摄食。

2 方法与结果

2.1 HPLC 指纹图谱的建立

- 2.1.1 色谱条件 采用 Kromasil 100-5-C₁₈ 色谱柱 (250 mm×4.6 mm, 5 μm); 采用乙腈 (A) -0.05% 磷酸水 (B) 梯度洗脱 0~10 min, 4%→11% A; 10~25 min, 11%→13% A; 25~45 min, 13%→20% A; 45~76 min, 20%→30% A; 76~82 min, 30%→40% A; 82~90 min, 45%→75% A; 90~110 min, 75% A; 110~111 min, 75%→90% A; 111~116 min, 90% A; 116~117 min, 90%→4% A; 117~125 min, 4% A。进样量 10 μL; 体积流量 1 mL·min⁻¹; 柱温 40 ℃; 检测波长 254 nm。
- 2.1.2 对照品溶液的制备 分别取芦荟大黄素、大黄素、大黄酸、大黄酚、大黄素甲醚、番泻苷 B、儿茶素、表儿茶素、大黄素-6-O-葡萄糖苷、大黄酚-8-O- β -D-吡喃葡萄糖苷、大黄酸-8-O- β -D-葡萄糖苷、大黄素-8- β -D-吡喃葡萄糖苷对照品适量,精密称定,加入甲醇溶解配制成质量浓度分别 0.032、0.032、0.032、0.032、0.016、0.135、0.112、0.165、0.130、0.120、0.110、0.195 mg·mL $^{-1}$ 的混合对照品溶液,并保存在 4 $^{\circ}$ C冰箱内。
- 2.1.3 供试品溶液的制备 取样品粉末(过 4 号筛)约 0.5 g,精密称定,置 50 mL 具塞锥形瓶中,精密加入甲醇 25 mL,密塞,称定质量,超声(300 W、100 kHz)30 min,放冷,再称定质量,用甲醇补足减失的质量,摇匀,滤过,取续滤液,经 0.45 μm 有机微孔滤膜滤过,即得。
- 2.1.4 精密度考察 取大黄样品粉末 (S1),按照 "2.1.3" 项下方法制备供试品溶液,按照 "2.1.1" 项色谱条件,连续进样 6 次,采集图谱,计算各共有峰峰面积及保留时间 RSD 值。以 27 号峰为参照峰,计算指纹图谱各共有峰的相对保留时间和相对峰面积。结果显示,各共有峰的相对保留时间 RSD 均小于 0.5%,相对峰面积 RSD 均小于 3.0%,表明该仪器精密度良好。
- 2.1.5 重复性考察 取大黄样品粉末 (S1),按照 "2.1.3"项下方法制备 6 份供试品溶液,按照"2.1.1" 项色谱条件,连续进样 6 次,采集图谱,计算各共

有峰峰面积及保留时间 RSD 值。以 27 号峰为参照峰,计算指纹图谱各共有峰的相对保留时间和相对峰面积。结果显示,各共有峰的相对保留时间 RSD 均小于 0.3%,相对峰面积 RSD 均小于 2.9%,表明该方法重复性良好。

2.1.6 稳定性考察 取大黄样品粉末 (S1),按照 "2.1.3"项下方法制备供试品溶液,按照 "2.1.1"项色谱条件,分别在 0、2、4、8、12、24 h 时进样,采集图谱,计算各共有峰峰面积及保留时间 RSD 值。以 27 号峰为参照峰,计算指纹图谱各共有峰的相对保留时间和相对峰面积。结果显示,各共有峰的相对保留时间 RSD 均小于 0.5%,相对峰面积 RSD 均小于 3.0%,表明供试品溶液在 24 h 内稳定性良好。

2.1.7 大黄指纹图谱的建立与相似度评价 取 19 批大黄样品 (S1~S19),按"2.1.3"项下方法制备供试品溶液,按"2.1.1"项下色谱条件进样测定,并全程记录色谱数据以确保实验结果的可靠性。将采集的色谱图谱数据导入《中药色谱指纹图谱相似度评价系统》(2012 版),以 S1 样品为基准参照图谱,设定时间匹配宽度为 0.1 min,采用平均数法,通过多点校正进行峰匹配,生成大黄样品的指纹图谱叠加图及其对照指纹图谱(R),结果见图 1。同步计算各样本的相似度指标。19 批大黄供试品指

纹图谱中主要色谱峰分离良好,共标定了 29 个特征峰。各批大黄样品的指纹图谱与对照图谱的相似度分别为 0.974、0.973、0.962、0.991、0.956、0.989、0.979、0.981、0.946、0.991、0.920、0.976、0.958、0.947、0.988、0.928、0.965、0.991、0.951,均大于 0.920,表明不同海拔大黄样品整体质量较为稳定,但不同海拔的大黄样品的 HPLC 指纹图谱有所差异。

通过对照品比对验证,共指认了 12 个特征峰,分别为儿茶素(峰 6)、表儿茶素(峰 7)、大黄酸-8-*O*-β-*D*-葡萄糖苷(峰 9)、番泻苷 B(峰 10),大黄素-8-β-*D*-吡喃葡萄糖苷(峰 18)、大黄酚-8-*O*-β-*D*-吡喃葡萄糖苷(峰 20)、大黄素-6-*O*-葡萄糖苷(峰 21)、芦荟大黄素(峰 25)、大黄酸(峰 26)、大黄素(峰 27)、大黄酚(峰 28)、大黄素甲醚(峰 29)。对照品溶液、供试品溶液(S1、S10)、空白溶剂的HPLC 图如图 2 所示。

2.2 主成分分析 (PCA)

以 19 批大黄样品 29 个共有峰面积作为变量,将其导入 IBM SPSS Statistics 25 进行因子分析。由表 2 可知,以特征值>1 为提取标准,得到 6 个主成分 (PC),其累积方差贡献率为 89.724%,通过碎石图 (图 3) 观察,折线在第 6 个成分后由陡峭转为平缓,说明这 6 个 PC 能够充分表征 29 个共有峰

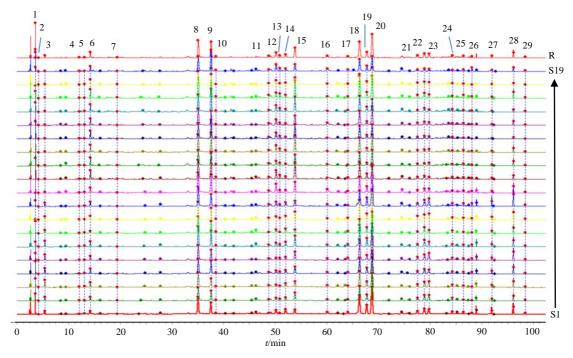


图 1 19 批大黄样品的 HPLC 指纹图谱及对照指纹图谱(R)

Fig. 1 HPLC fingerprints of 19 batches of R. palmatum samples and control fingerprints (R)

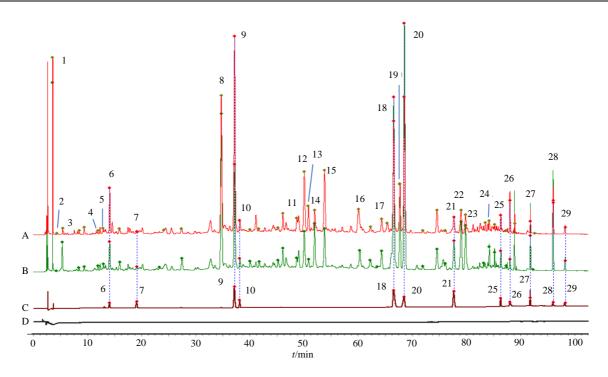


图 2 大黄高海拔供试品 (S10, A) 溶液、低海拔供试品 (S1, B) 溶液、混合对照品溶液 (C) 和甲醇 (D) 的 HPLC 色谱图

Fig. 2 HPLC chromatograms of test sample solution from high-altitude (S10, A), test sample solution from low-altitude (S1, B), mixed control solution (C), and methanol (D)

表 2 特征值及方差贡献率

Table 2 Characteristic peak values and their variance contribution rates

主成分	特征值	方差贡献率/%	累积贡献率/%
1	12.021	41.453	41.453
2	8.170	28.171	69.625
3	2.161	7.453	77.078
4	1.478	5.098	82.176
5	1.174	4.050	86.226
6	1.014	3.498	89.724

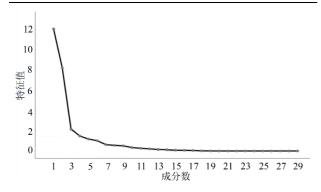


图 3 主成分分析碎石图

Fig. 3 Principal component analysis gravel diagram 的大部分信息,具有进一步研究的意义。在因子载荷矩阵(表 3)分析中,各成分载荷量的绝对值越大,

表明其对 PC 的影响越大。结果表明共有峰 3、4、8、14、17、18(大黄素-8-β-D-吡喃葡萄糖苷)、19、20(大黄酚-8-O-β-D-吡喃葡萄糖苷)、21(大黄素-6-葡萄糖苷)、22、23、24、25(芦荟大黄素)、26(大黄酸)、27(大黄素)、28(大黄酚)、29(大黄素甲醚)对 PC1 影响大,共有峰 1、2、3、6(儿茶素)、8、9(大黄酸-8-O-β-D-葡萄糖苷)、10(番泻苷 B)、11、12、13、15 对 PC2 影响大,共有峰 5、16、26(大黄酸)对 PC3 影响大,共有峰 7(表儿茶素)对 PC4 影响大,共有峰 5、16 对 PC5 影响大。

采用 SIMCA 14.1 软件进行分析,得到 PCA 得分图(图 4),所有样品均在 95%置信区间内,低海拔大黄与高海拔大黄各自聚为一类,表明不同海拔高度的大黄样品间的化学成分存在差异。

2.3 正交偏最小二乘-判别分析(OPLS-DA)

为进一步寻找影响不同海拔高度大黄质量的差异性变量,采用 OPLS-DA 模型进行分析。分别将 19 批大黄样品的 29 个共有峰峰面积导入 SIMCA 14.1 进行 OPLS-DA 处理(图 5),19 批大黄可被区分为 2 类,S1~S9 为一类,S10~S19 为一类,与PCA 结果一致。在该模型下,模型的自变量拟合指数 R_X^2 为 0.574, R_Y^2 为 0.992,模型预测指数(O^2)

表 3 样品成分矩阵

Table 3	Component matrix of samples
Table 3	Component matrix of samples

峰号	PC1	PC2	PC3	PC4	PC5	PC6	峰号	PC1	PC2	PC3	PC4	PC5	PC6
1	-0.224	0.883	0.182	-0.152	0.038	0.205	16	0.364	0.072	-0.544	-0.039	0.693	-0.018
2	-0.304	0.684	-0.181	0.110	0.151	0.354	17	0.628	0.151	0.171	0.489	0.113	-0.286
3	0.674	-0.500	0.352	-0.156	0.140	-0.061	18	0.919	0.212	0.156	-0.044	-0.110	-0.061
4	0.623	0.351	0.419	-0.100	0.230	-0.106	19	0.911	-0.068	-0.090	0.156	-0.007	-0.265
5	0.385	0.336	0.522	-0.141	0.576	0.043	20	0.906	-0.248	-0.019	-0.26	-0.013	0.048
6	0.145	0.916	0.209	-0.203	-0.037	0.076	21	0.900	0.016	0.048	-0.275	-0.083	0.012
7	0.345	-0.047	0.271	0.531	-0.020	0.667	22	0.937	-0.112	0.159	0.064	0.031	0.072
8	0.711	0.665	-0.080	0.027	-0.041	0.062	23	0.810	-0.443	0.057	-0.301	-0.128	0.039
9	0.184	0.941	-0.121	0.164	-0.052	-0.083	24	0.893	-0.062	0.207	0.022	-0.033	0.105
10	0.171	0.723	0.156	0.432	-0.177	-0.253	25	0.700	0.328	-0.499	0.097	-0.086	0.140
11	0.396	0.740	-0.033	-0.353	-0.114	0.033	26	0.563	0.096	-0.648	0.015	0.092	-0.012
12	0.015	0.851	-0.234	0.064	0.148	-0.216	27	0.838	-0.382	-0.179	0.022	-0.197	-0.026
13	0.107	0.940	-0.092	-0.062	-0.134	0.005	28	0.893	-0.226	-0.222	-0.137	-0.143	0.076
14	0.835	-0.273	0.156	0.405	0.024	-0.09	29	0.918	0.000	-0.230	0.040	0.001	0.202
15	0.047	0.920	0.193	-0.137	-0.222	-0.081							

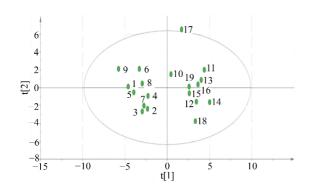


图 4 19 批大黄样品的 PCA 得分图
Fig. 4 PCA score plot of 19 batches of *R. palmatum* samples

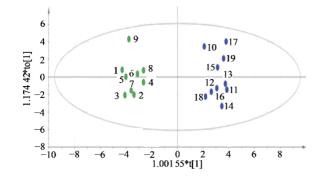


图 5 19 批大黄样品的 OPLS-DA 得分图 Fig. 5 OPLS-DA score plot of 19 batches of *R. palmatum* samples

为 0.955,均大于 0.5,表明该模型具有较好预测能力。经过 200 次置换检验(图 6),Q² 回归线与纵轴的相交点小于 0,表明该结果稳定有效,不存在过拟合现象[^{11]}。说明 19 批样品由于海拔高度不同的差异,化学成分的含量存在一定差异。为进一步筛选出导致不同海拔大黄样品产生差异的成分,提取OPLS-DA 模型中 29 个变量,通常以变量投影重要性(VIP)>1.0 作为常用筛选参数,但难免会遗漏一些相对重要的指标,为此本研究放宽筛选标准,以 VIP>0.85 为标准[^{12-14]}(图 7),筛选差异成分。找到 19 个差异性成分,分别是峰 12、峰 2、峰 27(大黄素)、峰 3、峰 1、峰 23、峰 9(大黄酸-8-*O*-β-*D*-葡萄糖苷)、峰 6(儿茶素)、峰 14、峰 28(大黄酚)、

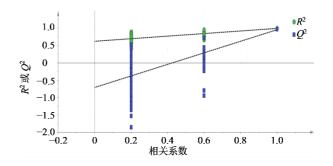


图 6 OPLS-DA 模型置换验证图 Fig. 6 OPLS-DA model permutation test diagram

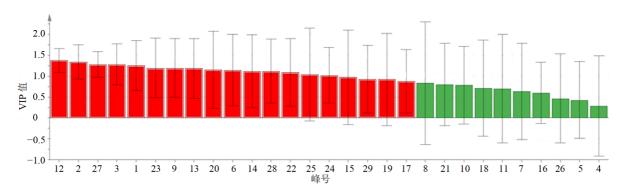


图 7 VIP 得分图 Fig. 7 VIP score plot

峰 22、峰 25 (芦荟大黄素)、峰 24、峰 15、峰 29 (大黄素甲醚)、峰 19、峰 17。

2.4 大黄对小鼠泻下的药效实验研究

2.4.1 溶液的配制 取大黄粉末(过 4 号筛)约 4 g,精密称定,置 250 mL 锥形瓶中,精密加入乙醇 100 mL,称定质量,静置 1 h 后,回流 1 h。放冷后,再次称定,用乙醇补足减失的质量,摇匀,滤过,精密量取续滤液 25 mL,置已干燥至恒定质量的蒸发皿中,在水浴上蒸干后,于 105 °C干燥 3 h,置干燥器中冷却 30 min,迅速精密称定质量。经计算 $$1\sim19 提取率分别为 \$1.35%、\$2.14%、\$2.76%、\$0.14%、\$0.69%、\$2.46%、\$3.16%、\$2.19%、\$0.69%、\$2.46%、\$3.16%、\$3.19%、\$3.494%、\$3.33%、\$2.635%。

取上述 $S1\sim S19$ 提取物粉末,分别混悬于 0.9% 氯化钠溶液中,均配制成质量浓度为 $500~mg\cdot mL^{-1}$ 的供试品溶液;麻仁软胶囊溶解于 0.9%氯化钠溶液中配制成质量浓度为 $100~mg\cdot mL^{-1}$ 的麻仁软胶囊混

悬液。

- 2.4.2 分组及给药 取体质量 25~30 g 的雄性健康 昆明小鼠 147 只,随机分为: 对照组 (等量蒸馏水)、麻仁软胶囊组 (阳性药)、低海拔大黄样品 (S1~S9)组、高海拔大黄样品 (S10~S19)组,共 21 组,每组 7 只。实验当日小鼠禁食不禁水 4 h,对照组 ig 等量蒸馏水,其余组均给予对应的给药剂量,各大黄样品组按生药量计均 ig 给予 5.0 g·kg^{-1[15]},麻仁软胶囊组 ig 给予 1.0 g·kg⁻¹,给药体积均为 0.3 mL。
- 2.4.3 泻下指标的考察 将实验小鼠单独放入代谢笼中(底下铺有滤纸),观察泻下情况,按粪便性状分为:水便、溏便、软便、正常[16]。因本研究没有出现水便、溏便现象,故只分别统计给药后 5 h内各组小鼠的总排便粒数,进而比较不同海拔高度大黄对正常小鼠排便的影响差异。
- 2.4.4 结果分析 由表 4 数据可知,在设定给药剂量下,麻仁软胶囊组及所有大黄样品组均表现出通便作用,且未引发腹泻反应。需说明的是,泻下通

表 4 不同大黄样品对正常小鼠排便的影响 ($\bar{x} \pm s, n=7$)

Table 4 Effects of different R. palmatum samples on defection in normal mice ($\bar{x} \pm s, n=7$)

组别	剂量/(g·kg ⁻¹)	5 h 内总排便粒数	组别	剂量/(g·kg ⁻¹)	5 h 内总排便粒数
对照	_	6.57 ± 1.81	S10	5.0	8.67 ± 2.07
麻仁软胶囊	1.0	$9.86 \pm 2.27^{**}$	S11	5.0	$13.14 \pm 2.85^{**}$
S1	5.0	8.00 ± 1.90	S12	5.0	$11.29 \pm 3.40^{**}$
S2	5.0	$9.86 \pm 1.95^{**}$	S13	5.0	9.00 ± 2.00
S3	5.0	8.43 ± 1.40	S14	5.0	$10.29 \pm 3.04^{**}$
S4	5.0	$10.29\pm0.49^{**}$	S15	5.0	$11.17\pm3.76^{**}$
S5	5.0	9.00 ± 2.71	S16	5.0	$10.14 \pm 3.24^{**}$
S6	5.0	8.57 ± 2.99	S17	5.0	$12.57 \pm 4.86^{**}$
S7	5.0	6.86 ± 3.85	S18	5.0	$11.14\pm2.12^{**}$
S8	5.0	7.86 ± 1.46	S19	5.0	8.86 ± 2.12
S9	5.0	$10.71 \pm 1.80^{**}$			

与对照组比较: **P<0.01。

^{**}P < 0.01 vs control group.

便为药物发挥的正常药理作用,而过度作用导致的 腹泻则属于不良反应,本实验中各给药组均规避了 这一风险。与对照组相比,高海拔与低海拔来源的19 批大黄样品,均能增加小鼠给药后 5 h 内的排便粒 数,证实大黄具有明确的泻下作用。进一步分析不同 海拔样品的药效差异可见: 在10批高海拔大黄样品 中,有7批(S11、S12、S14~S18)表现出显著泻下 活性; 而9批低海拔大黄样品中, 仅3批(S2、S4、 S9) 达到显著活性水平。该结果不仅表明高海拔大黄 的泻下作用强度优于低海拔大黄,更体现出高海拔 样品在批次间药效一致性与稳定性上的明显优势。 为量化验证组间差异,将所有低海拔样品(S1~S9) 与高海拔样品(S10~S19)的实验数据分别合并后 进行统计分析。结果显示, 高海拔大黄组的整体泻 下作用显著优于低海拔组 (P<0.05), 证明海拔高 度是影响大黄泻下药效的关键因素。见表 5。

表 5 不同海拔大黄样品对正常小鼠排便的影响
Table 5 Effects of *R. palmatum* samples at different altitudes on defecation in normal mice

组别	剂量/(g·kg ⁻¹)	5 h 内总排便粒数
对照	_	6.57 ± 1.81
麻仁软胶囊	1.0	9.86 ± 2.27
低海拔	5.0	9.09 ± 1.41
高海拔	5.0	$10.63 \pm 1.53^*$

与低海拔大黄组比较: *P<0.05。

2.5 统计学处理

采用 IBM SPSS Statistics 25 软件进行统计分析,根据数据分布的特征选择合适的检验方法:对于符合正态分布的数据,多组间比较采用单因素方差分析(ANOVA),组间两两比较采用独立 t 检验;

对于不符合正态分布或方差不齐的数据,两组间采用 Mann-Whitney U 检验,多组间采用 Kruskal-Wallis 检验,结果均以 $\overline{x} \pm s$ 表示,P < 0.05 表示差异有统计学意义。

2.6 谱效关系研究

2.6.1 灰色关联度分析(GRA) 参考 GRA 方法,对原始数据进行无量纲化处理,采用初值法,以各组小鼠 5 h 内总排便粒数作为参考序列,分别取对应批次大黄的 HPLC 图谱中 29 个共有峰峰面积计算灰色关联系数。从表 6 可知,29 个共有峰药效指标的灰色关联度除峰 2 外均>0.9,反映各共有峰与药效指标存在较高的相关性,且关联度越高,相关性越强,表明不同海拔大黄泻下作用的强度不同,大黄的泻下作用是多种成分共同作用的结果。

2.6.2 偏最小二乘-回归分析 (PLS-RA) 以 29 个 共有峰峰面积作为自变量,以 5 h 内总排便粒数作 为因变量,利用 SIMCA 14.1 软件进行 PLS-RA,建立大黄泻下作用的的谱效关系模型。拟合回归方程为: $Y = -1.244 \, X_1 - 0.829 \, X_2 + 0.276 \, X_3 + 1.270 \, X_4 - 0.290 \, X_5 - 2.158 \, X_6 - 0.009 \, X_7 - 0.015 \, X_8 - 0.911 \, X_9 + 0.014 \, X_{10} - 2.383 \, X_{11} - 0.381 \, X_{12} - 2.511 \, X_{13} + 2.142 \, X_{14} - 1.762 \, X_{15} + 0.216 \, X_{16} + 1.413 \, X_{17} + 0.548 \, X_{18} + 1.915 \, X_{19} + 0.396 \, X_{20} + 0.876 \, X_{21} + 0.559 \, X_{22} + 0.692 \, X_{23} + 0.456 \, X_{24} + 0.193 \, X_{25} - 0.050 \, X_{26} + 1.416 \, X_{27} + 0.620 \, X_{28} + 0.543 \, X_{29}$,回归系数为正值说明该共有峰与药效呈正相关,负数则表示与药效呈负相关。

2.6.3 VIP 分析 采用 SIMCA 14.1 软件计算各自变量(共有峰峰面积)对因变量(5 h 内总排便粒数)的 VIP 值,结果见图 8。VIP 值反映自变量对模型解释因变量变异的贡献程度,值越高贡献越大,以 VIP 值>1 为阈值,筛选出峰 6(儿茶素)、

表 6 19 批大黄样品共有峰与泻下作用的关联度

Table 6 Correlation between common peaks and laxative action in 19 batches of R. palmatum samples

共有峰	关联度	排序	共有峰	关联度	排序	共有峰	关联度	排序
峰 1	0.965	26	峰 11	0.969	23	峰 21	0.978	13
峰 2	0.691	29	峰 12	0.983	3	峰 22	0.980	8
峰 3	0.966	25	峰 13	0.926	28	峰 23	0.974	17
峰 4	0.980	9	峰 14	0.970	22	峰 24	0.983	5
峰 5	0.976	14	峰 15	0.953	27	峰 25	0.979	12
峰 6	0.986	2	峰 16	0.973	20	峰 26	0.973	19
峰 7	0.975	16	峰 17	0.973	18	峰 27	0.968	24
峰 8	0.988	1	峰 18	0.980	10	峰 28	0.976	15
峰 9	0.983	4	峰 19	0.972	21	峰 29	0.980	7
峰 10	0.981	6	峰 20	0.979	11			

^{*}P < 0.05 vs low-altitude R. palmatum group.

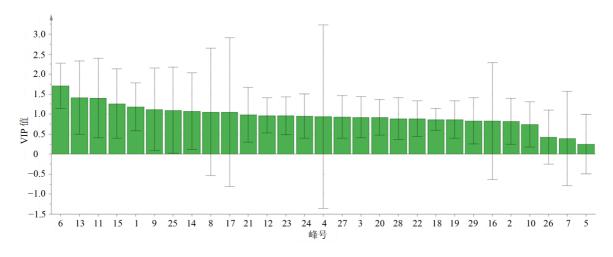


图 8 共有峰与 5 h 内总排便粒数的 VIP 值

Fig. 8 VIP values of common peaks for total number of fecal pellets in 5 hours

峰13、峰11、峰15、峰1、峰9(大黄酸-8-*O*-β-*D*-葡萄糖苷)、峰25(芦荟大黄素)、峰14、峰8、峰17为区分不同海拔大黄泻下药效的差异性成分。

整合 GRA 与 PLS-RA 分析结果,参照谱效关系研究文献报道^[17-20]确立多维筛选标准:以灰色关联度>0.9 表征成分-药效关联强度, PLS-RA 系数>0 指示正相关性, VIP 值>1 判定模型贡献显著性,据此筛选不同海拔高度大黄中调控泻下药效的关键成分。结果显示,峰 14、峰 17、峰 25(芦荟大黄素)为大黄泻下作用的主要成分。

3 讨论

大黄作为传统中药材,在临床应用中具有泻下 攻积、清热泻火、凉血解毒、逐瘀通经、利湿退黄 等功效[21]。化学成分研究表明,大黄的药效物质基 础与其复杂的化学成分密切相关,已从中分离鉴定 出蒽醌类、蒽酮类、二苯乙烯类、苯丁酮类、色原 酮类、黄酮类、鞣质类等成分[22];现代药理研究也 证实,大黄具有泻下、抗炎、抗氧化、抗肿瘤、保 肝等活性[23-24]。基于课题组前期研究基础,本研究 通过测定不同海拔高度大黄药材的 HPLC 指纹图 谱,探究海拔因素对大黄质量的影响。结果显示, 所有不同海拔的大黄样品与对照图谱的相似度均 高于 0.9, 表明不同海拔环境下生长的大黄, 其整体 化学成分组成具有较高稳定性。进一步通过 PCA 发 现, 高海拔与低海拔大黄样品可分别聚为独立类 别,提示 2 类样品的化学成分存在一定差异性; OPLS-DA 结果与 PCA 分类一致,以 VIP>0.85 为 筛选标准, 最终确定 19 个可区分不同海拔大黄的 差异性成分,对应色谱峰分别为:峰1、峰2、峰3、 峰 6 (儿茶素)、峰 9 (大黄酸-8-*O*-β-*D*-葡萄糖苷)、峰 12、峰 13、峰 14、峰 15、峰 17、峰 19、峰 20 (大黄酚-8-*O*-β-*D*-吡喃葡萄糖苷)、峰 22、峰 23、峰 24、峰 25 (芦荟大黄素)、峰 27 (大黄素)、峰 28 (大黄酚)、峰 29 (大黄素甲醚)。

为明确海拔对大黄药效的影响,本研究开展了泻下药效实验。结果表明,与对照组相比,19批不同海拔的大黄样品均表现出一定泻下作用,5h内小鼠排便粒数均显著增加。进一步分层分析显示:10批高海拔大黄样品中,有7批(S11、S12、S14~S18)泻下活性达到显著水平;而9批低海拔样品中,仅3批(S2、S4、S9)表现出显著泻下活性,提示高海拔大黄不仅泻下作用更强,其药效稳定性也更优。为量化海拔因素的影响,将低海拔样品(S1~S9)与高海拔样品(S10~S19)的药效数据分别整合后进行组间统计分析,结果证实高海拔组泻下作用显著优于低海拔组(P<0.05),明确海拔高度是影响大黄泻下作用的关键因素。

为揭示大黄化学成分与泻下药效的内在联系,本研究采用 PLS-RA 与 GRA 相结合的方法,成功构建了大黄 HPLC 指纹图谱与泻下作用的谱效关系模型,清晰呈现了特征图谱中各色谱峰代表的化学成分与泻下药效的相关性,为推测大黄泻下作用的药效物质基础提供了直接依据。综合分析结果显示,峰 14、峰 17、峰 25(芦荟大黄素)与大黄泻下作用的关联性最强,提示其代表的化学成分可能是大黄发挥泻下作用的主要物质;同时也发现,大黄中其余色谱峰对应的化学成分与泻下作用同样存在相关性,表明大黄的泻下作用并非由单一或少

数成分决定,而是多种成分协同作用的综合体现,后续需进一步探究其他相关成分的具体作用机制。结合前述海拔对化学成分的影响结果可推测:不同海拔高度的大黄可能因为峰 14、峰 17、峰 25(芦荟大黄素)这 3 种差异性成分的含量变化,导致高海拔与低海拔大黄的泻下作用产生差异,最终表现为高海拔大黄泻下作用增强。

现有研究已明确,大黄泻下作用的主要药效成分集中于结合型蒽醌类与蒽酮类衍生物,其中大黄酸苷、蒽醌苷元及番泻苷类等为核心活性成分,其作用机制主要是通过刺激肠道蠕动、改变肠道内环境而诱导腹泻^[25-27]。同时有研究指出,高海拔地区的生长环境(如低温、强光照、昼夜温差大等)更有利于植物次生代谢产物的合成与积累,这种环境诱导的成分积累效应,可能是高海拔大黄主要药效成分含量升高、泻下作用增强的重要原因。该发现为优化大黄药材的种植区域选择(如优先选择高海拔适宜产区)、提升药材质量与临床疗效提供了重要的科学依据。

综上,本研究通过将不同海拔高度大黄的 HPLC 指纹图谱与泻下药效进行关联分析,筛选出 与海拔相关的泻下活性差异成分,为确立大黄关键 质量评价指标、开展后续药效机制研究提供了重要 参考。但需注意的是,本研究仅初步筛选出与海拔 高度相关的药理活性指标,尚未对 19 个差异性成 分进行定量分析与验证;后续研究将重点考察不同 海拔高度大黄样品中差异性成分的含量变化规律, 进一步阐明海拔影响大黄质量与药效的具体机制, 为大黄药材的质量控制与合理应用提供更全面的 支撑。

利益冲突 所有作者均声明不存在利益冲突

梅女宝参

- [1] 中国药典 [S]. 一部. 2025.
 - Pharmacopoeia of the People's Republic of China [S]. Volume I. 2025.
- [2] 朱溶月. 固原地区大黄属植物资源的调查与地理分布 [D]. 兰州: 兰州大学, 2011.
 - Zhu R Y. Investigation and geographical distribution of *Rheum* resources in Guyuan area [D]. Lanzhou: Lanzhou University, 2011.
- [3] 颜永刚, 王红艳, 邓翀, 等. 生长年限、海拔和光照对 大黄中 8 种成分量的影响研究 [J]. 中草药, 2017, 48(11): 2285-2291.

- Yan Y G, Wang H Y, Deng C, et al. Effects of growth years, altitude, and light factors on contents of eight components in *Rheum* officinale [J]. Chin Tradit Herb Drugs, 2017, 48(11): 2285-2291.
- [4] 黄璐琦, 郭兰萍. 环境胁迫下次生代谢产物的积累及 道地药材的形成 [J]. 中国中药杂志, 2007, 32(4): 277-280.
 - Huang L Q, Guo L P. Secondary metabolites accumulating and geoherbs formation under environmental stress [J]. China J Chin Mater Med, 2007, 32(4): 277-280.
- [5] Zhang L, Liu H Y, Qin L L, et al. Global chemical profiling based quality evaluation approach of rhubarb using ultra performance liquid chromatography with tandem quadrupole time-of-flight mass spectrometry [J]. J Sep Sci, 2015, 38(3): 511-522.
- [6] 王玉,杨雪,夏鹏飞,等.大黄化学成分、药理作用研究进展及质量标志物的预测分析 [J].中草药,2019,50(19):4821-4837.
 - Wang Y, Yang X, Xia P F, et al. Research progress on chemical composition and pharmacological effects of *Rhei Radix* et *Rhizoma* and predictive analysis on quality markers [J]. Chin Tradit Herb Drugs, 2019, 50(19): 4821-4837.
- [7] 谭鹏, 王伽伯, 张定堃, 等. 效应成分指数在中药大黄质量评价中的应用研究 [J]. 药学学报, 2019, 54(12): 2141-2148
 - Tan P, Wang J B, Zhang D K, et al. Application of an effect-constituents index for the quality evaluation of the traditional Chinese medicine rhubarb [J]. Acta Pharm Sin, 2019, 54(12): 2141-2148.
- [8] 金丽霞,金丽军,栾仲秋,等. 大黄的化学成分和药理研究进展 [J]. 中医药信息,2020,37(1):121-126.
 - Jin L X, Jin L J, Luan Z Q, et al. Research progress on chemical constituents and pharmacology of rhubarb [J]. Inf Tradit Chin Med, 2020, 37(1): 121-126.
- [9] 唐大轩, 谭正怀, 梁媛媛, 等. 大黄蒽醌致泻作用及其 机理的初步研究 [J]. 时珍国医国药, 2007, 18(6): 1312-1314.
 - Tang D X, Tan Z H, Liang Y Y, et al. The inducing diarrhea effects and its mechanisms of anthraquinon from *Rheum palmatum* L [J]. Lishizhen Med Mater Med Res, 2007, 18(6): 1312-1314.
- [10] 赵燕玲, 张仲海, 王宗仁, 等. 大黄的泻下作用与肠道 5-HT 及其受体的关系 [J]. 云南中医学院学报, 2002, 25(1): 1-3.
 - Zhao Y L, Zhang Z H, Wang Z R, et al. Relationship between drastic effect of rhubarb and 5-HT and it's receptor in duodenum tissues [J]. J Yunnan Coll Tradit

216-225.

- Chin Med, 2002, 25(1): 1-3.
- [11] 李思颖, 金晨, 刘均正, 等. 基于灰色关联度的保元汤 基准样品抗氧化作用的谱效关系研究 [J]. 中医药导报, 2025, 31(2): 41-46, 56.
 - Li S Y, Jin C, Liu J Z, et al. Study on spectrum-effect relationship of anti-inflammation of Baoyuan Decoction (保元汤) based on gray correlation analysis [J]. Guid J Tradit Chin Med Pharm, 2025, 31(2): 41-46, 56.
- [12] 张靖年, 张晓丹, 李素梅, 等. 菊苣 HPLC 指纹图谱及含量测定研究 [J]. 中药材, 2023, 46(2): 419-423.

 Zhang J N, Zhang X D, Li S M, et al. Study on HPLC fingerprint and content determination of chicory [J]. J Chin Med Mater, 2023, 46(2): 419-423.
- [13] 向欢, 涂慕鑫, 李玉, 等. 基于指纹图谱与化学计量学的淡竹叶质量控制研究 [J]. 山西大学学报(自然科学版), 2025, 48(2): 216-225.

 Xiang H, Tu M X, Li Y, et al. Quality control research of *Lophatherum gracile* brongn. based on fingerprint and chemometrics [J]. J Shanxi Univ Nat Sci Ed, 2025, 48(2):
- [14] 洪挺, 李丹, 张玉, 等. 基于指纹图谱、网络药理学的 泽泻和盐泽泻质量标志物预测 [J]. 中国中医药信息 杂志, 2025, 32(6): 135-141. Hong T, Li D, Zhang Y, et al. Prediction of quality markers of *Alismatis rhizoma* and salted *Alismatis rhizoma* based on fingerprint and network pharmacology [J]. Chin J Inf Tradit Chin Med, 2025, 32(6): 135-141.
- [15] 吴晓青, 胡昌江, 赵玲, 等. 生、熟大黄泻下作用及其机制研究 [J]. 中药材, 2014, 37(09): 1562-1565. Wu X Q, Hu C J, Zhao L, et al. Study on the purgative effect and mechanism of crude and processed *Rhei Radix* et *Rhizoma* [J]. J Chin Med Mater, 2014, 37(09): 1562-1565.
- [16] 李燕,隋峰,刘亮亮,等. 大黄各炮制品提取物泻下作用的比较研究 [J]. 中国实验方剂学杂志, 2011, 17(17): 151-154.

 Li Y, Sui F, Liu L L, et al. Comparative study on purgative effect among different extracts of processed *Rhez Radix* et *Rhizoma* [J]. Chin J Exp Tradit Med Form, 2011, 17(17): 151-154.
- [17] 葛宏霞, 李思琪, 梅景晨, 等. 基于中药炮制"醋制入肝"理论醋五味子对急性肝损伤作用谱效关系研究 [J]. 药物评价研究, 2023, 46(9): 1897-1907. Ge H X, Li S Q, Mei J C, et al. Study on relationship of vinegar *Schisandra chinensis* on acute liver injury based on theory of "vinegar into liver" in traditional Chinese medicine processing [J]. Drug Eval Res, 2023, 46(9): 1897-1907.
- [18] 黄广伟,陈淮臣,刘渝,等.基于灰色关联度和偏最小二乘回归分析的岑苏胶囊抑菌谱效关系研究 [J]. 药物评价研究, 2022, 45(6): 1060-1069.
 - Huang G W, Chen H C, Liu Y, et al. Research on spectrumeffect relationship of bacteriostasis in Qinsu Capsule based

- on grey correlation degree and partial least squares regression analysis [J]. Drug Eval Res, 2022, 45(6): 1060-1069.
- [19] 丘琴, 卢显兴, 阮必高, 等. 基于灰色关联度和偏最小二乘回归分析的扁担藤抗炎谱效关系研究 [J]. 中药材, 2021, 44(2): 369-373.
 - Qiu Q, Lu X X, Ruan B G, et al. Study on the anti-inflammatory spectrum-effect relationship of *Tetrastigma planicaule* rattan based on grey relational degree and partial least squares regression analysis [J]. J Chin Med Mater, 2021, 44(2): 369-373.
- [20] 张萌, 邓家刚, 韦玮, 等. 广山楂 HPLC 指纹图谱建立及其活血化瘀作用谱效关系研究 [J]. 中草药, 2023, 54(2): 601-607.
 - Zhang M, Deng J G, Wei W, et al. Establishment of HPLC fingerprint of *Malus doumeri* and its spectrum-effect relationship of blood-activating and stasis-resolving [J]. Chin Tradit Herb Drugs, 2023, 54(2): 601-607.
- [21] 陈艳琰, 唐于平, 陈嘉倩, 等. 大黄资源化学研究进展与利用策略 [J]. 中草药, 2018, 49(21): 5170-5178. Chen Y Y, Tang Y P, Chen J Q, et al. Research progress and utilization strategy on resource chemistry of *Rhei Radix* et *Rhizoma* [J]. Chin Tradit Herb Drugs, 2018, 49(21): 5170-5178
- [22] Wei G F, Chen X, Zhang G Z, et al. Assembly and network of *Rhei Radix* et *Rhizoma* surface microbiome shaped by processing methods and sampling locations [J]. Chin Herb Med, 2024, 17(1): 189-199.
- [23] 邹云娇, 郁利霞, 王亦舟, 等. 大黄化学成分品质评价 及影响因素研究进展 [J]. 中草药, 2025, 56(14): 5225-5236.
 - Zou Y J, Yu L X, Wang Y Z, et al. Research progress on quality evaluation and influencing factors of chemical compositions in *Rhei Radix* et *Rhizoma* [J]. Chin Tradit Herb Drugs, 2025, 56(14): 5225-5236.
- [24] 李欢, 冯宇博, 张薇, 等. 基于大黄双向调节作用治疗便秘及腹泻的机制研究进展 [J]. 中草药, 2025, 56(15): 5645-5657.
 - Li H, Feng Y B, Zhang W, et al. Research progress on mechanism of *Rhei Radix* et *Rhizoma* in treating constipation and diarrhea based on its bidirectional regulatory effect [J]. Chin Tradit Herb Drugs, 2025, 56(15): 5645-5657.
- [25] Duval J, Pecher V, Poujol M, et al. Research advances for the extraction, analysis and uses of anthraquinones: A review [J]. Ind Crops Prod, 2016, 94: 812-833.
- [26] Feng T S, Yuan Z Y, Yang R Q, et al. Purgative components in rhubarbs: Adrenergic receptor inhibitors linked with glucose carriers [J]. Fitoterapia, 2013, 91: 236-246.
- [27] Takayama K, Tsutsumi H, Ishizu T, et al. The influence of Rhein 8-O-β-D-glucopyranoside on the purgative action of sennoside A from rhubarb in mice [J]. Biol Pharm Bull, 2012, 35(12): 2204-2208.